skip to main content NIST Center for Neutron Research NIST Center for Neutron Research National Institute of Standards and Technology
Home Instruments Science Experiments SiteMap
Joe Dura

Joseph A Dura

Physicist, Condensed Matter Science Group,

NIST Center for Neutron Research
100 Bureau Drive, Stop 6102
Gaithersburg, MD 20899-6102

(301) 975-6251


Neutron Reflectometry

Neutron reflectometry is a high resolution, quantitative, and in-operando probe of the nano-scaled structure in thin films, surface layers and buried interfaces

Joe is an instrument scientist for the Magik Reflectometer at the NCNR, and applies neutron reflectometry, NR, to a variety of disciplines including energy storage and conversion, hydrogen interactions, biology, and magnetic materials, in addition to developing Neutron Reflectometry techniques, instrumentation and sample environments.

Neutron reflectometry measures the reflected intensity of a thin monochromatic neutron beam as a function of the grazing incidence angle relative to a flat smooth sample surface. The sample typically consists of layers or coatings with thickness of 1-500nm (either intentionally deposited or as the result of surface or interface reactions).

By analyzing NR data, which consists of oscillations in the intensity, one determines a depth profile of the scattering length density in the sample with up to sub-angstrom level precision and accuracy. For neutrons, the scattering length density, which can be determined from the composition, can vary quite significantly for certain isotopes of the same element. For elements with a large isotope difference one can determine an elemental depth profile, label specific layers in the sample, or label specific reactants to determine which contribute to the formation of surface layers. Hydrogen and Lithium are two of many elements with a particularly large isotope effect and which has been utilized in studies of polymers, biological systems, fuel cells and battery materials. Because neutrons can readily penetrate a variety of materials, neutron reflectometry is also ideal for in-situ, in-operando and multimodal measurements.

Interfaces for Energy Transport Conversion and Storage

Interfaces play a key role in electrochemical and catalytic reactions at the heart of many energy conversion and storage processes. In-Operando NR is used to examine un-perturbed structures at these interfaces in a working electrochemical or similar environment at arbitrary applied potential. One area of interest is the effects of interface on the morphology and composition of polymer electrolytes, in particular Nafion. Another area of concentration is in-operando studies of the SEI layer and other interface phenomena in Li ion batteries. (Site under construction)


Ph.D., Physics, University of Illinois Urbana Champaign, 1991
B.S., Physics, University of Arizona, 1984


CREB: Center for Research in Extreme Batteries, Steering Committee

Positions Available

Recent or upcoming PhD graduates who are interested in postdoctoral research focusing on thin films and interfaces in energy system including batteries, fuel cells, polymer electrolytes, hydrogen interactions, or related research are invited to apply for a NRC postdoctoral fellowship.

For more details, please contact Joe Dura.


Eric Rus
In-operando neutron reflectometry of the SEI layer in Li-ion batteries

Former Postdocs

Steven DeCaluwe
Department of Mechanical Engineering
Colorado School of Mines

Mike Hartman
Independent Contractor

Vivek Srinivasamurthi
De Nora Tech.

Selected Publications


Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry Jeanette E. Owejan*, Jon P. Owejan, Steven C. DeCaluwe, and Joseph A. Dura*, Chem. Mater.24 (11), pp 2133-2140 (2012) [DOI: 10.1021/cm3006887]

Pore Collapse and Regrowth in Silicon Electrodes for Rechargeable Batteries, S. C. DeCaluwe, B. M. Dhar, L. Huang, Y. He, K. Yang, J. P. Owejan, Y. Zhao, A. A. Talin, J. A. Dura*, H. Wang*, Phys. Chem. Chem. Phys. 11301-11312 (2015) [DOI: 10.1039/ C4CP06017B]

Polymer Electrolytes

Multilamellar Interface Structures in Nafion, Joseph A. Dura, Vivek S. Murthi, Michael Hartman, Sushil K. Satija, Charles F. Majkrzak, Macromolecules, 42 (13), pp 4769-4774 (2009) [DOI: 10.1021/ma802823j].

Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures, Steven C. DeCaluwe, Paul A. Kienzle, Pavan Bhargava, Andrew M. Baker, and Joseph A. Dura, Soft Matter 10, 5763 (2014) [DOI: 10.1039/c4sm00850b]

Effect of Confinement on Structure, Water Solubility, and Water transport in Nafion Thin Films, Scott A. Eastman, Sangcheol Kim, Kirt A. PageBrandon W. Rowe, Shuhui Kang, Steven C. DeCaluwe, Joseph A., Dura, Christopher L. Soles, and Kevin G. Yager, Macromolecules 45 (19), 7920-7930 (Sept 2012) [DOI: 10.1021/ma302140d].

Surface-Induced Nanostructure and Water Transport of Thin Proton-Conducting Polymer Films, Sangcheol Kim, Joseph A. Dura, Kirt A. Page, Brandon W. Rowe, Kevin G. Yager, Hae-Jeong Lee, and Christopher L. Soles, Macromolecules, 46, 5630-5637 (2013) [DOI:10.1021/ma400750f]

Hydrogen in thin films

Reversible Tuning of the Magnetic Exchange Coupling in Fe/V (001) Superlattices Using Hydrogen, B. Hjorvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson, and C. F. Majkrzak, Phys. Rev. Lett., 79, 901 (1997).

Porous Mg formation upon dehydrogenation of MgH2 thin films, J. A. Dura, S. T. Kelly, P. A. Kienzle, J.-H. Her, T. J. Udovic, C. F. Majkrzak, C.-J. Chung, and B. M. Clemens, Journal of Applied Physics, 109 (9) 093501(2011) [doi:10.1063/1.3574664].

Extraordinary Alignment of Nb Films on Sapphire and the Effects of Added Hydrogen, P. M. Reimer, H. Zabel, C. P. Flynn, and J. A. Dura, Phys. Rev. B., 45, 11426 (1992).

Biological thin films

Hybrid Bilayer Membranes in Air and Water: Infrared Spectroscopy and Neutron Reflectivity Studies, C.W. Meuse, S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J.T. Conner, and A. L. Plant, Biophysical Journal, 74, 1388 (1998).

Investigation of Hybrid Bilayer Membrane Structure with Neutron Reflectometry: Probing the Interactions of Melittin, S. Krueger, C. W. Meuse, C. F. Majkrzak, J. A. Dura, N. F. Berk, M. Tarek, and A. L. Plant, Langmuir 17, 511-521 (2001).

Structural characterization of the voltage sensor domain and voltage-gated K+-channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry, Sanju Gupta, Joseph A Dura, J Alfredo Freites, Douglas J Tobias, J Kent Blasie, Langmuir, 28 (28), pp 10504-10520 (2012) [DOI: 10.1021/la301219z]


Reversible Tuning of the Magnetic Exchange Coupling in Fe/V (001) Superlattices Using Hydrogen, B. Hjorvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson, and C. F. Majkrzak, Phys. Rev. Lett., 79, 901 (1997).

Observation of an Antiparallel Magnetic State in Uncoupled Co/Cu Multilayers, J. A. Borchers, J. A. Dura, C. F. Majkrzak, S. Y. Hsu, R. Loloee, W. P. Pratt Jr., and J. Bass, Phys. Rev. Lett., 82, 2796 (1999).

Asymetric Magnetization Reversal in Exchange Biased Hysterysis Loops, M. R. Fitzsimmons, P. Yashar, C. Leighton, I. K. Schuller, J. Nogues, C. F. Majkrzak, and J. A. Dura, Phys. Rev. Lett. 84, 3986, (2000)

Two-Stage Magnetization Reversal in Exchange Biased Bilayers, C. Leighton, M. R. Fitzsimmons, P. Yashar, A. Hoffmann, J. Nogues, J. Dura, C. F. Majkrzak, and Ivan K. Schuller, Phys. Rev. Lett. 86, 4394 (2001).

The Magnetic Structure of Cr in Exchange Coupled FeCr(001) Superlattices, A. Schreyer C.F. Majkrzak, Th. Zeidler, T. Schmitte, P. Bodeker, K. Theis-Brohl, A. Abromeit, J.A. Dura , T. Watanabe, Phys. Rev Lett., 79, 4914 (1997).

Influence of interfacial disorder and temperature on magnetization reversal in exchange-coupled bilayers, Fitzsimmons MR, Leighton C, Hoffmann A, Yashar PC, Nogues J, Liu K, Majkrzak CF, Dura JA, Fritzsche H, Schuller IK, Phys. Rev. B 64, 104415 (2002).

Neutron Techniques

AND/R: Advanced Neutron Diffractometer/ Reflectometer For Investigation of Thin Films and Multilayers for the Life Sciences, Joseph Dura, Donald Pierce, Charles Majkrzak, Nicholas Maliszewskyj, Duncan McGillivray, Mathias Loesche, Kevin O'Donovan, Mihaela Mihailescu, Ursula Perez-Salas, David Worcester, Stephen White, Rev. Sci Instr. 77, 074301 (2006).

Critical review of the current status of thickness measurements for ultrathin SiO2 on Si Part V: Results of a CCQM pilot study, M. P. Seah, S. J. Spencer, F. Bensebaa, I. Vickridge, H. Danzebrink, M. Krumrey, T. Gross, W. Oesterle, E. Wendler, B. Rheinlander, Y. Azuma, I. Kojima, N. Suzuki, M. Suzuki, S. Tanuma, D. W. Moon, H. J. Lee, Hyun Mo Cho, H. Y. Chen, A. T. S. Wee, T. Osipowicz, J. S. Pan, W. A. Jordaan, R. Hauert, U. Klotz, C. van der Marel, M. Verheijen, Y. Tamminga, C. Jeynes, P. Bailey, S. Biswas, U. Falke, N. V. Nguyen, D. Chandler-Horowitz, J. R. Ehrstein, D. Muller, and J. A. Dura, Surf. Interface Anal. 36, 1269-1303 (2004) [DOI: 10.1002/sia.1909].

Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. I. Measurements, Charles F. Majkrzak, Christopher Metting, Brian B. Maranville, Joseph A. Dura, Sushil Satija, Terrence Udovic, and Norman F. Berk, Physical Review A 89, 033851 (2014) [DOI: 10.1103/PhysRevA.89.033851].

Neutron Reflectivity, X-ray Reflectivity, and Spectroscopic Ellipsometry Characterization of Thin SiO2 on Si, J. A. Dura, C A. Richter, C. F. Majkrzak, and N. V. Nguyen, APL 73, 2131 (1998).

Phase Determination and Inversion in Specular Neutron Reflectometry, C. F. Majkrzak, N. F. Berk, J. A. Dura, S. K. Satija, A. Karim, J. Pedulla, and R. D. Deslattes, Physica B 248: 338-342 (1998).

(Website under construction)

Last modified 22-February-2016 by website owner: NCNR (attn: Joe Dura)