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ABSTRACT The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the
protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins,
triskelia will self-assemble to form a closed clathrin cage, or ‘‘basket’’. Recent static light scattering and dynamic light scattering
studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred
from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing
small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed
by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a
shoulder in the scattering function at intermediate q values (0.016 Å�1), just beyond the Guinier regime. This feature can be
accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-
averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the
persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron
micrographs.

INTRODUCTION

Clathrin is a eukaryotic protein involved in intracellular

trafficking (1,2). It is one of several proteins found in the

coats of transport vesicles that bud from the plasma mem-

brane and certain regions of the Golgi apparatus. The in-

volvement of protein coats of various kinds is thought to be a

general feature of cellular vesicle formation (3).

The basic subunit of a clathrin coat is a hetero-hexameric

complex of polypeptides collectively called a clathrin tri-

skelion. In its simplest form, a triskelion can be represented

as a trimer of articulated legs that are bent midway along their

lengths. Each leg is composed of a clathrin heavy chain and

an associated clathrin light chain. The heavy chains are

joined at their C-terminal ends at a common hub, from which

the legs spread (see Fig. 1). This extended-leg conformation

is readily observed in electron micrographs of completed

baskets (1,2). A clathrin heavy chain contains two major

structural units, one being an a-solenoid repeat that forms the

major part of the 520 Å long triskelion leg. Located at the

distal end of the leg, after a flexible linker domain, is

the second unit consisting of a seven-bladed b-propeller (or

WD40) domain. This is a binding domain for clathrin-asso-

ciated proteins involved in the clathrin-mediated intracellular

trafficking pathway. The entire heavy chain is ;1675-amino-

acids long and has a molecular mass of ;192,000 g/mole

(Da), while the (variable) light chain has a molecular mass

between 25,000 and 35,000 Da, depending on tissue type.

Recently, the structure of clathrin complexes has been

determined at sufficiently high resolution that individual

triskelions can be resolved within the coat complex. In a

recent study, we showed that the inferred structures of basket-

associated triskelia, although differing somewhat in detail,

are roughly consistent with static and dynamic light scatter-

ing measurements performed on dilute solutions of isolated

clathrin triskelia (4). These measurements provided values of

the radius of gyration, Rg, and hydrodynamic radius, RH, of

the triskelia, which we found to be essentially invariant as the

pH of the samples is lowered from pH 7.0 to pH 6.0 (Rg� 22

nm, RH� 16 nm). Since the experimental values of Rg and RH

are somewhat larger than those calculated from the coordi-

nates (5) of a triskelion in a small D6 basket, we concluded

that the average shape of a triskelion in solution is slightly

more extended than is a typical triskelion in such a structure

(4). Moreover, when the data were compared with results of

model calculations (4), we inferred that triskelia have a

puckered shape in buffers where they do not noticeably po-

lymerize, as well as in buffers in which basket formation is

rapid. In these calculations, a simple bead model of a clathrin

triskelion was used in which the leg bend and pucker angles

(f and c, respectively) are treated as variables (see Fig. 1).

Several (f,c) pairs were found to yield values of Rg and RH

compatible with the observed quantities.

In principle, scattering of shorter wavelength radiation can

provide finer resolution of molecular structure than is ob-

tainable using visible light. We thus undertook a small-angle

neutron scattering (SANS) study of isolated triskelia and, as

shown below, we are now able to better discriminate certain

features of the model. The scattered intensity measured by
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static light scattering (SLS), described in Ferguson et al. 2006

(4), gave the radius of gyration when fit to a Gaussian model

function (Guinier approximation; qRg� 1): IðqÞ � e�
1
3
ðRgqÞ2 ;

where q is the magnitude of the Bragg scattering vector and Rg

is the radius of gyration of the triskelion. SANS allowed us to

measure the continuation of the scattering cross section be-

yond the Guinier regime. Since the neutron wavelength is

much smaller than that of light (5 Å for neutrons, as opposed to

0.5 mm for light), it was expected that measurements of the

scattering cross section at higher resolution would give us

more definitive information about triskelial structure than do

SLS measurements of Rg. However, due to its large, extended

size and unusual shape, the clathrin triskelion differs qualita-

tively from most other macromolecules that have been ana-

lyzed by neutron diffraction. Thus, simple models that

frequently are used to interpret SANS measurements would

not likely provide good fits to the data. Because the triskelion

has a three-armed pinwheel-like tertiary structure, we base our

analysis, in part, on information obtained from crystal struc-

tures of portions of clathrin heavy chains (6), images of tri-

skelia adsorbed to mica surfaces (7), and structures inferred

from assembled clathrin baskets (5,8). (Similarly, in studies of

tubulin (9) and actin (10), it has been informative to compare

SANS determinations made on proteins in solution with

structures measured by x-ray diffraction from crystallized

samples and/or electron microscopy.) As described below, in

this investigation we utilize SANS and SLS data to infer a

model of a triskelion that is consistent over a wide range of q
values, using Eq. 1 (see below) as the basis of the analysis.

The angular dependence of the scattered intensity from a

randomly oriented molecule of arbitrary shape, approximated

as a collection of N identical scatterers, can be calculated by (11)

IðqÞ ¼ N
�2

SSfiðqÞfjðqÞsinðqrijÞ=ðqrijÞ; (1)

where the sums are over all particles (i,j¼ 1 to N), fi(q) is the

scattering amplitude of the ith scatterer, rij the distance

between the ith and jth scatterers, and q ¼ (4pn/l) sin(u), n
being the index of refraction of the sample and 2u the

scattering angle. In early studies, Debye (11) and others

evaluated Eq. 1 for molecules of different shapes suspended

in solution (12,13). They found, for example,

1. For a uniform and spherical scattering density of radius a:

IðqÞ ¼ 9ðsinðqaÞ � qacosðqaÞÞ2

q
6
a

6 ; (2)

2. For a nonuniform spherical scattering density with a

Gaussian radial mass distribution function of width Rg,

rðrÞ ¼ e
� r2

2R2
g ; corresponding to a random coil (or Gaus-

sian chain):

IðqÞ ¼ 2

R
4

gq
4ðe
�R

2
gq

2

� ð1� R
2

gq
2ÞÞ; (3)

3. For an infinitely thin rigid rod of length L:

IðqÞ ¼ 2

qL

Z qL

0

dx
sinx

x
� 1

ðqL=2Þ2
sinðqL=2Þ2: (4)

Cases 1 and 3 are useful for some particles that have well-

defined spherical and rodlike shapes, such as some viruses.

Case 2 is useful for very flexible objects of any type

(commonly studied are different types of linear polymers).

Others have calculated the scattering cross section for a

single semiflexible linear chain (14), and found a transition

FIGURE 1 Schematic representations of clathrin tri-

skelia. (Top) Cartoon showing three clathrin heavy-chain

legs joined at a common hub, each heavy chain being

associated with a clathrin light chain. Also shown is a

sketch of a clathrin basket, indicating how the triskelia form

a structure having a buckyball-like appearance. (Bottom)

Examples of a simple bead model of a clathrin triskelion,

defining the leg bend angle, pucker angle, and swivel angle.

(a) The leg bend angle, f, and (b) pucker angle, c, were

varied from 30� to 180� and 30� to 90�, respectively. (c) The

swivel angle, x, was varied parametrically with the pucker

angle according to the equation x ¼ 3(c�30)/2, where c

is measured from the vertical axis shown in panel b.
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from q�2 behavior to q�1 dependence. This transition occurs

over a range of q values that is related to the persistence

length (a measure of flexibility) of the linear chain, indicating

how the scattering cross section of the chain changes as the

flexibility varies.

EXPERIMENTAL METHODS

SANS measurements were performed on samples of purified clathrin con-

tained in disassociation buffer (0.5 M Tris 1 3 mM dithiothreitol dissolved in

H2O and brought to a pH of 7.0 by the addition of concentrated HCl).

Measurements also were made on clathrin in D2O buffers to reduce inco-

herent scattering, making it possible to obtain data at higher q values than in

an H2O solvent. There are no notable differences in I(q) over the q range

accessible for both samples (see Fig. 2).

Sample preparation

Clathrin triskelia were purified from coated vesicles of bovine brain as de-

scribed in Morgan et al. (15) and stored in dissociation buffer at 4�C. Before

measurement, an aliquot of the sample was centrifuged for 15 min in a ta-

bletop centrifuge at 400,000 3 g (where g ¼ 9.81 m/s2). The supernatant, at

a final protein concentration of 2.7 mg/mL, was then loaded into a quartz

cuvette having a 1-mm pathlength, constituting the clathrin-H2O sample for

our SANS study.

This procedure also was used to prepare clathrin samples in D2O, except

that before centrifugation an aliquot of stock solution was dialyzed into D2O

buffer (see below). The final clathrin concentration of this primary D2O

sample was 1.5 mg/mL and was at a pD* value of 7.0. Reported pD* values

were those measured by a glass electrode pH meter, being related to the

actual pD(¼ �log10j[D1]j) according to pD ¼ pD* 1 0.4 units (16).

D2O buffers were made by the addition of Tris-HCl to 99.9% D2O. This

dissolved to a pD* of 5.6, allowing us to add NaOH dissolved in D2O to raise

the solution to the desired pD* of 7 without diluting the D2O. The final buffer

contained �97% D2O due to the addition of 3 mL of H2O and 750 mL of

0.5M dithiothreitol in H2O to 120 mL of D2O buffer.

Measurements of protein concentration were made by UV absorbance at a

wavelength of 280 nm. The absorption coefficient of e280 was estimated to be

1.07 g�1 cm�1 from the amino-acid sequence.

Light scattering

Static light scattering (SLS) and dynamic light scattering (DLS) measure-

ments of clathrin in solution were made as described in Ferguson et al. (4).

Briefly, for SLS, intensity data were taken every 2�, at scattering angles

between 50 and 150�. The logarithm of the intensity profile was plotted

against q2 (where q is the magnitude of the Bragg scattering vector) and fit to

a straight line (the Guinier approximation), the slope of which is given as

1=3 R2
g;where Rg is the radius of gyration. In the case of DLS, measurements

were made at scattering angles of 90 and 150�, data being collected in the

homodyne mode. Photon counts were autocorrelated over a time range from

1 to 104 ms, and the method of cumulants was used to obtain an average

translational diffusion coefficient, D. The Stokes-Einstein relation then was

used to obtain the effective hydrodynamic radius, RH and equivalent fric-

tional force. Transport properties of presumed clathrin structures were cal-

culated by using HYDRO (a public-domain computer program) to determine

how well various models agree with the light scattering data. Details can be

found in Ferguson et al. (4).

Neutron scattering

Experiments were performed on the NIST Center for Neutron Research

NG-3 30-meter small-angle neutron scattering instrument (17). The wave-

length of neutrons used was 5.5 Å 6 0.4 Å (0.8 Å FWHM). Scattered

neutrons were detected with a 64 cm 3 64 cm two-dimensional position-

sensitive detector with 128 3 128 pixels and 0.5 cm resolution per pixel.

Sample/detector distances of both 13 meters and 5 meters were used to obtain

q values ranging from �0.003 Å�1 to 0.04 Å�1 and 0.01 Å�1 to 0.1 Å�1,

respectively, where q ¼ 4psin(u)/l, l being the neutron wavelength and 2u

the scattering angle. Multiple data files were recorded over times between 15

min and 1 h and later added together. Total data acquisition times were be-

tween 3 and 5 h per sample. Neutron transmission was 83–86% in D2O and

�52% in H2O. Background scattering was measured for empty cuvettes (for

1 h) and buffers in both H2O (4 h) and D2O (2 h).

The data were reduced using a commercial program, with SANS macros

written at the NCNR (18). Raw counts were normalized to a common

monitor count (SAM) and corrected for empty cuvette counts (EMP) and

ambient room background counts (BGD), using the relation

COR ¼ ðSAM � BGDÞ � ½Tsam=Temp�ðEMP� BGDÞ;
where Tsam and Temp are the transmissions of the sample and empty cuvette,

respectively. Adjustments to these background-corrected data were made, on

a pixel-by-pixel basis, for nonuniform detector efficiencies, using factors

determined from measurements from Plexiglas, which is an isotropic

scatterer. The buffers were treated in the same manner as the clathrin 1

buffer samples at this stage of the data reduction.

Data were placed on an absolute intensity scale in units of cm�1, by

normalizing the scattered intensity to the incident beam flux. To find the

FIGURE 2 SANS data from clathrin in both H2O (solid)

and D2O buffers (dashed). (Error bars and symbols have

been removed to illustrate the similarity of both curves.)

I(q) is given on an absolute scale in units of cm�1. The

clathrin concentration of the D2O sample was 1.5 mg/mL

and that of the H2O sample was 2.7 mg/mL. Because the

contrasts are different, were the two samples to be at the

same concentration, the D2O curve would lie above

the H2O curve.
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scaling factor, a transmission measurement from an attenuated empty beam

was measured under the same experimental conditions (18).

The scattered intensity I(q) is related to the absolute cross section, dS/dV,

by the expression

I ¼ fAed TðdS=dVÞDVt;

where f ¼ neutron flux on the sample, A ¼ sample area, e ¼ detector

efficiency, d¼ sample thickness (1 mm), T¼measured sample transmission,

DV ¼ solid angle subtended by one pixel of the detector (0.5 cm for this

experiment), and t ¼ effective counting time. The quantity fADVet is the

scaling factor.

Next, the data were radially averaged to produce curves of scattered in-

tensity, I(q), versus q. The corrected averaged scattered intensities of the

appropriate buffers were then subtracted from that of the clathrin 1 buffer

samples. Any remaining flat background scattering was assumed to arise

from incoherent scattering from hydrogen in the clathrin itself. If necessary,

this remaining flat region was fit to a straight line to determine a constant

value that was subtracted from the data.

RESULTS

Testing D2O as a solvent for clathrin

SANS was first performed on clathrin in H2O. In those

samples our sensitivity was limited to q values for which the

scattering intensity due to the presence of protein was on the

order of, or larger than, the incoherent scattering due to

the solvent. In practice, this limited us to q values ,0.025

Å�1. Because D2O has a smaller incoherent scattering cross

section than does H2O (�0.1 cm�1 for D2O versus 1 cm�1 for

H2O), higher signal/background can be achieved when D2O

is used as a solvent. However, although D2O has many of the

same physical properties as H2O, it may affect the structure

and behavior of some biological macromolecules (9,19).

Therefore, it was important to check that clathrin remains

folded properly and maintains its functionality when a D2O

buffer is used as a solvent. In Fig. 2, we show SANS cross

sections for 2.7 mg/mL clathrin in H2O and 1.5 mg/mL

clathrin in D2O, and find that the curves are essentially in-

distinguishable (see Fig. 2 legend). We also measured several

D2O samples of lower clathrin concentration to establish that

there is no noticeable change in I(q) deriving from interac-

tions between triskelia (data not shown).

Clathrin maintains its structure in D2O

In addition to SANS (see above), light scattering measure-

ments were performed to examine the properties of clathrin in

D2O. We found the index of refraction for D2O to be very

close to that of H2O (data not shown), which is important

because changes in the index of refraction will influence the q
dependence and intensity of the scattered light. Another

factor to take into account is a possible change in viscosity,

which will modify the diffusion of the particles and thereby

affect the DLS measurement. Indeed, we found the viscosity

to be 22% greater in D2O as determined by dynamic light

scattering from polystyrene spheres of radius�60 nm, which

is consistent with values found in literature (20,21). How-

ever, measurements of hydrodynamic radii in both solvents

(pH/pD* ¼ 7.0) were comparable once a correction was

made in the DLS measurement for the difference in viscosity

between the two solvents. (Viscosity-corrected hydrody-

namic radii obtained from the light scattering measurements

of clathrin in the H2O and D2O buffers are RH ¼ 15.7 nm 6

0.1 nm and RH ¼ 15.6 nm 6 0.2 nm, respectively.) As

mentioned above, corresponding SANS cross sections also

are nearly identical.

Neutron scattering and rigid clathrin models

SANS data were compared with theoretical curves of the

scattering function, I(q), which were calculated from Eq.

1 for rigid models of clathrin triskelia similar to those used in

Ferguson et al. (4). First, a high-resolution model based on

the 21 Å and 12.5 Å cryoEM structures of a clathrin triskelion

in a D6 basket (5,8) was investigated by using beads of radius

3.6 Å to represent each amino-acid residue resolved in the

structure (22,23), each bead being centered at the coordinates

of the Ca atom of a corresponding amino acid. A visualiza-

tion of the model and the corresponding calculated scattering

function can be seen in Fig. 3. In addition, lower resolution,

coarse-grained, models consisting of 52 beads were used to

estimate the effect of changes in triskelion conformation on

the calculated theoretical scattering function. Sixteen beads

in any particular leg of these low-resolution models each has

a radius of 15 Å, corresponding to ;12 kDa of protein or

;110 amino-acid residues, whereas the terminal domain is

modeled by a slightly larger bead having a radius of 25 Å.

Visualizations of these models, along with calculated scat-

tering functions, can be seen in Fig. 4. For comparison, in

Figs. 3 and 4 we also show experimental SANS data obtained

for clathrin triskelia in 0.5 M Tris/D2O at pD* 7.0. Two

characteristic features are observed in the I(q) shown in Figs.

3 and 4 (for the high-resolution and coarse-grained bead

models, respectively), that is, a minimum and a secondary

maximum at q values just outside of the central Guinier re-

gime. Model calculations (results not shown) indicate that

this dip occurs because of destructive interference of the

scattered waves emanating from scatterers in different legs of

the triskelion, being sensitively dependent upon the relative

distance between the legs. The latter, in turn, is linked to the

out-of-plane pucker of the triskelion. This feature in I(q)

seems to decrease slightly in amplitude as the molecular

model is flattened, but the location of the dip in the I(q) curve

also changes. A noteworthy observation from the SANS data

shown in Figs. 3 and 4 is that the dip, although predicted by

calculations based on rigid, puckered triskelial models, does

not exist as prominently in the experimental data. There it

occurs only as a shoulder or plateau just outside the low q,

Guinier regime, leading us to develop models based on

flexibility (discussed below). A key point is that such

smearing of the dip can be expected if the legs develop kinks.

Another interesting feature of the experimental SANS data

is the power law decay of the scattered intensity noted for

1948 Ferguson et al.
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large values of q. It falls off as q�1.23 in D2O, with the value

of the exponent (�1.23) being somewhere between �1,

corresponding to the behavior of a rigid rod model, and �2

for a random coil. This can be seen in Figs. 3 and 4, where the

solid lines indicate the slopes (�1) and (�2).

Flexible models

The scattering cross section for a completely flexible model of a

single linear chain polymer is given by Eq. 3. The form of that

equation reflects interference scattering from the various mono-

mers on the chain. By extension, the scattering cross section

for a fully flexible molecule of three connected linear chains

will show interference from scatterers in different chains, as

well as from scatterers on the same chain. The scattering func-

tion falls off asymptotically as q�2 at large q, being described by

the following equation (from Teraoka (24)):

I3ðqÞ ¼
6

R
4

gq
4 e

�1
3
R

2
gq

2

ðe�
1
3
R

2
gq

2

� 1Þ1 1

3
R

2

gq
2

� �
: (5)

Thus, it is clearly seen that a fully flexible model for a clathrin

triskelion will not fit SANS data at large values of q (see

Supplementary Material, Data S1).

Smearing caused by a distribution of
neutron wavelengths

In the NG3-SANS instrument, neutrons from the cold source

pass through a multidisk mechanical velocity selector having

FIGURE 3 I(q) determined by SLS (open circles) and

SANS (solid circles) of clathrin triskelia in 0.5 M Tris/D2O,

compared with a calculated scattering curve based on a

cryoEM structure of clathrin. SANS data are plotted on an

absolute scale in units of cm�1; the dashed line shows a

scattering function calculated using Eq. 1 for a cryoEM

structure of clathrin in a D6 basket (shown in the upper
right-hand corner), scaled by an empirically determined

factor of 0.64 cm�1 so the calculated curve overlaps the

SANS data in the range 0.0047 Å�1 , q , 0.0075 Å�1 .

(Note the concordance, also, between the data and the

calculated curve at high q.) The light scattering data were

scaled to fit the (adjusted) calculated curve over the range

0.0006 Å�1 , q , 0.002 Å�1. (The plotted SANS data

reflect the fact that a measured background (�0.1 cm�1),

ascribed to the D2O buffer, has been subtracted from SANS

data; error bars are related to counting statistics.) The solid

lines indicate the power laws q�2 (Eq. 3) and q�1 (Eq. 4),

corresponding to the large q scaling of a flexible Gaussian

chain model and a rigid rod, respectively.

FIGURE 4 SLS data (open circles) and SANS data (solid

circles) of clathrin in 0.5 M Tris/D2O (see caption to Fig.

3), compared with calculated scattering curves for coarse-

grained bead models of a rigid triskelion. The solid curves

show scattering functions calculated using Eq. 1 for differ-

ent models (a–d, left to right above figure) of a clathrin

triskelion, which were made up of 52 beads (see text).

These models are in agreement with previous light scatter-

ing measurements (SLS and DLS) of clathrin triskelia (4).

As done for Fig. 3, the calculated scattering functions

(which according to Eq. 1 tends to 1 at q ¼ 0) were scaled

by a factor of 0.64 cm�1. Error bars on the data are related

to counting statistics.

Clathrin Triskelia 1949
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variable speed and pitch, enabling both the mean wavelength

and wavelength resolution to be chosen. In our experiments

the mean wavelength of the neutrons was 5.5 Å and the full

width at half-maximum was 0.8 Å.

In the calculation of model scattering functions already

presented, it was assumed that the incident and scattered

wave vectors of interfering plane waves, k~0 and k~s; have a

fixed magnitude. In practice, however, the incident neutron

beam has a wavelength dispersion, which can be described

with a Gaussian distribution function of the magnitude of the

wavevector,

rðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps

2

q

q e
�ðq�q0Þ

2

2s
2
q ;

where q0 is the average wavevector and sq is related to the

width of the distribution. Then, the actual scattering function

will be an average of the diffraction patterns corresponding to

multiple wavelengths, according to the following equation (25):

Irðqjq0;sqÞ ¼
Z N

0

rðq9ÞIðq9Þdq9

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps

2

q

q
Z N

0

Iðq9Þe
�ðq�q0Þ

2

2s
2
q dq9: (6)

This transformation was applied to the triskelion model func-

tion for q0¼ 5.5 Å and sq¼ 0.8 Å . The results can be seen in

Data S1. One finds from this calculation that smearing due to

wavelength dispersion does not account for the disagreement

between experiment and theory observed in Figs. 3 and 4.

Semiflexible models

Snapshots from a Brownian dynamics simulation of a bead-

spring model of a clathrin triskelion were used to calculate a

series of instantaneous scattering functions by Eq. 1. These

functions were calculated and then averaged over time to

produce an average scattering function which then could be

compared with experimental measurements. Three such av-

eraged scattering functions based on different triskelion

flexibilities (as seen in differing values of persistence length,

Lp) are shown in Fig. 5, along with the rigid-model cross

section. We also show SLS and SANS data taken on clathrin

triskelia in 0.5 M Tris/D2O at pD* 7.0, and observe that

curves of I(q) calculated for the flexible models are in better

agreement with experimental data, especially at intermediate

q values. This shows that, while rigid models are appropriate

for the calculation of average properties such as translational

diffusion coefficients and the radius of gyration (4), addi-

tional information is included in the SANS scattering func-

tion that allows us to describe the molecular flexibility and

dynamics of isolated triskelia.

As the rigidity of the bead-spring model is decreased, the

dip and subsequent peak in the scattering cross section at

intermediate q values are smoothed out, becoming only a

shoulderlike feature. It should be noted that this shoulder

occurs at the same value of q in which a shoulder is seen in

the experimental data. However, in the extreme case that the

flexibility is very large, even this feature disappears. Con-

sequently, we conclude that very flexible models will not

agree, even qualitatively, with the experimental SANS data.

As previously mentioned, use of D2O provides higher con-

trast between solute and solvent, allowing measurement of

the scattering function at the higher values of q that are ac-

cessible with a detector distance of five meters. In Fig. 5,

good agreement between SANS data and curves based on

specific semiflexible models can be seen over the entire q
range measured, which extends over two-and-a-half orders of

magnitude. The curves shown in Fig. 5 a were calculated for

structure appearing at the top of Fig. 4, but similar behavior is

observed for structures in Fig. 5, b–d. Best agreement be-

tween calculations and data seems to be achieved when the

persistence length of a triskelial leg is approximately one-half

its length (see below).

FIGURE 5 SLS data (open circles) and SANS data (solid

circles) of clathrin in 0.5 M Tris/D2O (see captions to Figs.

3 and 4), compared with calculated scattering functions of

semiflexible models of a clathrin triskelion characterized by

differing values of the persistence length, Lp. (Values are

compared, in the inset, with clathrin leg length, L.) The

lines show time-averaged scattering functions calculated

from three flexible models of a clathrin triskelion based on

the 52-bead model indicated as a at the top of Fig. 4. For

comparison, we also show the cross section calculated for

the corresponding rigid model. Error bars on the data are

related to counting statistics.
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Estimating model parameters from experimental
measurements of clathrin triskelia

By fitting the SANS data with calculated curves of the pro-

posed semiflexible model, one can estimate the persistence

length of the individual triskelion. Here, we modeled a tri-

skelion by a scheme similar to that used by Marques et al.

(14) to approximate the motions of semiflexible linear poly-

mers, as illustrated in Fig. 6. Briefly, the legs of the triskel-

ion were represented by beads joined to each other with

linear springs having a spring constant k representing forces

between neighboring subunits. Other springs, linking next

nearest-neighbors and having spring constant k9 ¼ ak, were

used to preserve bond angles. Torsional rotations at the hub

were restricted by connections between the terminal domains

of the legs (not shown), arbitrarily taken also to be springs

having spring constant k. The leg length distribution (6) and

the persistence length (26) of the legs of real clathrin triskelia

have been estimated from the analysis of variations in elec-

tron micrographs of clathrin triskelia flattened on a mica

surface. These estimates for the elasticity of a triskelion leg

were used as first estimates of the model parameters, k and a,

of our bead-spring model of a triskelion.

Brownian dynamics simulations were run for several dif-

ferent values of k and a at a temperature of 20�C for a total

duration of 70 ms. Computation time varied with time step,

which in turn was dependent upon the strongest spring in the

simulation (ak) and the desired degree of accuracy ðe ¼
akDt

2z
¼ 5%Þ: Five-hundred snapshots of the configuration of

each molecule were recorded during the simulation.

For a given set of spring strengths, k and k9¼ (ak), the leg

extension flexibility of the bead-spring model was deter-

mined by the explicit calculation of temporal fluctuations in

leg lengths during the simulation. Triskelial leg length fluc-

tuations were dependent on the spring constants used, but

were ,1% of the total leg length for the parameter range that

was simulated. Thus the model was effectively inextensible

for the parameter ranges used in the simulation.

The persistence length of the triskelion legs, Lp, is de-

pendent on the spring constants used in the simulation. Lp

was determined explicitly from the simulation by calculating

the spatial correlation function of the directional tangent

vector cosine as a function of arc-length, s, with respect to a

tangent vector defined between the vertex and the first sub-

unit of each individual triskelion leg. Once calculated, the

correlation functions were fit to an exponential curve with the

decay length (the inverse slope of the straight line on a

semilog plot) giving a measure of the persistence length, Lp

(see Appendix and Data S1). In the simulations the persis-

tence length was found to vary between 150 Å and 1000 Å for

the range of model parameters studied. This can be compared

with the experimentally estimated value of Lp ¼ 350 Å

which, as discussed in the Appendix, was determined by Jin

and Nossal (26) from an analysis of electron micrographs.

The calculated persistence length of the simulation has

been plotted in Fig. 7 as a function of spring strength, k, for

different values of the model parameter a. The fitted curve

(dotted line) suggests that the persistence length has an in-

verse square-root dependence on k. From the curve it is seen

that the value of the persistence length estimated from elec-

tron micrographs (that is, 350 Å) corresponds, in this

Brownian dynamics model, to a spring constant of k � 180

Da ps�2. (The persistence length seems to be independent of

a for the two values simulated, a ¼ 10 and a ¼ 100.) The

curve in Fig. 5 that best fits the measured I(q) is the one for

Lp ¼ 240 Å (spring constant, k � 100 Da ps�2) which,

considering the many approximations of our model, is re-

markably close to the previously-determined value (26). It

should be noted that the significant quantity, here, is the

persistence length, rather than any particular parameter as-

sociated with a specific variant of the bead-spring model.

SUMMARY AND DISCUSSION

We previously used dynamic and static light scattering to

assess the structural characteristics of clathrin triskelia in

solution (4). In particular, we were able to rule out a rigid

planar structure for the triskelion, demonstrating that the

triskelia, on average, are puckered but less so than when they

are incorporated into small, D6 baskets. This qualitative result

suggests that the triskelia change their shape as they insert

FIGURE 6 A schematic of the bead-spring model of a clathrin triskelion

used in the Brownian dynamics simulation, showing the common hub and

the first four subunits of each leg. Jagged lines represent springs between

neighboring subunits, and dotted lines indicate springs between nonneigh-

boring subunits. Torsional motion of the legs is partially prohibited by the

addition of a single spring of strength k between each terminal domain (not

shown). Some axial rotation is still unconstrained about the axis defined by

the triskelion vertex and the end of the leg. Constraining this motion by the

insertion of additional springs between the legs did not have a large affect on

the time-averaged scattering functions. The figure is based on a scheme

introduced in Marques et al. (14).
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into baskets of differing size, and that they also may change

to accommodate their being in different locations within a

basket. The light scattering measurements were interpretable

in terms of a mean triskelial morphology, but there is insuf-

ficient information in such data to examine fluctuations about

the average shape. The SANS measurements described in

this article are consistent with the findings of the light scat-

tering experiments of our earlier study, in that calculated

curves for I(q) fit SANS measurements at small values of q
only when the triskelia are puckered. However there is ad-

ditional information in the SANS cross sections at larger q
that informs our understanding of triskelial structure. One

immediately finds, for example, that a fully random, Gaus-

sian chain model cannot adequately describe SANS mea-

surements at large q (see Fig. 3).

It often is the case that SANS data are characterized in the

form of a Kratky plot, i.e., q2I(q) versus q. Under certain

circumstances, the slope of this curve provides useful infor-

mation about the compactness of the target molecules (27).

However, on the length scales of interest here, a triskelion is

not compact; rather, it is a supramolecular structure having

the shape—if collapsed on a planar surface—of a three-legged

pinwheel (1,2), retaining such shape in three dimensions. The

secondary structure of the clathrin heavy chain (the leg) is a

coiled-coil (2), so unless the molecule is denatured its flexi-

bility is likely to be somewhat limited. Indeed, this SANS

study indicates that triskelia are semiflexible, in accordance

with information about clathrin leg flexibility that was ob-

tained by less direct methods (26,28).

The analysis presented in the earlier light scattering article

was based on rigid models. These models also provide good

fits to SANS measurements, except for a discrepancy at in-

termediate values of q. We have ruled out technical issues

such as smearing of the data due to dispersion in neutron

wavelengths as explanations for this disparity. Hence, we

hypothesized that inconsistencies between the rigid puckered

models and SANS measurements might be due to flexibility

of the triskelions. Although it might be construed that the

attenuated peak at Q¼ 0.016 Å�1 in the experimental SANS

data indicates an ensemble of rigid triskelia trapped in dif-

ferent configurations, such interpretation would be at vari-

ance with our earlier study involving DLS (4), which

indicated that the triskelion samples are essentially mono-

disperse. Moreover, the incorporation of rigid triskelia of

fixed shape into growing baskets would have to be exqui-

sitely orchestrated in order that triskelia with the correct

configurations arrive at the polymerizing structures at just the

right time. In this scenario the outcome of overall basket

polymerization might be somewhat random, particularly if

the initial triskelion concentration is low, since depletion of

various species of rigid triskelia during the early instances of

basket formation might affect the shapes of later-formed

baskets. Slow annealing of baskets might occur, but the

outcomes of reconstitution experiments could vary signifi-

cantly, which appears not to be the case. More significantly,

in studies performed on cell cultures of uniform type, coated

vesicles holding different cargoes are found to have sizes that

are linked with cargo identity (29), which is hard to reconcile

with a trapped-conformation, rigid triskelion hypothesis.

Finally, triskelia precipitated from solution onto mica sur-

faces show fluctuations in shape which are of approximately

equal magnitude along the entire length of a leg (26) and, as

pointed out above, demonstrate a persistence length that is

similar to that derived in this SANS study.

The physical models that we use in our data analysis fa-

cilitate computations that would be difficult, if not impossi-

ble, to perform on much more detailed models. Our

Brownian dynamics model clearly is based on a simplifica-

tion of the actual macromolecular structure of a triskelion,

and was used here primarily to obtain qualitative information

about the effect of flexibility on the SANS cross section. To a

certain degree, the main result concerning flexibility is

model-independent, since the relevant descriptor for com-

parison with experiment is the persistence length. The con-

sistency between the results of this investigation and those of

our earlier studies (26) suggests that this approximate treat-

ment has considerable merit. Secondarily, for the clathrin

structure whose molecular coordinates are known with rea-

sonable accuracy—namely, a triskelion in a D6 basket—we

find a clear discrepancy between the corresponding calcu-

lated SANS scattering cross section and the measured I(q),

reinforcing our earlier conclusion that flexibility needs to be

taken into account to obtain quantitative understanding of

how clathrin baskets assemble.

Thus we infer that isolated clathrin triskelia in solution

have a puckered structure on average but may undergo sig-

nificant shape changes due to thermal fluctuations, thereby

facilitating clathrin basket assembly. However, triskelial

flexibility probably is stabilized once a triskelion is posi-

FIGURE 7 Dependence of the persistence length, Lp, upon the spring

strength, k, as determined from a Brownian dynamics simulation of a bead-

spring model performed at room temperature (see Appendix). Symbols show

persistence lengths derived from the simulations, and the dotted line shows a

square-root fit to the symbols for a ¼ 10. The dark solid line is drawn at the

value of Lp ¼ 350 Å previously determined by from electron micrographs

(26).
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tioned in a clathrin lattice. This might explain why basket

structures can be determined by cryoEM tomography but the

shapes of isolated, individual triskelia have not been resolved

by this technique. If this indeed is the case, it would imply an

entropic loss during clathrin lattice assembly, which may

affect basket stability and thus be important in determining

basket size distributions (30).

APPENDIX

Brownian dynamics simulations

To investigate the effects of thermal motions on I(q), we constructed a

discrete bead model of a triskelion and approximated intramolecular forces

on each subunit by linear springs. A similar bead-spring model was proposed

by Harris and Hearst (31) to approximate semiflexible linear polymers and

later studied by Marques et al. (14). In those models, bonds between

molecular subunits have identical spring constants and bond angles are

preserved by springs of a different strength between next-nearest neighbors.

Unlike the wormlike chain model of Kratky and Porod (25), which uses a

fixed bond length, the Harris and Hearst model allows for bond-length

fluctuations determined by the strength of the springs and the temperature of

the reservoir. In our model, equilibrium bond lengths are determined from a

structural model and bond-length fluctuations are suppressed by the use of

stiff springs (see Fig. 6). The model preserves bond lengths and bond angles,

while allowing flexibility of the triskelion legs. Bead size and equilibrium

configurations were chosen according to the models described in Ferguson

et al. (4), which were based on structural and light scattering measurements

of clathrin triskelia.

We simulated dynamics of the triskelion model in a thermal bath by

integrating a Langevin equation (32) of the form

mi

d
2
xi

dt
2 ¼ FiðtÞ1F iðtÞ; (7)

where mi is the mass of a subunit i, xi is the subunit position (in one

dimension), FiðtÞ is the total intramolecular force on a subunit i at time t, and

Fi(t) is the random thermal force on the subunit from the surrounding fluid.

The latter may be split into a slowly varying frictional force proportional to

the velocity of the subunit, �z1ðdxi=dtÞ; and a rapidly varying force, Fi9(t),

that averages to zero. Equation 7 thus may be written as

mi

d2xi

dt
2 ¼ FiðtÞ � zi

dxi

dt
1 F9iðtÞ; ÆF9iðtÞæ ¼ 0; (8)

where zi is the friction constant of a single subunit i, here approximated by

Stokes’ law zi ¼ 6phai, where h is the viscosity of the surrounding fluid

(hWater ¼ 0:001 Pas ¼ 60:2 Da

Å ps
Þ and ai is the radius of the spherical subunit

(33).

New coordinates for each subunit of our molecule are determined by a

simple Eulerian integration of Eq. 8 since the inertial term, miðd2xi=dt2Þ; is

small and can be ignored (34), i.e.,

xn11 ¼ xn 1
Dt

z
FðfxngÞ1 Xn; (9)

where xn is the subunit position at step n (the particle index, i, has been

suppressed here) and F(fxng) is the total intramolecular force on a subunit at

time step n. Dt is the time step and Xn is a random displacement simulating

thermal collisions with solvent molecules, having the properties ÆXnæ¼ 0 and

ÆX2
næ ¼ 2DiDt; where Di ¼ ðkBT=ziÞ is the diffusion coefficient of the

subunit i in the absence of other subunits.

The numerical integration of Eq. 8 has an error associated with it that is

dependent upon the time step Dt used in Eq. 9. We can evaluate this error for

the simple case of a particle in a harmonic potential of strength k (the primary

spring constant between beads—see Fig. 5) and a thermal reservoir at

temperature T (33) so that the mean-squared displacement Æx2æ is given by

ðkBT=kÞ: By squaring Eq. 9, substituting F ¼ �kxn, taking the time average

(denoted by Æ. . .æ), and assuming that Æx2
n11æ ¼ Æx2

næ and ÆxnXnæ ¼ 0, we find

Æx2

næ ¼ kBT

k

1

1� e
; e ¼ kDt

2z
: (10)

The time step, Dt, was chosen such that the numerical error, e, in Æðx2
nÞæ of the

strongest spring used in the simulation, k, was 5%, or explicitly that Dt ¼ 1
10

z
k:

Constructing a bead-spring model of a triskelion

The mass of each subunit, mi ¼ 4p
3

ra3
i ; was calculated using the density of

r¼ 1.38 g/mL (0.831 Da/Å3), consistent with experimental measurements of

other proteins (35). The radius of a subunit from the model was ai¼ 15 Å for

legs and 25 Å for terminal domains. The mass of each subunit of the legs was

;12 kDa and the mass of each terminal domain was 54 kDa. This

approximated the known molecular weight of a clathrin triskelion (Mw ;

651 kDa) to within 13%. The three-dimensional intramolecular force on each

subunit, F~iðtÞ was approximated by springs of strength k between two

neighboring subunits and springs of strength ak between two next-nearest

neighboring subunit (see Fig. 6, above). Each bead in the leg of a triskelion

had, on average, four springs connected to it. Each terminal subunit, where

there is only one next-nearest neighbor, had two. The vertex, where there

were three nearest neighbors and three next-nearest neighbors, was con-

nected to other subunits by six springs. This constrained the angles between

each leg at the vertex. To constrain the legs of the triskelion from twisting,

each of the terminal subunits was connected by a spring of strength k

(identical to the strength of springs between neighboring subunits in the

legs). Thus, F~iðtÞ is a function of the coordinates of neighboring subunits and

for typical subunits can be written explicitly as

F~iðtÞ ¼ akðx~i�2ðtÞ� x~iðtÞ� x~i�2ð0Þ1x~ið0ÞÞ
1kðx~i�1ðtÞ� x~iðtÞ� x~i�1ð0Þ1x~ið0ÞÞ
1kðx~i11ðtÞ� x~iðtÞ� x~i11ð0Þ1x~ið0ÞÞ
1akðx~i12ðtÞ� x~iðtÞ� x~i12ð0Þ1x~ið0ÞÞ: (11)

The initial position of each subunit, x~ið0Þ; was chosen from the equilibrium

model (a) shown at the top of Fig. 4. This model and the other three appearing

in Fig. 4 have values of hydrodynamic radius, rH, and radius of gyration, rg,

very close to those measured by light scattering experiments performed on

clathrin triskelia in solution (4). Results of the analysis described here are

qualitatively similar when the other models are examined.

The bending rigidity has been estimated from an
experimental distribution of triskelions

Fluctuations in the shape of a linear filament can be characterized by the

persistence length, Lp, which is a measure of the flexibility of a filament. Lp

can be determined experimentally from the spatial correlation function of the

tangent vector, ûðsÞ; where s is the arc-length measured along the filament.

The spatial correlation function of the cosine between two tangent vectors,

ûð0Þ and ûðsÞ; at a distance s from each other along the filament decays

exponentially in three dimensions according to

ÆûðsÞ � ûð0Þæ ¼ e
�s=L

p ; (12)

where Æ. . .æ denotes a time or ensemble average.

In a continuous elastic medium of Young’s modulus, E, and cross-

sectional second moment, I ¼
R

r2dA; the persistence length of an elastic

filament can be related to the flexural rigidity, EI, through the equipartition
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theorem. In two dimensions, the energy stored in the deformation of an

elastic filament of length L and flexural rigidity EI is given by

U ¼ 1

2
EI +

N

n¼1

np

L

� �2

ðan � a
0

nÞ
2
;

where a0
n is the amplitude of the nth Fourier mode of the shape descriptor in

the absence of forces and an is the amplitude when the filament is distorted

(26,36,37). Since in equilibrium the average energy stored in a Fourier mode

is 1/2 kBT, the flexural rigidity can be related to the persistence length, Lp, by

Lp ¼
EI

kBT
: (13)

When the shape fluctuations in electron micrographs of triskelion legs were

analyzed this way (26), the flexural rigidity of a triskelion leg was estimated

to be EI¼ 350 kBT Å from the first five Fourier modes, giving triskelion legs

a persistence length of 350 Å or ðLp=ÆLæÞ ¼ ð350 Å=516 ÅÞ; ð2=3Þ; where

ÆLæ is the average length of a triskelial leg.

In the simulations described in the main part of this article, we showed

how the scattering cross section varies with different values of the model

parameters k and a (see Fig. 5). The simulations also yield a value of the

persistence length according to Eq. 12 (see, also, Data S1), which can be

compared with the value determined from electron microscopy (as is done in

Fig. 7, above).

Computation of time averages from
dynamic simulations

To determine how long to run the simulation for computation of a meaningful

time average of dynamic quantities, the timescales related to internal modes

of oscillation of the bead-spring model need to be estimated. Since we are

interested in computing a time-averaged scattering function, we will con-

centrate on fluctuations in the radius of gyration, rg, which is loosely related

to the width of the central peak in the scattering function. The radius of

gyration can be defined as the second moment of the mass distribution, rðx~Þ;
in a molecule as rg ¼

R
V

dx~jx~j2rðx~Þ: When the molecule is modeled as a

discrete set of spherical subunits, where x~i is a subunit position with respect

to the center of mass, ai is the subunit radius, and vi ¼ 4p
3

a3
i is a subunit

volume, rg is given by

rg ¼
1

N

+
N

i¼1

vijx~ij2

+
N

i¼1

vi

:

In general, during simulations this quantity is time-dependent, i.e., rgðtÞ ¼
rgðfx~iðtÞ; aigÞ; so the radius of gyration of the bead-spring triskelion model

can be considered a dynamic variable and is a function of the bead

coordinates and radii. The temporal autocorrelation function of the instan-

taneous radius of gyration can tell us something about the timescales with

which the model conformation, and therefore the scattering function, is

fluctuating.

In the Brownian dynamics simulation, rg is found to fluctuate about an

average value that is 5–18% below the value of the rigid model, rg0, and

approaches that value, as the spring strength is increased to the rigid model

limit. The root-mean square fluctuation in the rg value is ;10 Å and is a weak

function of spring strengths, k, and ak. When we calculated the temporal

autocorrelation function drg ¼ rg(t) � Ærgæ by the equation

ÆdrgðtÞdrgð0Þæ
Ædr

2

gæ
¼

1

T

R T

0
drgðt 1 tÞdrgðtÞdt

1

T

R T

0
drgðtÞ2dt

;e�t=tc ;

we noted that it had an initial, rapid exponential decay in delay time, tC,

between 0.5 and 1.3 ms, for different spring strengths, k.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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