Neutron Backscattering at NIST

Origins

1970's & 80's

Europe making remarkable progress in cold neutron research. U.S. lags.

1984

Mike Rowe presents idea for CNRF to Seitz-Eastman Committee

1984

Schenlen & Alfeld publish idea for phase space transformer (PST)

"White to Wide"

Instrument Characteristics

$\lambda = 6.271 \text{ Å}$

$\Delta E (\text{meV})$	$\Delta E (\text{FWHM, meV})$
± 11 | 0.79
± 17 | 0.93
± 36 | 1.04

$\theta = 3.5 \times 10^6 \text{ rad/s}$

At beam center

1999 First User Experiment

Status & Future

HFBS → NCNR Flagship

→ Attracted new science to NIST

→ Key instrument in CHINS

→ 250 publications to date

Upgrade design in progress

Improve converging guide + larger Doppler monochromator $= x2.4$

Development

1987 Dan Neuhauss starts at NIST

1991 Andreas Hagerl shows Dan the remains of graphite crystals used in an early attempt to spin crystals

Decision to Build HFBS

Christoph Brocker (Mech Eng) hired to design HFBS and maybe the PST

Decision to Build PST

1994 HFBS vacuum chamber arrives 20.8 metric tons & 26 m3

1996 Peter Geringer measures ~1900 rocking curves for HPG at BNL & NIST

1992 PST needed 180 x-rays

1992 Brocker designs robust mounting scheme for PST x-rays

Compress mounting used

Oct 1993: long, extensive tests on a boric acid showed feasibility unaffected by prolonged rotation

5° Be wedge

2° Be

Be retainer

58° of neutron backscattering spectroscopy - Institute of Advanced Study - Technische Universität München - September 23, 2014

Sketchnote: Keen