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Small angle neutron scattering (SANS) measurements are made at the NIST
Center for Neutron Research in Gaithersburg, Maryland. Because NIST is a user
facility, the data are nicely output by the experiment, but a ’black box’ element
exists as a result. I believe it is important to connect the fundamentals of neutron
scattering with the data output by the user facility. While there are many useful
sources to learn about SANS, I have tried to compile all of the most important
information in this document. Most of this work is derived through the work of
Squires, Pynn, and Hammouda [1, 2, 3]. An alternate version of this document can
be found in my thesis, and I am grateful for the help of Boualem Hammouda and
Claire Mcllroy.

1 Scattering from a Single Nucleus

To understand how a real material scatters neutrons, the scattering from an indi-
vidual nucleus must be addressed. Consider a nucleus at the origin that acts like a
point-particle. Incident neutrons traveling with wavevector ko = (0,0, k) and wave-

function ¥ = e** spherically scatter off the nucleus with scattered wavevector k/
and wavefunction ;
Yo = e, 1)

where 7" is the location of the observed wave with respect to the origin and b is

the scattering length. The negative sign in Equation 1 is arbitrary but chosen so

that b > 0 is repulsive. While the premise of scattering is a change in momentum

(ko # k'), 1 will only discuss elastic scattering (|ko| = |k'| = k). Additionally, I will

only focus on isotropic scattering, so Equation 1 is rewritten as
¢s — _éeikr'

r
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2 Scattering Length

As can be seen in Equation 2, b has units of length, though it defines the neutron-
nucleus interaction. For x-ray scattering, b o« Z where Z is the atomic number; b
is more complicated in neutron scattering. In general, b is a complex number where
Im b is related to neutron absorption by a nucleus. Some elements like cadmium are
strong absorbers of neutrons because Im b for these nuclei are significant. For most
elements, particularly the elements found in proteins, Re(b) > Im(b), so I consider
b = Re(b) in the following sections.

Neutrons scatter from nuclei that have an apparent size defined by the differential
cross section

do _ Number of neutrons scattered per second into area d.S (3)
aQ ddS2
where ® is the incident flux and df? is a differential solid angle. With neutrons

traveling at speed v, the number of neutrons scattered through a surface dS per
second is

b2
vdS|ihs|* = vdS— = vb*dQ, (4)
r
and since the flux of incident neutrons
® =y = v, (5)
the differential cross section becomes
do
— =% 6
S (6)
Therefore, the total scattering cross section for a nucleus is
Otot — 47Tb2 (7)

The nucleus appears, to the neutron, to be an object with total scattering cross
section of oyy. 0y varies randomly with Z and even amongst isotopes [Figure 1]. b
is a consequence of nuclear interactions and cannot be predicted by current theories
of nuclear forces. Therefore, b must be measured experimentally for each isotope.

3 Origin of Coherent and Incoherent Scattering

In an assembly of N nuclei, where the i*' nucleus is at position R; with scattering
length b;, the incident wave with wavevector kg is expressed as

—
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Figure 1: X-rays and neutron interactions with nuclei reprinted from Hammouda [3].
Solid symbols are for nuclei with negative scattering cross sections.

and the scattered wave with wavevector &' becomes

—bl ik (P— R
- _ ezkv('r RZ) ] (9)
|T’ — RZ|

N
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Note that Equation 9 reduces to Equation 2 when N = 1 and R; = (0,0, 0).

Define the scattering vector ¢ as the momentum transfer ¢ = Eo — K and measure
the wave at distances larger than inter-atomic distances (7> R;). In the simplest
scenario, all nuclei are identical with the same average scattering length b. However,
variations of nuclei positions or spin states with time cause fluctuations db; around
b that are uncorrelated with fluctuations 0b;. Therefore, b; = b + 8b;. The total
scattering cross section for an assembly of point particles, using Equations 3 & 9,
becomes

do N N L
tot 7 —iq- R;—R;
- :<b2§i:§j:e 7( )+N<562>>

o dacoh do_inc

dQ (@) ds?

(10)
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where o, and o;,. are the coherent and incoherent scattering cross sections respec-
tively. Coherent scattering depends on ¢ and originates from scattering of different
nuclei at the same time, creating an interference pattern from scattered waves. Inco-
herent scattering is caused by scattering from individual scatterers at different times
that adds independently. As a result, the total scattering cross section

Otot = Ocoh T Tine- (11)

For the remainder of this section, I will exclusively discuss o.,, because only oo
contains structural information, and I rename o = o, for convenience.

4 One Finite Sized Particle as an Assembly of
Point Particles

Real objects can not always be considered point-particles. However, finite sized par-

ticles with volume Vp can be approximated by an arrangement of nuclei. Redefining
b; = b, the coherent scattering cross section for an assembly of identical point parti-

cles becomes
dQ 7@ = <Zbesz > (12)

Extending the sum over nuclei into an integral over all space 7 inside of the particle,
the scattering cross section becomes
> (13)

do 1 R
- — d b zq T o
(@ <‘@/ﬁr }:ar R;)

Instead of scattering from point nuclei at 7= R;, the scattering length density

o) = A0 (14)

P

is defined. Additionally, the number density of scatterers

‘*:E:&F—ﬁm (15)

where (n(r)) = n/Vp, is equivalent to

n(F) = i + An(7) (16)
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with a spatially fluctuating density An(r) about an average density 7.
Equation 13 can then be rewritten as
2
> | a7

Approximating p(7') = p inside the particle and separating the terms in the integral

gives )
;l_g@ = < > : (18)

The first integral only contributes when ¢ = 0 and is not measured in a scattering
experiment. The second integral is the Fourier transform of the density fluctuations
in real space. Therefore, Equation 18 becomes

Z_g@ — <'/dfp(?)e“ﬁ(n + An(7))

ﬁp/dfei‘ﬁ—i-p/dfei‘?’:ﬁn(f')

do

(@ = (IoAVen(@F). (19)
Note that the scattering cross section only depends on p, Vp, and the density fluc-
tuations in momentum space.
5 Origin of Contrast Factor

In the case of a general two-phase system where the i*" component has volume V;
(total volume V = V| + V%), scattering length density p;, and density fluctuations
An;(q), the ¢ # 0 scattering in Equation 18 is rewritten as

2

)

do
@ =<

where [ is the integral over all of V;. Given that An;(¥) = An;(—7) and that the

incompressibility assumption requires Any(7) = —Any(7)

pl/Anl(F)ei‘f'F1 —i—pg/Ang(F)ei‘T'FQ
1 2

@) = (ApPV? (B (@) Am (@) (21)

The contrast factor Ap = (p; — ps) in Equation 21 is an extremely important and
powerful feature of SANS; a careful choice of Ap greatly simplifies data interpreta-
tion.
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Figure 2: Changes in solvent scattering length density change contrast reprinted
from Hammouda [3].

5.1 Contrast Matching

One of the advantages of neutron scattering is the ability to adjust the contrast factor
Ap between the scatterers and the solvent. Since do/dQ(q) o< Ap?, the intensity
of scattering is maximized by adjusting the solvent. Solvent adjustments are most
frequently accomplished by isotope changes, since isotope changes dramatically affect
the scattering length of the nucleus [Figure 1]. In aqueous solvents, some percentage
of the water (H,0) is replaced by deuterium oxide (D20) to maximize Ap?.

Alternatively, the solvent can also be adjusted to selectively scatter from a par-
ticular part of the system instead of maximizing Ap?. The most straightforward
contrast variation involves mixing Ho,O and D50 to create a binary solvent with a
desired average scattering length density pmic. As schematized in Figure 2, a system
with constituents A and B with pa and pg will scatter from both A and B. However,
scattering will come from only A if p,ix = pB.

6 Assembly of Finite Sized Particles

I have shown for the previous scenarios that do/dQ(q) = {|f ((j)|2>, where f(q) is a
scattering amplitude. In the case of a point particle at }i-, f(q) = —be'THi whereas
f(@) = ApVpAn(q)eiTi for a finite sized particle centered at ;. Therefore, the



scattering cross section for an assembly of N identical finite sized particles is

;ZQ (@) = < > (22)

Expanding this out, I get

;l—g(q_) (Ap)*Vp <ZZAn Q) An(q)e @ >

1

Z ApVpAn(q)ed

(23)
= N(Ap)2VE (An(@)An(D)) (1 te <Z > ‘)>) -
i j#i
Defining the single particle form factor
P(q) = (An(q)An(])) (24)

and the structure factor

N N

1 L

= — iq- (i —1ij)

S(@_<1+N<S E'eq >>, (25)
N E=

Equation 23 becomes

% @) = NOpPVEP@S(@. (26)

7 Macroscopic Scattering Cross Section

The macroscopic scattering cross section is defined as

D= @, (27)

where V' is the volume of the sample; dX/d€2(g) is an intensive property of the
sample. Because of instrumental conditions, the actual measured scattering of the
sample varies. However, the absolute scattering intensity (q) is calculated knowing
the experimental parameters:

1(§) = [pACTAQeL] 33 (@ (28)

where ¢ is the neutron flux, A is the area of the sample, ¢ is the pathlength of the
sample, T is the sample transmittance, AS2 is pixel size in units of solid angle, ¢ is
the efficiency of the detector, and ¢ is the counting time for the experiment. With
I(¢) known, a quantitative comparison can be made between measurements.
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8 Scattering in Experiments

In a SANS experiment, a monochromatic neutron beam is directed through a col-
limated aperture and incident upon the sample. The sample scatters the neutrons
over some angle onto a 2-dimensional detector as schematized in Figure 3; in the
case of isotropic scattering, the detector is azimuthally averaged to determine I(q).
The scattering vector ¢ is calculated by

g=2Tcin (9) , (29)

where \ and 6 are the neutron wavelength and scattering angle respectively.
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Figure 3: Schematic of SANS setup: monochromatic neutrons are focused onto a
sample and scatter onto a 2-D detector reprinted from Hammouda [3]. If scattering
is isotropic, 2-D scattering can be averaged onto a single curve.

9 Data Analysis

Once I(q) is determined, data analysis begins. There are many different ways to
analyze SANS data, but most of these methods require some a priori structural
information or assumptions. However, the Guinier and Porod analyses techniques
are the most basic because they require minimal assumptions. In the following
subsections, I go through the derivations of each method.



9.1 Guinier Analysis

One of the simplest analysis types is an expansion of P(q) using Equations 18 & 24.
Define § = ¥ — 1" = (s,, 5y, 5,), and set r" at the origin. The integrals can then be
replaced by [ d3: the distribution of distances §. For small ¢+ §

P@) ~ /d§+i/d§(i- 5 — %/d§(c7- 9)? (30)

where [ds(q-§) =0 from symmetry.
The quadratic term is expanded

/dg((f 5‘)2 = /dé’(qxsx + qysy + quZ)Q

(31)
= /dg(qngi +qrsh + q2s?)

from the same symmetry argument above. Because (352 + ¢os. + ¢257) = ¢°s*/3, 1
can rewrite

e [ MG
fd87'

L (1 ) qf) (32)

_2p2
%‘/Oe qRG/3

to order O(qR¢)? where

1fd§52

9.2 Porod Analysis

In the case of isotropic scattering, the scattering function can be rewritten in terms
of the pair correlation function g(s) as

o) [ as T ) 31

where

g5\ sin(gs)
(e7'0%) = .5 (35)
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Figure 4: Structures associated with particular Porod slopes reprinted from Ham-
mouda [3].

is the Debye approximation [4]. In a mass fractal, mass scales with s”, where D is
the mass fractal dimension. As a result, the pair correlation function g(s) oc s”73 [5].
Using Equation 34,
1
I(q) o D (36)
for the scattering of a mass fractal. D ranges between 0 and 3.
Systems that have surface fractals with dimension D, have mass that scales with

s27Psresulting in g(s) o s>~P+ [6]. Therefore,

1

I(q) D (37)

for the scattering of a surface fractal. Values of D, range between 3 for a rough
surface and 2 for a smooth surface. Note that D, = 2 recovers the Porod scaling of
I(q) o< 1/q*. Therefore, a microscopic picture of the structure inside a material can
be determined by measuring the fractal dimension [Figure 4].
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