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Structure and rheology of organoclay suspensions
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We have characterized a montmorillonite-based organoclay dispersed in three different nonaqueous solvents
using a combination of x-ray scattering, small-angle neutron scattering (SANS), and ultrasmall angle neutron
scattering (USANS), together with rheological measurements. Consistent with these measurements, we present
a structural model for the incompletely dispersed clay as consisting of randomly oriented tactoids made of
partially overlapping clay sheets, with transverse dimensions of several microns. Intersheet correlation peaks
are visible in x-ray scattering, and quantitatively fit by our model structure factor. SANS and USANS together
show a power law of about —3 over a wide range of wave numbers below the intersheet correlation peak. Our
model relates this power law to a power law distribution of the number of locally overlapping layers in a
tactoid. The rheology data show that both storage and loss moduli, as well as yield stress, scale with a power
law in volume fraction of about three. Equating the gel onset composition with the overlap of randomly
oriented tactoids and taking into account the large transverse dimensions of the tactoids, we predict the gel

point to be at or below 0.006 volume fraction organoclay. This is consistent with the rheology data.

DOL: 10.1103/PhysRevE.75.021403

I. INTRODUCTION

A. Applications of organoclays

Organoclays are widely used to control the rheology of
hydrocarbon fluids. They are used as flow modifiers in a
surprisingly wide range of applications. Some examples in-
clude: oil-field drilling fluids, paints, and lubricating greases
[1].

A common characteristic of these applications is the need
for a moderate steady-shear viscosity, together with the for-
mation of a strong gel upon cessation of shear. A significant
advantage of clays is that these rheological properties are
produced economically, i.e., at low volume fractions. In ad-
dition, organoclays exhibit good thermal stability (making
their use possible where polymer thickening agents would
fail). The gels they form are also resistant to gel-breaking
effects from other chemicals.

Considerable effort has been expended developing corre-
lations between structure and rheological behavior. Disper-
sion is recognized as key and is often measured by changes
in the interlamellar x-ray scattering peak. There are further
suggestions that intersheet binding is important to the rheol-
ogy. Hydrogen-bonded linkages, induced by added water, are
implicated [2].

Recently organoclays have attracted great interest in the
emerging field of nanocomposites [3]. Such as the rheologi-
cal applications, dispersion of the organoclay is seen as es-
sential to the property enhancements for these polymer-based
composites. Experiment and theory show that this can be
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economically attractive because performance enhancements,
such as enhanced modulus or improved diffusion barrier
properties, are attained at low filler contents.

In developing clay-based nanocomposites or other appli-
cations of clay dispersions, it is evidently essential to be able
to characterize the state of dispersion of the clay. Measure-
ments of the enhancement of the properties of interest,
whether mechanical, rheological, or diffusional, are them-
selves only indirect indicators of dispersion and therefore not
well suited to diagnosis of poorly dispersed clay.

Instead, techniques for studying the arrangement of clay
platelets in space have been pursued; namely, electron mi-
croscopy and scattering techniques, including light, x-ray,
and neutron scattering. X-ray and neutron scattering in par-
ticular cover a range of length scales useful for studying the
internal structure and overall dimensions of clay platelets
and aggregates.

To make best use of these scattering techniques in char-
acterizing clay dispersion, we need calculations of the scat-
tering from physically reasonable models of the structure of
clay aggregates, the parameters of which can be determined
from comparison to x-ray and neutron data. In this paper we
present x-ray, small-angle neutron scattering (SANS) and ul-
trasmall angle neutron scattering (USANS) from organoclay
dispersions in low molecular weight nonaqueous solvents,
together with a model for the geometry of and scattering
from incompletely dispersed clay aggregates. Our model,
with physically reasonable values of four well-defined model
parameters, accounts well for the scattering data, and allows
us with good confidence to infer the structure of clay tactoids
in our samples.

B. Organoclay composition

Clay is a material composed of nanoscale crystalline ox-
ide sheets that can be dispersed into many liquids. This wide
compatibility results from changes in the surface chemistry
of the oxide sheets. Through changes in surface chemistry,
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the clay is transformed from hydrophilic to hydrophobic.

Natural clays are hydrophilic. The 2:1 structured clays
discussed here are composed of crystalline metal-oxide
sheets containing a three-layer sandwich, approximately
10 A thick, with two layers of tetrahedrally-coordinated
metal ions surrounding a layer of octahedrally coordinated
ones [4]. Although the majority of the tetrahedral sites are
occupied by silicon, other cations such as aluminum can sub-
stitute, causing the overall charge of the oxide layer to vary
from O to —2 per sheet.

Inorganic clays compensate for the charge imbalance
through interlamellar cations such as sodium. Alteration to a
hydrophobic organoclay, the material of primary interest
here, is achieved by coating each oxide sheet with a surfac-
tant layer. These surfactant coats self-assemble [5] onto the
sheets due to electrostatic attraction between the surfactant
headgroup and the surface charge of the oxide sheet.

Producing these organoclays is accomplished by ion ex-
change of the interlamellar cations for cationic surfactants,
such as dimethyldioctadecy-ammonium. This ion exchange
proceeds readily for smectite-family clays, with Na-
montmorillonite, Nay; (Al; sMg7)Sig O,y OH,4 being a pro-
totypic example. Once coated, these sheets then further con-
gregate into multisheet stacks.

The surfactant layers themselves form two-dimensional
(2D) structures typical of many other surfactant systems such
as Langmuir-Blodgett monolayers. Similar to those systems,
various structures arise as the surface concentration of sur-
factant changes [6].

For organoclays an unusual overstuffed condition can oc-
cur. In the Na-montmorillonite example, the oxide surface
charge is le per 130 A2, Thus the surface coverage for sto-
ichiometric singly-charged surfactants is rather low com-
pared to aliphatic packing densities, which are about 20 A2
per chain in the rotator state [7]. As a consequence, “extra”
surfactant beyond that required for charge neutrality can be
incorporated into the intersheet galleries. These charge-
neutral surfactants (balanced by assimilation of anions along
with the surfactants) are incorporated due to van der Waals
interactions between the aliphatic chains. For a typical over-
stuffed organoclay the organic content can be as large as 1.2
mole surfactant per inorganic formula unit. They cause the
interlamellar spacing to increase and give surfactant chain
densities that approach liquidlike packing. However, they are
not electrostatically bound, and as we will discuss below,
these extra surfactants can be liberated upon immersion in
solvent.

The further assembly of individual organoclay sheets into
multisheet stacks is a key feature, and their structure has
been a focus of many investigations. For example, structural
models for the surfactant layers [6,8] have come largely from
examination of the interlamellar spacing response to various
modifications of the surfactants. These stacks form spontane-
ously during processing.

Because dispersion of the organoclay into various media
is important to most technical applications, studies of their
chemical and mechanical disaggregation are a recurrent
theme in the organoclay literature. A survey of this literature
shows a substantial number of studies that correlate the
change in the interlamellar x-ray scattering peak with this
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disaggregation. Electron microscopy is also often employed.
The term “tactoid” has been coined to describe those stacks
having a few sheets.

Only qualitative agreement between the tactoid sizes from
such x-ray scattering and those from electron microscopy has
been found in previous work [9]. This is likely due to the
high degree of disorder in the multisheet stack, which would
lead to underestimates of tactoid size from the x-ray scatter-
ing. To describe the aggregates in such a dispersion requires
a model that captures the structure over a wide size range.
We will demonstrate that a successful scattering model can
be constructed that spans a range of several orders of mag-
nitude in length scales.

C. Inorganic clay structure and rheology

As a guide to expectations for the much less extensively
studied organoclays, it is instructive to briefly review the
extensive structure and rheology studies of inorganic clay
dispersions. Any such discussion must first narrow the focus
to those clays that can be dispersed. Those are the
“swellable” or smectite family clays that have electrostatic
charges of about 0.7¢ per formula unit. In the recent litera-
ture, nearly all such studies use the synthetic clay Laponite,
Nay; Mgs 5 Lip 4 Sig O,y OHy. It is prepared in the form of
disks with a thickness consisting of one sheet, ~10 A thick,
and having a diameter of about 300 A.

Although the Laponite aspect ratio (about 30) is signifi-
cantly smaller than that for montmorillonite (about 150), the
uniform size of the synthetic clay makes it attractive for
many studies. For both materials, immersion in low-ionic
strength water at low clay concentrations renders the clay
fully dispersed into single sheets [10-12]. Shang and Rice
[13] have derived a model for these montmorillonite sheets
showing that they consist of a central oxide core (9.2 A
thick) surrounded by symmetrical sheets of bound water.
Their scattering model demonstrates that small-angle x-ray
scattering (SAXS) data, when analyzed in the Guinier ap-
proximation, must include these bound water layers to attain
a reasonable size estimate. High ionic strength causes the
sheets to flocculate, a well-known phenomenon that occurs
for example during mixing of fresh and seawater in natural
marine estuaries. The free energy that drives this behavior is
well described by the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory, which includes electrostatic and van der
Waals interactions [14].

If low ionic strength is maintained, increasing clay con-
tent also induces a change in structure accompanied by a
rheological transition to a gel. There has been considerable
discussion concerning the resulting structure. Both the
nearest-neighbor platelet arrangement and the longer-range
correlations are disputed. For near-neighbors, the relative
dominance of the edge-to-face “house of cards” structure
versus that of the parallel plate “tactoid” stacked structure is
disputed [12,15-17].

Saunders er al. [17] suggests that pH and ionic strength
cause a change in the relative importance of the two and this
is a source of the disagreements. Similarly, there is no con-
sensus on the longer-range structure. The scattering intensity
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for ¢<<1072 A~!, about where the near-neighbor correlation
peak occurs, exhibits a power law dependence, ~g*, where
-3=x<0.

Pignon et al. [16] summarize typical observations for the
Laponite suspensions. Ramsey et al. [10,18] summarize this
behavior for montmorillonite. For Laponite, a x=~-3 region
is found for a broad range of g values of about 107*<g
<1072, Then at the very lowest ¢ values (g<3
X 107> A~"x=0 is observed. In the intervening q range, two
power law dependences are observed depending upon clay
volume fraction: x=-1 for 0.0035=¢=0.0048 volume
fraction and x=~—1.8 for 0.0060= ¢=0.02 volume fraction.
For montmorillonite, a power law of x=-2 is observed at
low concentrations, (~1 wt. %), evolving to SANS that
exhibits an interparticle correlation peak with increasing
clay content (~5 wt. %). At higher concentrations
(~12 wt. %) a power law of x=-3 develops.

Examination of a wide range of scattering literature on
clay dispersions shows that the x=~—3 regime is a common
feature. Such a power law is not associated with any of the
well-defined structures one might expect for mesoscale struc-
tured materials, leading various authors to propose aggregate
structures that might give this power-law behavior.

One proposal is that the sample consists of solvent poor
and rich regions, or equivalently dense aggregates and sur-
rounding solvent. If either the aggregates or the solvent rich
regions are assumed spherical and polydisperse in size [11],
the resulting scattering can exhibit x=-3. As shown in Ap-
pendix B, the power law in the structure factor for a poly-
disperse collection of spheres is g~7~%, where the probability
for a sphere to have radius r is assumed to be a power law
r~*. (This result holds for 3<k<7, see Appendix B.)

Thus for a particular power-law distribution of spherical
aggregates or voids [ P(r) ~r*], a structure factor scaling as
q‘3 is obtained. However, there is no direct evidence for such
a distribution of spherical aggregates being present in incom-
pletely dispersed clay suspensions.

A second suggestion [16] is that the aggregates in a clay
suspension are surface fractal objects, with a surface fractal
dimension appropriately chosen so that a modified Porod
scattering law of ¢~ results. No physical argument or inde-
pendent evidence for such a structure has been given.

We shall show in Sec. IT F below (see also Appendixes A
and B) that within a model of tactoids with a power law
distribution in the number of overlapping sheets, a power
law in the corresponding structure factor may be likewise
obtained.

As already indicated, a rheological transition to a gel is
observed with increasing clay content. Mourchid et al.
[15,19] provide a good description of the observations. As
the clay content is increased they observe a transition from a
suspension with (1) no yield stress and (2) G'(w) lower than
G"(w) to a gel that exhibits a yield stress and an increasing
G'(w) with clay content.

This gel transition is sensitive to ionic strength. For
example the onset increases from ¢,=0.0012 to 0.0074 vol-
ume fraction as the ionic strength is lowered from 1072 to
10~* M. Independent of ionic strength, Mourchid et al. find
that all such gels exhibit a power law scaling of the form
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G' ~ (¢p— ¢y)*>. They suggest that this implies a gel structure
that is independent of ionic strength. They also note another
transition at higher clay content where birefringence is ob-
served. This transition is also ionic strength dependent but,
unlike the first gel transition, it moves to higher clay content
at higher ionic strength.

Pignon et al. also examined the rheology of the Laponite
system and combined this with scattering measurements of
its structure. There the sol-gel transition occurs at slightly
lower clay content than Mourchid’s results would suggest.
More significantly, Pignon et al. report that upon increasing
the clay content there is a rheological transition accompanied
by a change in the gel structure. Near to the gel transition,
0.0035= ¢=0.0048 volume fraction, the yield stress 7 fol-
lows a power law scaling of the form 7~ ¢*. The scattering
intensity in this same range exhibits a x=—1 power law.

Further into the gel state, 0.0060= ¢=0.02 volume frac-
tion, the yield stress follows a power law scaling of 7~ ¢°.
There is a corresponding change in scattering to x=—1.8.
Pignon et al. show that the fractal dimensions extracted from
the scattering can be related to the power laws observed for
the yield stress [20]. These observations seem to differ from
those of Mourchid et al., which show a universal power law
scaling for G’ throughout the entire composition range. Due
to differences in compositions and no mention of birefrin-
gence by Pignon et al., it is speculative to equate this struc-
tural change with the onset of birefringence seen by
Mourchid et al.

D. Organoclay structure and rheology

There is a rich literature on the behavior of organoclays.
We have already mentioned the many studies that examine
the interlayer surfactant arrangements (studies that examine
the influence of surfactant type and concentration ranges). If
we take that variation and now extend those studies to in-
clude the influences of various hydrocarbon fluids, including
binary and ternary mixtures as are used commercially, an
even larger range of literature emerges.

Parts of this literature are summarized in useful reviews
[1,21]. Because of the specificity of these studies to the tech-
nology of interest, it is challenging to generalize the organo-
clay behavior. We focus on the properties of interest here and
direct the reader to the general references for a more com-
plete picture.

Essentially all applications require that the organoclay be
dispersed into a predominately hydrocarbon medium. Factors
affecting the ease of dispersion include the type and concen-
tration of surfactant, the polarity of the solvent, the presence
of water, and the intensity and duration of shearing. Unlike
inorganic clays, full dispersion of the organoclay into single
sheets is rarely achieved. This is established by various
means, such as x-ray diffraction and electron microscopy.
However, a qualitative measure suggesting that dispersion is
typically incomplete is that organoclay suspensions are
nearly always turbid [22].

The gel transition is of critical importance to most appli-
cations. Changing the solvent properties is the preferred
means to induce the gel state. Cody et al. [2,23] depict the
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gel formation in that case as being a two step process. First a
dispersed organoclay suspension is created, and then the dis-
persed organoclay fragments are bound together via inter-
sheet bridging through hydrogen bonding, facilitated by ad-
ditives or water molecules. There is an extensive literature
examining gel strength as a function of blending of polar and
nonpolar solvents. The insight into the underlying physics
governing this behavior is obscured by the use of industrial
measures of gel strength (such as penetrator insertion depth
or flow time through a funnel) and the very high concentra-
tion of clay (~20 wt. %), well above any percolation
threshold.

Although no direct connection to rheological behavior is
established, Ho et al. [22,24] examined the role of the solu-
bility parameter on organoclay dispersion. They conclude
that the dispersion-force component of the multicomponent
solubility parameter is most important for dispersion. The
polar and hydrogen-bonding components seem to control
tactoid formation or precipitation. Needed are systematic
studies of the effect of clay concentration on the finite-strain
rheological response of organoclay-solvent systems, which is
an objective of the current study.

We have already established that inorganic clay suspen-
sions pose an as-yet unresolved structural puzzle. Organo-
clays are less well studied, but we expect similar features.
Here, the nearest-neighbor orientation seemingly favors tac-
toids, as evidenced by the prevalence of incomplete disper-
sion from multilayer stacks into single sheets. On a longer
length scale, examination of recent SAXS and SANS studies
[22,25] suggests that, such as the inorganic clays, the scat-
tered intensity for these systems often exhibits a power law
of the form /~¢g™, where x=3. By combining SANS and
USANS, Yoonessi et al. [25] show that this power law be-
havior persists over a very wide g range.

We discussed above that the inorganic clay structure as-
sociated with this power law behavior is ambiguous. One
caution to be used in comparing the two systems is a consid-
erably larger aspect ratio for the organoclay than for Lapo-
nite. This, for example, could force the scattering for large-
scale structures outside the window for x-ray or neutron
scattering. This might explain the absence of rollover to shal-
lower slopes as is observed for Laponite by Pignon et al.
[16]. We therefore focus in our remaining discussion on the
x=3 power law region for the organoclays.

Ho er al. [22] were among the first to carefully examine
the structure of organoclay suspensions using SANS. Recog-
nizing that the commercially available organoclays contain
excess surfactant and are polydisperse in size, they used Sox-
helet extraction combined with sedimentation to purify the
samples prior to dispersing them into various solvents. Ac-
cording to their Table I, the purified samples can sometimes
give transparent gels. However, these same gels exhibit
SAXS profiles showing that tactoids are still present. Fur-
thermore, comparison of SAXS profiles and SANS data
shows that there is no qualitative difference between the ex-
tracted and unextracted samples. This is consistent with sub-
sequent measurements [26] suggesting that the surfactant
molecules are liberated by immersion in solvent. We quantify
that result below.

SANS data for the four solvents (chloroform, benzene,
toluene, and p-xylene) that are reported to form gels in Table
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I of Ho et al., all exhibit power law slopes steeper than —2,
the theoretical value for dispersed plates. Chloroform dis-
plays the smallest deviation (about —2.2), and Ho et al. dem-
onstrate that a scattering model consisting of a single,
surfactant-coated inorganic disk can describe this data. This
model cannot describe the other three materials. For these
three samples, a common power law slope of x~-2.36 is
reported for the low-q region. Further, Ho et al. report that
even for very dilute concentrations (0.1 wt. % ~ 0.0005 vol-
ume fraction) their single-plate model cannot describe the
scattering.

Acknowledging the need to include multisheet stacking in
their scattering model, Ho et al. convolve the Kratky-Porod
one-dimensional (1D) paracrystalline correlation function
with the single-plate scattering form factor. The use of this
function for multilayer stacks of disklike objects is well
known [27]. In its finite stack size formulation, this intro-
duces three parameters, the average interlayer spacing A, the
standard deviation from this average value &, and the number
of layers per stack (N). Figures demonstrating how variations
in these parameters alter the function are shown in recent
publications [9,27].

Here, we focus on the predicted intensity increase ap-
proaching ¢g=0. Accompanying this rise, the Kratky-Porod
function produces a series of oscillations with decreasing g.
These interference features, due to a tactoid of a definite and
finite thickness (see for example Fig. 5 in Hanley et al. [26]),
have a period equal to 27r/thickness. Such oscillations are not
observed in the scattering data.

Ho et al. [22] claim that these oscillations of the Kratky-
Porod function are damped in the calculation of the full
structure factor by the averaging over angle between the nor-
mal to the stacking direction and the scattering vector. How-
ever, as we demonstrate in Sec. IIF and Appendix A,
the integral over tactoid orientations has little effect in damp-
ing these oscillations. This is because the scattering from
tactoids of large aspect ratio is dominantly into a small an-
gular region defined by the angle between the sheet normal
and the wave vector being less than order 1/(gR). As a
result, to a very good approximation, the resonance structure
of the Kratky-Porod function survives in the final structure
factor.

In summary, the Kratky-Porod treatment, in which the
sheets are described as infinite flat parallel planes with a
nearly regular spacing and a finite number of layers, is a
physically sensible starting point to describe the structure of
partially exfoliated clay. But if we are to apply this function,
we will require a mechanism by which the oscillations in the
structure factor are to be damped.

Below, we present a formulation where we average over a
distribution of the number of layers per stack. We expect that
polydispersity in the number of layers per stack will wash
out oscillations corresponding to interference effects of a
stack of a definite thickness. This approach indeed eliminates
the spurious oscillations, and results in excellent fits that de-
scribe the data over the entire ¢ range. Furthermore, the fit
parameters are consistent with other estimates of tactoid size.
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TABLE 1. Materials used in this study.

PHYSICAL REVIEW E 75, 021403 (2007)

Neutron

Density, SLD, X-ray SLD,
Material Composition glcc cm? ecm™
dimethyldioctadecy- [CH;3(CH,);7],N(CH3), 0.75% -3.051x 10° 2.582x 103
ammonium
(DTDM)
Na- Nay 7(Al; sMg( 7)Sig0,00H, 2.851° 4,093 100 8.575% 10%
Montmorillonite-
layer
Cloisite 6A DTDM, (Al; 3Mg 7)SigO,0OH, 1.240 see text see text
p-xylene-d10 C¢H4(CH3), 0.948 5.89 X 100 2.850x 103
tetrahydrofuran-d8 C,Dg0 0.985 6.346x 1010 2.961x 103
(TDF)
chloroform- d1 CD Cl, 1.505 3.166x 1010 —
(CDCly)
DTDM/p-xylene ¢DTDM=0.491 — 4.254 % 10° —
layer at contrast ¢p-xylene (H to D93:7)=0.509
match
DTDM/p-xylene- ¢p-xylene-d10=0.509 — 2.848 < 10'0 2.699 X 102
d10 layer
DTDM/TDF layer ¢TDF=0.509 — 3.080x 1010 2.775 % 105
DTDM/CDCl; layer ¢CDCl3=0.509 — 1.462 %1010 —

*Density calculated from molecular dimensions [28] of area=47 A2 and length=26 A.
bDensity calculated from layer volume per formula unit of 5.18X9.0X9.2 A derived from unit cell dimen-

sions [4].

II. SANS, SAXS RESULTS
A. Materials

For our studies, we used a commercially prepared orga-
noclay, Cloisite 6A from Southern Clay Products.' This
Montmorillonite-based material is a dry, easy-flowing pow-
der that consists of 46.4 wt. % organic content as measured
by differential thermogravometric analysis (DTA). The cat-
ionic surfactant is [CH;(CH2),],N(CH;), with components
n=17, 15, and 13 mixed by weight in the ratio 65:30:5. We
approximate this mixture as dimethyldioctadecy-ammonium
(n=17) that we hereafter designate as DTDM.

From the measured organic content we calculate a molar
fraction DTDM per inorganic formula unit >1. Using the
densities in Table I, an overall density of 1.240 g/cc is ob-
tained. Southern Clay Products reports that the surfactant
content is 1.40 meq/gm; taking the densities from Table I,
this indicates an organic content of 44 wt. % or about 1 mole
DTDM per formula unit, in reasonable agreement with our
values. In a recent study [22] Closite 15A was utilized. For
comparison with our results, we note that this material differs
only in surfactant content. We measure the organic content of

!Certain commercial materials and equipment are identified in this
paper to specify adequately the experimental procedure. In no case
does such identification imply recommendation by the National In-
stitute of Standards and Technology nor does it imply that the ma-
terial or equipment identified is necessarily the best available for
this purpose.

that clay as 44.2 wt. %; the manufacturer indicates that the
surfactant content is 1.25 meq/gm (41.1 wt. %). Water con-
tent of the organoclay may account for some of the discrep-
ancy between the quoted organic contents and those calcu-
lated from DTA data.

Small angle x-ray scattering (SAXS) measurements on
such powders corroborate the relative surfactant content. For
6A and 15A, the respective interlayer spacings are A
~35 A and A~33 A. As noted by others [4], these inter-
layer spacings do not reflect a fully-extended double layer of
surfactant molecules between each inorganic sheet. If each
surfactant extended to its full length, 26 A, the surfactant
density would be low; therefore chain packing maintains the
smaller spacing for these dry powders. Immersion in a good
solvent considerably expands the layer.

Three deuterated solvents, all obtained from Aldrich and
used as received, were utilized in these studies. Their prop-
erties are listed in Table I. An important consideration in
selecting these solvents was their ability to disperse the or-
ganoclay. It has been suggested that the solubility coefficient
is a key measure of this ability [22,24]. The organoclay lit-
erature [1] indicates that polar substances have a strong ef-
fect.

Following the convention of Wiehe [29] we relate the
polar character of the solvent to the magnitude of the &,
component of his two-dimensional solubility coefficients.
Our three solvents have the following solubility coordinates
(85 8.) [both in units of (MPa)'?]: tetrahydrofuran (16.81,
9.82); chloroform (17.69, 6.16); and p-xylene, (18.04, 0.82).
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These three have &y components that vary little (~7 %) com-
pared to the variation in &, (~1000%). As we will show, the
resulting tactoid structure varies little across this series.

Samples consisting of Cloisite 6A clay powder and the
selected solvent were prepared in ~10 cc volumes and
mixed using a conventional magnetic stir bar for a period of
about 1 day. These fluids were turbid, slightly colored and
highly viscous. Examination of the p-xylene samples with
phase-contrast microscopy revealed that the samples contain
a small fraction of birefringent, crystalline fragments with
lateral dimensions of 70X 150 um?. The thickness of these
plates is difficult to determine, but it is considerably smaller
than the lateral dimensions. These plates apparently form in
situ. Their dimensions exceed the particle sizes in the as-
received powder, and the plates have exceedingly sharp,
straight edges typical of crystal growth. The number of such
plates per unit volume increases with clay content. It is likely
that these particles contribute to the birefringent regions ob-
served when the bulk solutions are examined between
crossed polarizers. Such appearance is typical for the
samples containing more than 1 wt. percent Cloisite 6A in
p-xylene.

B. Scattering experiments

1. SANS and USANS

For neutron scattering, the fluid samples described above
were loaded into circular quartz cuvettes having sample
thicknesses (~0.2 cm) dictated by the attenuation coefficient
of that sample. The fluids were loaded through use of a sy-
ringe, producing a moderate degree of shear strain. However,
no time dependence to the SANS was observed for sampling
times that extended over several days.

All neutron scattering experiments were performed at the
NIST Center for Neutron Research (NCNR), in Gaithers-
burg, Maryland. Conventional SANS data were obtained us-
ing the NG7 NIST/ExxonMobil 30-m SANS instrument.
With two detector-sample distance configurations and a neu-
tron wavelength of 8 A, a ¢ range of 0.0008 to 0.3 A~! was
obtained. Scattered intensities were collected with a 2D de-
tector, and data reduction and normalization followed stan-
dard procedures [30]. The resolution is mainly determined by
the AN/A=0.1. We calculated the full smearing function us-
ing the methods of Barker and Pedersen [31] and found that
over most of the ¢ range the width of the resolution was less
than 10% of the g value. This indicates that oscillations of
the sort predicted by the Kratky-Porod function for finite
tactoid size (with ~10 layers) would have been easily re-
solved if present. The critical fits of the scattering functions
described in the present work, power law decay at small ¢
values, are little affected by application of the smearing func-
tion and it is not included in our fits.

Scattered and transmitted intensities were measured at the
same configuration with the sample (7., 7), without the
sample (i.e., only the empty sample cell (1,, T,), and with the
neutron incident beam blocked at the sample position (7},).
The scattered intensities (in arbitrary units) due only from
the sample are then produced through the following relation:
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I(Q)=Ir_le_(le_lb)T1~ (l)

e
These intensities are then compared with a known secondary
standard. Its transmission (7,) and pathlength (d,) are known
and its intensities (/) are measured at the same configuration
as our sample to obtain the normalized cross-section per unit
volume of the sample in a unit of cm™

d2(q) 1(q)d,T,d%(0)
a0 1(0)Td dQ

()

where d=0.2 cm is the path length of the sample and
d%,(0)/dQ) is the known crossection of the standard at g=0.

Ultrasmall angle neutron scattering data were obtained
also at NCNR, with the BT5-USANS instrument. The US-
ANS instrument is a double crystal diffractometer, using a
one-dimensional arm scan to perform angular measurements
of the scattering at a wavelength of 2.38 A [32]. The ¢ range
is from 0.00003 to 0.002 A~!, allowing overlap with the
SANS data. Similar background and empty cell measure-
ments were also performed and data reduced in a similar
fashion. However, the USANS data are taken with a slit ge-
ometry. To compare with the SANS data, taken with a pin-
hole geometry, the USANS data reduction also includes a
de-smearing procedure [33].

2. SAXS

The SAXS data were collected using x-rays produced
from an 18 kW Rigaku rotating anode generator. Typical op-
erating conditions were 55 kV and 280 mA. The Cu K« ra-
diation is monochromated and collimated through use of a
vertically-focusing graphite monochromator. The wavelength
is approximately 1.54 A. The sample is mounted on a Huber
2-circle goniometer that has vertical and horizontal motor-
ized sample-positioning allowing for precise placement of
the sample in the x-ray beam. The diffracted radiation is
measured through use of a one-dimensional arm scan. The
resolution, typical value FWHM of 0.11 degree measured at
q=0, is defined through a combination of the incident and
diffracted slit widths.

The samples were held in 1-3 mm diameter glass capil-
laries. As described above, samples of about 10 ml were first
prepared, and this mixture was then loaded into the glass
capillary by use of a syringe. Each capillary tube was sealed
to prevent vapor loss during the experiments. To check for
sample evolution, observations were made immediately upon
loading, after 24 h, then several days later; no changes in the
SAXS were observed. The diameter of the capillary for each
sample was selected to give a transmission of about 0.3 thus
ensuring that uniform scattering was obtained throughout the
bulk of the sample. Due to the high attenuation of CHCl;, no
observations could be made at this photon energy. Qualita-
tive measurements were made at the Advanced Photon
Source using a photon energy of 20 keV.

C. Scattering length

We measured the scattering length density (SLD) of this
material by adding a fixed amount of organoclay (1 wt. % or
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FIG. 1. Two methods to extract the scattering length density for
Cloisite 6A. For the power law fits, the intensity was estimated
by taking parameters, A, from an equation of the form Ag=>7%
fit to each data set. For the second estimate, the intensity at ¢
=0.000 134 A~! was used for each data set. By averaging these two
results we obtain the final SLD:1.13+0.18 X 10'® cm™2.

0.008 volume fraction) to a set of six liquids representing
different p-xylene-h10 to p-xylene—d10 ratios. The system-
atic change in scattered intensity was analyzed in two ways
to obtain an overall estimate of the scattering contrast for
Cloisite 6A.

We first fit each data set in the low q region, 0.0008 =g
=0.01 A!, with a power law Ag¥, allowing the prefactors
(A) and the exponent values (x) to vary. Exponent values
ranging from —2.6176 to —2.8292 were obtained. A common
value for the exponent is expected, and indeed, there is no
systematic trend in these exponents with composition. There-
fore, we refit the data using an average exponent value of
—2.709, obtaining the prefactor values for each composition.
The square root of these values (recognizing that for
p-xylene-110 the amplitude is negative), when plotted versus
the SLD of the fluid, gives a linear correlation (Fig. 1). The
calculated contrast-match point for this is 1.114+0.203
% 10! cm™. This is one estimate of the SLD of the Cloisite
6A.

An alternative to this fitting procedure is to use the actual
intensities measured at a selected ¢ value, g=0.001 34 A~!.
Those values (Fig. 1), analyzed in a similar fashion to above,
give a contrast-match point of 1.150£0.156 X 10'® cm™2.

We average these two estimates to obtain our value for the
SLD of Cloisite 6A as 1.13+0.18 X 10" cm™.
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D. Scattering length density analysis

After we split this result into inorganic and organic con-
tributions, it will emerge that these values are quite informa-
tive regarding the clay composition after immersion in sol-
vent.

The required condition to separate the two components is
that the observed SLD is the volume-fraction-weighted aver-
age of the SLD’s of the organic and inorganic components:

Xn Xn

¢organic organic + d)inorganic inorganic = Nobserved» (3)

where n,, is the SLD of component a. Three of the terms on
the left of this expression are well known, hence we con-
clude 7,,44n;c=4.254X10° cm™. This value is positive;
therefore, as expected, a fraction of the surfactant layer has
been replaced by solvent.

To calculate the solvent-to-DTDM ratio, we equate
Noreanic t0 the combined solvent and nprpy in the organic
phase, ¢prpm X nprom+ (1= @prpm) X Rgolven- Assuming that
the trapped solvent has the same H/D ratio (93/7) as the bulk
fluid, we obtain ¢prpy=0.491. More than half of the layer is
trapped solvent. This value for ¢ppy allows us, for the first
time, to calculate the inorganic-to-DTDM ratio of an orga-
noclay immersed in a solvent.

Not surprisingly, the value indicates considerable DTDM
loss over the starting material. We note that, per clay plate,
the dimensions of interlayer spacing (48 A) shows that the
volume fraction organic is (48-9.2)/48=0.808. Therefore
the volume fraction DTDM per clay sheet is 0.808 X 0.491
=0.397. We use the densities for the clay plate and organic
layer of 2.851 and 0.75 g/cc respectively to calculate the
weight fraction DTDM=0.352. Restated as mole fraction we
find that this corresponds to 0.71 moles DTDM per clay
sheet, essentially identical to the charge balance composi-
tion. We graphically trace the evolution of the organoclay
surfactant content in Fig. 2 for both Cloisite 6A and 15A.
Both materials, within error, evolve to the same composition,
one corresponding to charge-balance composition. Recall
that the surfactant was removed from 15A by a solvent ex-
traction method. That both materials achieve a similar com-
position is significant.

The estimated error on the contrast matching SLD is
+0.18 X 10'° cm™2. Using this range, we calculate lower and
upper bounds for the weight fraction DTDM of 0.267 to
0.420, corresponding to mole fractions of 0.47 to 0.95. The
lower bound is beyond the charge balance composition and
is therefore unphysical. The upper bound is a composition
slightly below the original surfactant level of 0.464 wt. frac-
tion. Assuming that only hydrogenated p-xylene is trapped,
the physically allowed range of calculated compositions is
still within this range. Hence, all of our values are consistent
with removal of surfactant upon immersion of the organoclay
in xylene.

A natural end point for that extraction is the charge-
neutral composition of 0.7 mole fraction DTDM. We utilize
this composition throughout the remainder of our calcula-
tions. This corresponds to setting the volume fraction of
DTDM in the organic layer to ¢prpy=0.491 and in filling
the remaining volume fraction with the solvent, i.e.,
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FIG. 2. The relationship between scattering length density
(SLD) of the Cloisite-type organoclays and their composition. The
as-received organic contents are indicated on the left vertical axis.
The experimentally-determined SLD’s for Cloisite 15A and 6A [this
study] are indicated by the arrows. The wt. percent and mole frac-
tion DTDM corresponding to these SLD’s are indicated by, respec-
tively, the solid and open symbols. SLD’s for both organoclays are
consistent with the expulsion of excess surfactant into the solvent
down to that required for charge neutrality, 0.7 mole fraction
DTDM.

p-xylene-d10, tetrahydrofuran-d8 (hereafter TDF) or CDCls.
The resulting SLD values are listed in Table I.

At high organoclay loading a secondary consequence of
this DTDM loss is an induced change of 7., due to the
addition of significant hydrogenated material. At 5 wt. % or-
ganoclay and below, this effect is small, less than 2% change
in SLD. For samples containing above 5 wt. % organoclay,
we correct the nggye, for the addition of DTDM. For the 10
and 20 wt. % Cloisite 6A in p-xylene-d10 this changes the
SLD values to 5.794 X 10'° and 5.678 X 10'° cm™2, respec-
tively.

E. Single-sheet scattering

As is evident from our discussion of the organoclay struc-
ture, the surfactant-covered oxide plate is the underlying
structural unit. Richter er al. [27] formulate a rigorous de-
scription for the scattering for such a system and we follow
their convention in the following discussion.

The core of the organoclay sheet is a 9.2 A metal oxide of
Na-Montmorillonite. Due to the crystalline nature of this ma-
terial the dimensions and composition of this core are well
constrained. We provide the neutron SLD in Table I for a
composition consistent with a typical Na-Montmorillonite.
This SLD is relatively insensitive to substitution of other
elements, such as iron. This core is covered by DTDM layers
of surfactant or solvent on both sides.

From the SAXS data we obtain an interlamellar spacing
of 48 A, thus each DTDM layer is 19.4 A for p-xylene-d10.
As we previously discussed, the DTDM layer expels excess
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surfactant and imbibes solvent. We assume the solvent vol-
ume fraction determined from the contrast matching experi-
ments, and calculate the SLD here as 2.848 X 10'% cm=2.

To calculate the scattering from such a system of indi-
vidual plates, well separated in the solvent, we utilize the
following formulation following Richter et al.

C.q)=2hx 1078 sin(gh) exp(_ 1 7 0%>’ @
qh 2
* in(g(d+h 1
Cylq) =2"(d+h) X 10—8% Xp<_ qu(ﬁ) o
(o .
X 10—85mq(_Z) exp(_ quo%)' 5)

These terms describe the scattering from the core (C,.) and
the surfactant layers (C,). In this formulation the core thick-
ness is 2h and the surfactant layer on each side of this core
has thickness d. The square profiles are rounded by the in-
clusion of Gaussian profiles (0,=4.5 A and 0,.=0.1 A).
(Note: unlike Richter et al., we are not dealing with diblock
polymers; therefore, we can neglect the multiplicative pref-
actor for C,, describing the fraction of one of the brush com-
ponents.) We combine these terms along with the SLD con-
trast factors, Ap, to obtain the overall form factor for an
individual plate

F(q) = (Cy(q)*Ap; +2(Ch(q) C(@) ApyAp, + (Co(q))*Ap?.
(6)

This is then used to calculate the scattering from an en-
semble of plates.

To calculate the total scattering for an ensemble of
randomly-oriented single plates we average over the orienta-
tion of the sheet normal, following the approach of Richter et
al. Details may be found in Appendix A. We must also scale
the calculation to account for the number of plates per unit
volume of solvent. We obtain

D(gR/2)

< f(g) (TR X 1072 ———_ (7
Ve J@(R) JRI2 (7)

v

dz,
E (6]) = ¢clay

where ¢, is the volume fraction of organoclay added to the
solvent, v, is the volume fraction of inorganic component
to organic component in the as-received organoclay, V is
the volume of the inorganic core in each organoclay sheet.
We calculate v,,,, by noting that the weight fraction of or-
ganic is 0.464. Using densities of 0.75 g/cc for DTDM and
2.851 g/cc for the inorganic core, v,,,,=0.233. The volume
of inorganic for one clay plate is obtained from V.=2hmR>.

We obtain the single-plate scattering for 0.008 volume
fraction Cloisite 6A in p-xylene-d10 (Fig. 3), where we have
added a background of 0.054 cm™.

F. Scattering from stacks

We model the geometry of dispersed clay as follows. We
regard the individual clay sheets as flat disks with large as-
pect ratio and a given cross-sectional profile. The sheets are
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FIG. 3. The SANS data for 0.008 volume fraction Cloisite 6A in
p-xylene-d10, circles, are compared with the calculated scattering
intensity for powder-averaged, single-plate organoclay sheets. Each
sheet consists of a 9.2 A metal oxide core covered on both faces by
a DTDM + solvent layer, 19.4 A thick. The solid, dotted, and
dashed lines demonstrate the effects of decreasing lateral dimension
of this disk-shaped object (diameter=2R). Clearly additional struc-
ture is present.

assumed to be in stacks with nearly regular spacing, but with
some randomness in the distance between adjacent sheets in
the stack. The stacks are taken to be randomly oriented, and
dilute enough so that we need not consider correlations be-
tween the spatial location of one stack and another. Different
stacks will have different numbers of sheets; the number of
sheets in a stack will have a probability distribution, which
we model with a convenient function with two parameters to
be determined by fitting to scattering data.

To predict the scattering from dispersed clay, we first
compute the structure factor for a stack of n parallel sheets
with normal along the z direction. Details are presented in
Appendix A. The result is

S(q..9.) =18(q ) Pf(g) 2 (explig.A - (1/2)42€)).
(8)

Here g(q ) is the transverse form factor of a disk of radius

R; f(qz) is the cross-sectional form factor; A is the average
layer spacing; & is the variance in separation of adjacent
layers in the stack; and 3,,(X) is the Kratky-Porod function
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X enX(1-X)-X

S, (X)=n+2Re 1-%)

)

Then, we average over the orientation of the sheet normal,
following the approach of Richter et al. [27]. Details may be
found in Appendix A. The result is

_ 2\2 /2
(Staa =P, exptig - (1212 TE LD
qR/2)
(10)
in which D(u) is the Dawson function
D(u) = exp(— uz)fu dt exp(r). (11)
0

Now we address the question of polydispersity of the number
of sheets n in a stack. We posit a distribution function Py ,(n)
of the form

Py \(n) ny". (12)

This form is versatile, in that with it one can represent dis-
tributions with varying shapes, ranging from exponential to
power-law to nearly Gaussian. It is also well posed, in that it
is defined only for positive integer values of n. Finally, it is
mathematically convenient, because of the summation iden-
tity

> ™y =Li(y) (13)
n=1

in which Li,(y) is the polylogarithm function (available in
Mathematica, e.g.). Thus, we can define a normalized prob-
ability distribution Py \(n) as

—k,.n
n-y
P.(n)=— (14)
ke Li(y)
and evaluate the moments of n as
. Li,_;
(niyp= i) (15)

Lix(y)

Thus, the mean number of layers in the stack (n) is
Li,_,(y)/Liy(y), and the variance (n®)—(n)> is

[Lig_o(y)Lig(y) = Lig_y (v)*/Lig(y)*.
We can likewise average the Kratky-Porod function X,,(X)
over this distribution, to obtain

_ Lz, (y)
0=
X Li(Xy) + X(1 - X)Li;_;(y) — X Li(y)

Liy(y)(1 - X)?

+2 Re

(16)
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Replacing the Kratky-Porod function ,(X) with its average
2y(X) over the distribution Py (n) gives our final result for
the structure factor
(mR?)*D(qR/2)
(qR/I2)
(17)

(S(0))p.0=f(@)|*S,(expligh - (1/2)4* &)

The behavior of this function for small wave number is ana-
lyzed in Appendix C. There it is shown that for y=1 and 1
<k<3 (i.e., power-law distributions of the number of layers
per stack), (S(¢))p.q goes as ¢“> for small wave number (but
gR>1). Thus, for k around k=2, we obtain a power law for
the structure factor of about ¢~>.

Combining the structure factor of Eq. (17) with Eq. (7),
we obtain the formulation for total scattering of an ensemble
of stacks of clay sheets dispersed in solvent

s S
@ =AGE TSt B (18)

core

Here we introduce an amplitude parameter A to account for
deviations in experimental scattering intensity from the the-
oretical ones. We also add a constant background term B to
describe the significant incoherent background.

If we fix the single-sheet parameters [Eq. (6)] required to
calculate P(g), Eq. (18) indicates that five additional struc-
tural parameters will be needed to describe the scattering: the
layer periodicity A; the standard deviation of the layer spac-
ing &; the parameters k and y characterizing the distribution
of the number of layers in a stack; and the plate radius R. In
the following sections we examine the predicted values for
these parameters from fitting the scattering data.

G. SAXS fits

Comparison of the x-ray and neutron SLD values (Table
I) shows that x-ray scattering arises mainly from the contrast
between the metal-oxide core and the surrounding organic
surfactant tails. This core-contrast form factor accentuates
the peak in S(g); whereas, the SANS data exhibit a signifi-
cant incoherent background, obscuring the intersheet corre-
lation peak. Therefore, the two parameters describing the
paracrystalline ordering A and £ are best determined using
SAXS data.

The resulting SAXS for p-xylene and tetrahydrofuran
(hereafter THF) samples are shown in Figs. 3 and 4, where
three orders of diffraction maxima from interlamellar peaks
are seen. We calculate the x-ray scattering intensity using Eq.
(18), with an additional modification to account for slit
broadening. Our SAXS data were taken with a slit geometry,
requiring this correction, and we use the formulation de-
scribed in Roe [34] [Eq. (5.170)].

We manually adjusted the value for A in increments of
1 A to reach good agreement with the peak position. We
obtain p-xylene, A=48 A, and THF, A=46 A. The value for
& is less sensitive, values between 6 and 1 were explored
before selecting £€=3 A. These values were fixed during re-
finement of the additional three parameters using the SANS
and USANS data. We discuss these fits in the next section.
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FIG. 4. X-ray scattering data (squares) compared with model
(line). Initially these SAXS data are used to fix values of the inter-
lamellar spacing (p-xylene, A=48 A, and THE, A=46 A) and the
Gaussian deviation about this mean value (£=3). Subsequently the
k parameter of the distribution for the number of layers per stack is
optimized using the SANS and USANS data. The models plotted
here were calculated from the SANS optimized parameters in Table
1, appropriately broadened through use of a finite slit broadening
function (see text).

Here we compare the resulting calculated scattering
curves with our SAXS data. As these data are not referenced
to absolute scattering power, we have freely adjusted A and
B. The resulting calculations (Fig. 5) closely reproduce the
SAXS peaks. The lower ¢ data exhibit a somewhat different
power-law behavior, but this is likely due to our use of a
vertically-focusing monochromator. This will introduce slit
broadening that cannot be accounted for using the model.

As another comparison with the full model, we fit the
first-order maxima with Gaussian peak shapes. The peak
widths from those fits, using the Scheerer equation, corre-
spond to average stack heights of 2.1 layers (p-xylene) and
2.2 (THF), similar dimensions to those for (N) values from
the full SANS fit, Table II.

The strong adsorption coefficient for CDCl; makes x-ray
scattering at 8 keV impossible. Therefore, we examined one
sample using 20 keV energy photons from synchrotron ra-
diation at the Advanced Photon Source, Argonne. We ob-
served low-intensity SAXS peaks at positions corresponding
to A=48 A, but the data are only qualitative.
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FIG. 5. The scaled experiment data for S(g), circles, are ob-
tained by taking the ratio of the experimental intensity to that of the
calculated single-plate scattering for 0.008 volume fraction Cloisite
6A in p-xylene-d10. The amplitude and background corrections
from Table II were applied to the calculated values. We compare
this with S(g) calculated from the model distribution with y=1.
Here, k parameters corresponding to three different average num-
bers of layers per stack ((N)) are displayed. The best-fit value from
Table II provides an excellent description of the low-q dependence.
At higher ¢, our data exhibit an elevated background due to inco-
herent scattering and the form factor for neutron scattering is small
hence we do not observe the peaks in S(g). However, these are
observed in SAXS, as detailed in Fig. 4.
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H. SANS fits

We next explore the values for k and y for the layers-per-
stack distribution in Eq. (14). In our first trials we freely
varied both k and y over a wide range while comparing to the
SANS data for a selected composition, 0.008 volume frac-
tion. We determined that fits to the data all drive y towards
unity. Therefore, we set y=1 and then used least-squares
analysis to obtain best-fit values for the parameter k. From
Eq. (14), we see that y=1 implies the distribution of layer
spacings is a power law, n™*. Evidently values of k>2 are
required to obtain a finite mean number of layers in a stack.

To illustrate, an example is provided in Fig. 5. We calcu-
late an experimental structure factor by dividing the scatter-
ing data by the single-sheet terms in Eq. (7). These points are
then compared with (S(¢))p o [Eq. (17)]. Note that the Daw-
son function factor (resulting from angular averaging) is in-
cluded in Eq. (7). As the value of k is varied, the average
number of sheets per stack (N) is changed. Comparison with
the experimental structure factor shows that an excellent de-
scription of the low ¢ dependence is obtained. At higher ¢,
(S(¢))p.q exhibits a diffraction-like peak, absent in the data.
This is expected. The SANS data are affected by both a small
neutron form factor in this ¢ range and a significant incoher-
ent background, together they obscure any evidence of the
peak in the experimental structure factor (see Fig. 6). The
peak is, of course, observed in x-ray scattering, as described
above.

I. Summary of SANS fits

Samples spanning a range in Cloisite 6A content from
0.005 to 20 wt. % were prepared in p-xylene-d10. As shown
in Table II, these span a volume fraction of 4X 107 to
0.16. One might expect that at the lowest concentrations,
scattering from a single plate would be observed. However,
it is evident in Fig. 6 that all concentrations show power
law behaviors which are steeper than g2, which would be
the signature of scattering from single plates (compare with
Fig. 3).

The absolute scattered intensity clearly rises with clay
content. We calculate the scattering invariant, [ Z:ﬁ:qzl(q)dq,

TABLE II. Summary of fitting parameters. Common factors for all fits: £&=3, y=1, and R=32 000 A. For
p-xylene and CDCl; A=48 A. For TDF A=46 A. See text for details.

Volume

Sample Wt. % Fraction A Bcm™! k (N)

Xylene 005 wt. 0.005 3.824 X 107% 0.59 0.047 -2.529+0.19 1.88+0.45
Xylene 05 wt. 0.05 3.824 X 107% 0.92 0.040 -2.674+0.14 1.64£0.18
Xylene_pt 5 wt. 0.5 3.828 X 10793 1.16 0.044 -2.471+0.05 2.02+0.14
Xylene 1 wt. 1 7.665 X 10~93 131 0.054 —-2.467+0.05 2.03+0.14
Xylene 2 wt. 1.537 X 1072 1.27 0.060 -2.475+0.04 2.01+0.12
Xylene 5 wt. 5 3.869 X 1072 1.71 0.117 —2.495+0.12 1.96+0.28
Xylene 10 wt. 10 7.831x 10702 1.30 0.161 -3.002+0.12 1.37+0.07
Xylene 20 wt. 20 1.605 % 10701 0.79 0.323 -3.291+0.21 1.25+0.07
TDF 2.58 2.061 X 10792 1.28 0.137 —2.784+0.03 1.52+0.03
CDCly 2.50 3.019x 10702 0.73 0.052 -2.701£0.07 1.61+0.09
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FIG. 6. The scattering data from Cloisite 6A in p-xylene-d10 are
compared with lines calculated from the model parameters in Table
II. Individual organoclay sheets assemble into structures that are
laterally extended and vertically stacked. The distribution of stack
heights are described by a probability distribution described in the
text. To attain these fits we require amplitude factors, which are
linear in clay volume fraction up to 5 wt. % clay, and incoherent
backgrounds, which are linear in clay volume fraction throughout
(see Table II).

where ¢,,;,=107 and ¢,,,,=0.29 A~!, and find that this quan-
tity is linear in clay volume fraction except for the very low-
est concentrations. We may also simply normalize each scat-
tering curve to the clay volume fraction. In that case we find
that the scattering per unit clay volume at first rises, then it
falls for concentrations above 5 wt. % (0.04 volume frac-
tion). A possible origin of this effect is that there are addi-
tional inter-particle correlations at these higher clay contents.

We fit our data with Eq. (18). Along with the k parameter
from our model distribution for polydisperse stacks, we al-
low the A and B to vary. We utilize a least-squares fitting
procedure.

The resulting parameters are listed in Table II and the
calculated lines from the fits are compared with the data in
Fig. 6. As is evident from the figure, Eq. (18) provides an
excellent description of the data. We estimate the uncertainty
in k by examining the distribution of chi-square values about
the best-fit value. From this, we select a 90% probability and
report this as the estimated standard deviation (ESD) of the
values in Table II. We also calculate the corresponding dis-
tribution for values of (N). The overall impression is that our

fits are very well constrained.
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J. Varying solubility parameter

To test for possible effects of changes in the solubility
coefficients on the structures, we utilized two additional sol-
vents (CDCl; and TDF) that exhibit an ability to disperse
organoclay. As already discussed, among the three solvents
TDF has the greatest polarity. The scattering from these two
samples were examined with both SANS and USANS. The
latter data allow us to further investigate the range of length
scales applicable to this model.

The data sets for both CDCl; and TDF solvents exhibit
intensity variations with q that are similar to the p-xylene
data. Furthermore, the uniform power law extends to nearly
the lowest q values accessible for USANS. We begin to see a
rollover only at q values less than ~5 X 107> A~!. We expect
to see deviations from the power law at wave numbers of
order 1/R, where R is the transverse dimension of the stack
of layers. To account for the observed behavior a quite large
value of R is required.

We have selected the smallest R value consistent with
these data (32000 A), and held it fixed as the same three
parameters as above—amplitude, incoherent background,
and k parameter—were varied. The resulting fits capture very
well the behavior over the wide range in scattered intensity
and g. The k parameters are similar to those obtained from
fits to the p-xylene data.

A clear implication from the USANS data is that the lat-
eral dimension of the clay structure is quite large, much
larger than any one organoclay sheet. The tactoids in our
samples must therefore consist of overlapping clay sheets,
and not simply stacks in which the individual sheets are ar-
ranged like a well-ordered pack of cards. Rather, the indi-
vidual sheets must be arranged more like a pack of cards that
has been scattered onto a tabletop. Such an arrangement
would lend the necessary rigidity and flatness to the tactoid,
such that it could scatter coherently across its transverse di-
mension, as assumed in the scattering model we have pre-
sented.

Such a large lateral dimension as we find from the US-
ANS data suggests that extended structures of ~6 um
should be present in these samples. Consistent with this, such
fluids are rather turbid in appearance, and through optical
microscopy we do observe some particles in this size range.
Given the population of stack heights (see distribution of N
in Fig. 8), we would expect only a few particles to have
sufficient thickness to be observable in optical microscopy.

II1. DISCUSSION

The scattering data are well described by a model consist-
ing of tactoids having a polydisperse number of layers. How-
ever, the distribution of this number is significantly con-
strained by the scattering data. We have already
demonstrated this in Fig. 5. In Table II and Fig. 7 are sum-
marized the results for fits to all of our data. For most of the
data the average tactoid is about two sheets. Higher volume
fraction p-xylene samples show a somewhat reduced size.

Examination of the distribution functions (Fig. 8) of the
number of sheets per tactoid shows that the most probable
number of sheets per tactoid is one (with about 80% prob-
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FIG. 7. The average tactoid sizes, as calculated from fitted pa-
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essentially invariant across a very broad concentration range for
p-xylene. The slightly lower values for TDF and CDCl; are only
marginally outside the estimated error range. The highest concen-
tration p-xylene samples exhibit significantly lower average stack
heights, which may result from inter-tactoid correlations.

ability). The next most probable number is two (with about
10% probability), with the remaining percentage distributed
over tactoids with larger number of sheets. Although the dis-
tribution is not bounded to any finite number, essentially all
of the tactoids fall in the range N=10.

Our description of polydisperse tactoids has so far ne-
glected the distribution in lateral dimension of the tactoid.
The USANS data indicates that the transverse dimension R
of the tactoids is at least 32000 A. What is the possible
range of R values? In Fig. 3, we display intensity profiles for
several values of R. Note that small values of R produce an
intensity profile that is essentially identical to that for larger
R in the high ¢ regime. However, at lower q the intensities
from tactoids with smaller R values approach a
g-independent limit, the value of which depends on R.

Evidently, the summation of intensities from any distribu-
tion of tactoids having significant numbers with small R val-
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FIG. 8. Cumulative distributions for the number of sheets per
tactoid calculated from data in Table II for four representative ex-
amples. Note that in each case the most probable number of sheets
per tactoid is one. Also indicated is the average number of sheets
for each example.
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2R ~ 6 um

<N>=2

FIG. 9. Tactoid structure suggested by scattering parameters.
Overall dimension set by extended power law to lowest g values
from USANS. Our distribution for the number of layers per stack
suggests the average number of sheets per stack is about 2, but the
frequency of single sheets is nearly 80%.

ues will reduce the intensity at low g. Comparison of the
calculated intensities for binary blends of large and small R
tactoids with the experimental data demonstrates that only
large R values are consistent with the data. A more precise
description of the R values is not possible, and we select the
largest R value as typical for all tactoids in the sample.

The resulting model for the tactoids is shown in Fig. 9.
This structure, with its randomly overlapping clay sheets,
satisfies the requirement that the transverse dimension R is
much larger than that of an individual sheet. Polydispersity
in the number of layers in a stack is also a natural outgrowth
of this structure: in a tactoid made of overlapping sheets we
see how about 80% of N=1 regions can be mixed with N
=2 regions. Evidently, the lowest-energy state for two over-
lapping sheets is that they be fully overlapping, i.e., in con-
tact over their entire area. One might naively suppose that
two sheets brought into partial overlap would be driven by
steadily decreasing van der Waals energy to slide together,
reaching full overlap. However, such a process might well be
interrupted by various imperfections in the sheets, including
random potentials resulting from the random locations of
substitutional atoms in the clay crystalline matrix. Thus a
state of partial overlap of two or more sheets might be meta-
stable.

Tactoids such as these are consistent with gel formation at
very low clay contents, as we will discuss in the next part of
the paper.

IV. ORGANOCLAY RHEOLOGY
A. Experimental procedure

Samples were prepared similarly to those for the scatter-
ing experiments except here we used p-xylene-210. Samples
of about 25 ml volume were stirred for at least 24 h and
stored in air-tight glass vials until use. The resulting disper-
sions had a somewhat turbid, brownish color. At the higher
concentrations they displayed typical gel behavior such as
trapping of air bubbles and lack of flow when the container is
tipped. Over the several weeks duration of the experiments
no evidence of phase separation was seen.

Portions of these dispersions were pipetted into a Couette-
geometry cell (0.5 mm gap). The experiments were per-
formed on a Rheometrics RFS II Rheometer, where we
equipped the sample cell with a vapor trap to prevent
p-xylene loss. Because it is well known that such gels can
display significant history-dependent behavior, we performed
the experiments in a fixed sequence.
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We first determined the range of linear stress through a
strain sweep up to about 10%. Following conventional prac-
tice, we then performed a frequency sweep always keeping
the strain well below the non-linear limit. Having established
that these data were satisfactory, we then applied steady
shear to the sample, sweeping the strain rate from the lowest
to highest values. As is apparent in this data, significant shear
thinning is observed.

B. Modeling clay rheology

The mechanical shear properties of suspensions depend
on many factors including the shape of the particles, the
interactions between the particles, and the particle volume
fraction, ¢. Water-soluble Laponite clays are well known for
forming space-filling elastic “gels” at dilute ¢ [16]. These
clay suspensions have many characteristics of glassy solids
and are known to age as the ionic strength of the water
changes due to partial dissolution. The surface charges on the
Laponite platelets have opposite signs on the faces and
edges, so the structure of many platelets can resemble a
house of cards.

By contrast, Cloisite organoclays dispersed in organic sol-
vents are not expected to interact through spatially separated
surface charges of opposite sign. Ideally, the organoclay
platelets are completely dispersed and have hydrocarbon
coatings that are not sticky; such organoclay dispersions
would then resemble the more idealized case of “hard” plate-
lets in solution. In reality, and in accordance with our scat-
tering results, it appears that this idealization is not true for
the real organoclays we have studied. Instead, tactoid struc-
tures consisting of several platelets are dispersed in solution.
Since these tactoids themselves have very large aspect ratio,
they resemble pseudoplatelets, and a model of jamming of
randomly-oriented tactoids with attractive interactions could
offer a consistent explanation of structural and rheological
properties.

If clay tactoids did not interact through strong attractions
compared to the thermal energy, then the rheology of the
clay suspension would be expected to change dramatically
when ¢ is raised above an effective overlap volume fraction,
¢". It is well known that the onset of elasticity in polymer
solutions is associated with an overlap concentration C*, at
which the coils effectively “touch.” For polymer concentra-
tions above C”, neighboring polymer coils overlap and en-
tangle, producing a suspension that has a dominant entangle-
ment elasticity. An analogous argument borrows the essential
idea behind the overlap concentration for polymer coils [35]
and applies it to clay tactoids.

The high aspect ratio and platelike shape of the clay tac-
toids would enable them to effectively fill volume at rela-
tively dilute ¢. Suppose that the tactoids can be considered
as thin microscale disks having radius R and thickness 7 <R
which are randomly oriented. Then, in terms of packing or
jamming, each disk should be regarded as occupying a vol-
ume V =4mR?/3, which is of course much larger than its
actual displaced volume V:V.4=[R/(3h)]V. Of course, this
is an idealization, since real tactoids are not disklike in
shape, but this assumption simplifies the model.

PHYSICAL REVIEW E 75, 021403 (2007)

One can crudely estimate that the randomly oriented clay
tactoids will “touch” and fill space at a volume fraction: ¢"
= ¢MRJ(V/ Veff) = ¢MRJ(3h/R)5 where ¢MRJz 0.64 is the vol-
ume fraction associated with random close packing [36] or
the “maximally random jammed” (MRJ) configuration of
spheres. Thus, for R=3 um and h=100 A (N=2 and A
=50 A), one finds ¢*~0.006, or only a few percent is
needed to achieve overlap. At higher ¢> ¢", tactoids without
attractive interactions would, for steric reasons, begin to
form nematic phases having orientational order. Such nem-
atic phases exhibit birefringence. Thus, performing a combi-
nation of optical birefringence measurements and rheology
can be useful to unravel the structure-rheology relationship
of organoclays.

In contrast, dispersions of strongly attractive particles can
form percolating gels that have considerable elasticity due to
the rigidity of the networks of solids. Fractal gels of solid
spherical particulates at very dilute ¢<1072 typically are
weak and fragile, and gravitational forces generally cause
such gels to collapse. However, at larger ¢~ 0.1, the arms of
the gel are comprised of densely packed particles. These par-
ticles have enough nearest neighbors to create a locally
glassy disordered structure that can support significant shear
stresses and inhibit gravitationally driven collapse. Optical
microscopy is typically used in tandem with rheology to
identify the percolating network structures that characterize
this type of particulate gel material [37]. The structural hall-
marks of attractive percolating gels are networks of densely
packed static particles that reside in the bare solvent; spatial
heterogeneity is observed.

The organoclay system used in this study has several
characteristics that differ from the idealized picture of
weakly interacting disks. The tactoids are not circular disk-
like platelets that are completely uniform in size and shape,
but are instead rectangular platelets having varying aspect
ratios and a considerable polydispersity in lateral dimen-
sions. Also, the tactoid-tactoid interactions as a function of
relative orientations and separation have not been character-
ized. Therefore, the model presented above can only be used
as a crude guideline for estimating an effective overlap vol-
ume fraction for the organoclays used in the present study.

C. Cloisite rheology

For Cloisite organoclays in the aromatic solvent p-xylene,
we have measured the linear shear viscoelasticity using small
amplitude oscillatory rheometry, the yield stress through
steady shear viscometry, and the optical birefringence using
cross polarizers. We find that there is a strong increase in the
plateau elastic modulus, Gl;, and yield stress, Tys with respect
to ¢. Moreover, the onset of the dominantly elastic behavior
occurs at only a few volume percent.

Frequency-dependent data (107" to 10% rad s™') for the
storage and loss moduli, G'(w) and G"(w), respectively, ex-
hibit typical solidlike behavior for volume fractions over
nearly the entire range of compositions. There is a dominant
elastic plateau modulus that is relatively independent of fre-
quency. This is accompanied by a frequency-independent
loss modulus, approximately an order of magnitude smaller.
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FIG. 10. Storage (G') and Loss (G”) moduli exhibit power law
scaling versus volume fraction organoclay. The expected scaling of
(¢—¢") where ¢ is the overlap concentration is not observed be-
cause ¢ is small.

At our lowest clay contents, ¢=0.007, the torques are just at
the limit that can be measured; giving the low frequency data
large error bars. Consequently, at this ¢, it is not clear
whether the rheology is dominantly elastic or viscous; the
two contributions are comparable within our ability to mea-
sure them.

The volume fraction dependence of the storage modulus
and loss modulus taken at w=1 rad s are shown in Fig. 10.
Over the entire volume fraction range probed, the storage
and loss moduli increase as G,(¢)~ ¢*?, and G” remains
about an order of magnitude lower than G'. One might have
expected a scaling with respect to (¢—¢"), but we can safely
ignore ¢" because the overlap concentration is small. This
rapid power law increase in the elastic modulus is indicative
of the increasingly strong jamming of the clay platelets and,
possibly, nematically oriented domains of clay platelets.

As we previously discussed, Mourchid et al. [15,19] ob-
tain a power law for G, (¢) ~ ¢ of a=2.3 for Laponite gels.
Trappe and Weitz [37] find a power law —a=4.1 for a gel of
weakly attractive particles. They characterize such a value as
typical for elasticity percolation in three dimensions in which
a few strong bonds significantly increase the modulus. A
comparison of our measured value of a=3.2 with these val-
ues suggests, as we previously speculated, that the inter-
particle interaction for the organoclays is weak. At the very
lowest ¢, the error bars for the storage and loss moduli over-
lap, and we would eventually expect a dominant loss modu-
lus as the volume fraction is further decreased toward the
pure p-xylene limit.

Steady shear measurements of soft elastic materials can
be affected by shear banding [38] in which a narrow band of
the material becomes less viscous due to a local change in
the particle concentration. This shear banding can lead to a
spatially inhomogeneous shear rate in the material filling the
gap between the solid surfaces of the rheometer. In such
cases, the viscosity that the rheometer reports is an “effective
viscosity” since the true velocity field in the gap cannot be
directly measured. As a precaution, we vary the shear rate
from low to high in order to avoid hysteresis in the rheology

PHYSICAL REVIEW E 75, 021403 (2007)
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FIG. 11. Steady shear viscosity for indicated volume fractions of
Cloisite 6A in p-xylene. Shear thinning is evident across the entire
composition range. We vary the shear rate from low to high in order
to avoid hysteresis in the rheology.

that might be caused by subjecting the system to high shear
rates.

We find that the effective viscosity as a function of shear
rate for the organoclays, shown in Fig. 11, is highly shear
thinning, with nearly all of the curves reflecting 7(y)=7,/y
toward lower shear rates. This strong shear thinning is char-
acteristic of soft elastic solids that yield when the applied
shear stress exceeds 7,. At the highest shear rates and lowest
¢, we find that the viscosity tends toward the limit of the
pure p-xylene, which has a viscosity, 7,=1 cP.

In Fig. 12, we plot 7,(¢), which also exhibits a very
strong rise with volume fraction: 7,~ ¢*. As we discussed
above, a similar scaling was observed for Laponite gels [16].
Those authors report corresponding small angle light scatter-
ing data having a power law slope for the intensity versus g
of —1.8, but no such scattering signature accompanies our
results. It is possible that the larger aspect ratio for the orga-
noclay pushes this power-law regime outside our experimen-
tal window.

Within measurement error, the observed power law for the
yield stress 7,(¢) is identical to the dependence we have
found for G;. This is not surprising, since the yield stress is
known to follow the storage modulus and is typically about
an order of magnitude lower than G,’) for many soft materials,
including emulsions. From this measurement, we can iden-
tify the yield strain, 'yy=7'y/G,',, as being y,=~0.1 for the or-
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FIG. 12. Yield stress 7,, defined as 7,=7(y)y for y— 0, shows
a power law scaling with volume fraction clay equal, to within
error, to that for the storage modulus, G’ ~ ¢3'2. A similar scaling of
yield stress has been observed for Laponite gels (see text).

ganoclays, consistent with determinations of the linear re-
sponse regime for oscillatory stress.

Overall the rise in the plateau modulus and yield stress of
the organoclays begins at very dilute concentrations; from
this, we can roughly identify ¢"~0.01, consistent with the
simplistic model. Thus, for dispersions of clay platelets, this
rise in the elasticity occurs at much lower ¢ than for hard
spheres, for which it is observed at the colloidal glass tran-
sition, around ¢,=0.58 [39].

In the case of colloidal hard spheres, the magnitude of the
plateau modulus near the glass transition is set by the ther-
mal energy divided by the available translational free volume
per particle: G,',~kBT/ V;. Here, in the case of platelets, we
invoke the previous estimate of the effective jamming vol-
ume fraction of randomly oriented tactoids, to assert that the
volume fraction associated with the glass transition would be
around the estimated overlap concentration ¢". Such ran-
domly oriented hard clay tactoids would form a disordered
glass at volume fractions at below one volume percent, as we
have observed. Weak attractive interactions in the organoclay
system would reduce this volume fraction associated with
the onset of elasticity somewhat.

Birefringence measurements of the organoclay solutions
indicate that there are nematically ordered domains of the
organoclay tactoids for ¢=0.01. Therefore, domain bound-
aries between different nematic regions are likely to influ-
ence our rheological measurements, and any theoretical
models of the rheology of organoclays would need to include
this effect. Obviously, the simplistic model we have pre-
sented of a disordered glass of randomly oriented tactoids
needs to be modified to include nematic domains as the vol-
ume fraction is increased above the effective jamming tran-
sition around ¢".

V. CONCLUSIONS

We have shown that a structural model for dispersions of
organoclay sheets in organic liquids can be constructed start-
ing from the basic building block for an organoclay, a sur-
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factant covered metal oxide sheet. This model can account
for the x-ray and neutron scattering over a very wide g range,
indicating that the model captures structural details over
many length scales—from near-neighbor intersheet correla-
tions to multisheet, several-micrometer sized agglomerates.
It is important to recognize that there are various ways to
obtain a power law of ¢~ — surface fractal, power-law dis-
tribution of spheres, power-law distribution of number of
layers. Our success in building a well constrained model was
through the use of SAXS and rheology data, which provided
additional information regarding the geometry of possible
structures.

For the individual sheets, neutron SLD measurements
show that surfactants are liberated from the surface. Recog-
nizing that there is significant experimental uncertainty, these
data nevertheless suggest that organoclay evolves to an equi-
librium surfactant content that achieves charge balance for
each sheet. To our knowledge, this is the first in sifu mea-
surement of this effect.

Our structural model describes the way in which these
surfactant-coated sheets associate with one another in a sol-
vent. Several lines of reasoning suggest that, for our samples,
a multisheet stacking is present; for example, inter-lamellar
correlation peaks are observed in x-ray scattering. However,
the rheology clearly indicates a gel state, inconsistent with
merely a low-concentration suspension of multi-sheet tac-
toids. Also the neutron scattering is clearly inconsistent with
either dispersed single sheets or with a suspension of macro-
scopic particles (i.e., Porod scattering). A mixture of partly
disassociated sheets is clearly suggested, and our model con-
sists of two sorts of associations.

First, we construct a function to describe the distribution
of the number of sheets per stack in our samples. Fitting this
function to our scattering data reveals that the most probable
number of sheets per stack is one. This is for samples that
span a variety of concentrations, as well as three solvents
with different polarities. Some variation in the distributions
are observed resulting in the average number of sheets per
stack varying from about (N)=2 to (N)=1.25.

On the basis of previous work, one might have expected
more variation among the different samples. For example,
clay dispersions in CDCls, which previous authors [22] had
suggested consisted of only individual dispersed sheets, is
shown here to contain several percent of multisheet stacks.
The inclusion of a wider g range for our neutron scattering
data helps resolve the small, but significant number of mul-
tisheet stacks.

The second multisheet association we find is in the lateral
direction. The USANS data indicates that the transverse di-
mension R of the tactoids is at least 32 000 A; moreover, the
overall scattered intensity indicates that essentially all sheets
are components of these large aggregates. Combined with
multistack associations, the resulting model for the tactoids
is a plate-like structure with randomly overlapping clay
sheets (Fig. 9).

A signature of the proposed structure is a dependence of
the scattering intensities on wave number ¢ that follows a
power law of the form /~ g™, where x ~ 3. The wide g range
for this power-law behavior is a direct consequence of the
large lateral dimension of the aggregate. This unusual power-
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law form has been seen in several studies of clay suspen-
sions. For example, Pignon et al. [16] observe this behavior
for 12X 107*<g<3x 107> A~! for Laponite suspensions in
water. From the rolloff at low ¢ in the data of Ref. [16], we
can estimate the lateral dimension for the tactoids there as
R~ 13000 A, comparable to the R~32000 A value we
find. This smaller dimension for Laponite is consistent with
the smaller lateral dimension of each disk (30 nm) compared
to those for Cloisite (~150 nm).

The large aggregate size is consistent with the rheology,
which shows that gel formation occurs at extraordinary low
volume fraction. What is less well understood is the power-
law scaling of the storage modulus, loss modulus and yield
strength with clay volume fraction. All scale approximately
with ¢*. Previous studies of weakly associating media had
suggested that a power law scaling of ¢* should be expected
for suspensions of interacting materials. Our data seemingly
indicate that the interactions here are weak, but this seems to
contradict the structural observation that each sheet is bound
into an aggregate. The observation of yield strength scaling
with Laponite volume fraction to a power of three has been
previously reported by Pignon et al. [16]. However, those
authors also reported the appearance of a structure having
fractal dimension of 1.8, evidenced by light scattering data.
Such a signature is not found here.
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APPENDIX A

We assume the sheets individually to be disks of radius R
with a cross-sectional density profile f(z). The displacement
along the z axis between the centers of adjacent sheets is
taken to be A on average, plus random noise as described
below. The density in real space of such an assemblage is
then

P(M,Z)=g(m)fdz’2 Az — (2" +kA+ 5)f(')
k=1
(A1)

in which ¢ is the random part of the z coordinate of the kth
layer, and g(r,)=60(R—|r,|) describes a disk profile in the
transverse direction. We assume the variations in spacing be-
tween the kth and k+ 1st layers, denoted &, to be indepen-
dzent Gaussian random variables with zero mean and variance
&

The structure factor S(g) is given by

S(q)=p(@)p(= ), (A2)
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where the angle brackets denote the average over the random
spacing variables. To compute this average, we first compute
the Fourier transform of the density profile p(r) given above.
The result is

p(q1.q.) = &g )f(q.) 2 elkaiazt, (A3)

k=1

The product p(g)p(—¢) is then

pl@)pl= )= [8(g PGS 3 ettt ettt
k=1 g’

(A4)

The difference {,—{; is a sum of |k—k'| of the Gaussian
random variables {£}, each with zero mean and variance &.
This sum itself is a Gaussian random variable, of zero mean
and variance |k—k’|&. We perform the average over this
random variable to obtain

n n

(p(@)p(= ) = |5(g ) PIF(@IPS, D eitdhAt -1
k=1 =1

(AS)
The double summation can be performed explicitly,

as follows. For notational convenience we define x
=exp[—(1/2)q§§2] and B=qg.A. The desired double sum

2(€.B) is

En(-x,ﬁ) = 2 E x‘k_krleiﬁ(k—k’)'

k=1 p'=1

(A6)

Separating the terms with k=k' from the rest, and grouping
terms with indices {k,k’'} together with {k’,k}, we have

S,X)=n+2Rel > > xt¥ (A7)
k'=1 k=k"+1

in which we have defined X=x exp(i8). Now our sums are in
the form of geometric series, and can be given in closed
form. After a bit of arithmetic we find

X ynX(1-X)-X

3, (X)=n+2Re 1-%) ,

(A8)

which is the Kratky-Porod result. We then have for the struc-
ture factor of a stack of n sheets, each a disk of radius R with
density profile f(z), the result

S(q.1.9.) =8(q ) PIf(g.)PS fexplig.A - (1/2)g2 €1}
(A9)

Now we consider the angular average of this structure factor
over the orientation of the stack. Our discussion here paral-
lels that of Richter et al. [27]. Equivalently we may average
over the direction of the wave vector ¢g. This leads to
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1

S(@)a= f duS(g\1 - p?qu).
0

(A10)

where w=cos(6) the cosine of the angle between the wave
vector q and the sheet normal.

In evaluating this angular average, we make use of the
fact that the stack of sheets has a large aspect ratio. Suppose
that the wave number ¢ is probing the structure of the stack,
i.e., that ¢ times the total stack thickness H is of order unity.
The stack has a large aspect ratio, so H/R<1. Hence gR is
very large. We expect that g(g,) becomes very small when
q | R becomes large. This restricts the angle between the
wave vector and sheet normal to be very small, as we now
show.

Recalling that g(r ) is the transverse profile of a disk of
radius R, then g(g ) becomes the form factor

27R*J,(q ,R)

(A11)
q.R

gg.)=

which we further approximate with a Gaussian according to

(J1(x)/x)? = (1/4)exp(— x*/4). (A12)

Expanding for small angles 6, we have g | R=¢gR6. Thus we
find that the angle 6 between ¢ and the layer normal is re-
stricted to be less than of order 1/(gR).

Physically, we may say that only stacks nearly aligned
with the wave vector contribute significantly to the scatter-
ing, because if a stack is tilted only a small angle away from
perfect alignment, opposite ends of the stack will contribute
out of phase with each other and thus interfere destructively.

With the angle so tightly restricted, ¢, is nearly equal to g,
and all the factors depending only on ¢, in the structure
factor come outside the angular integral. Using the disk form
factor Eq. (A11) approximated as in Eq. (A12), we obtain

(mR?*)*D(qR/2)
(qRI2)
(A13)

(8(2))a=f@)*S, fexpligh - (1/2)g*€T}

in which D(u) is the Dawson function, defined by

D(u) = exp(- uz)fu drexp(?). (A14)
0

If our original assumption that gH is of order unity is not
satisfied, but rather gH <1 is valid, then we are in the “thin
limit,” in which the wave vector is no longer probing the
stack structure. Then we can take the limit ¢, approaching
zero in S(g) before angularly averaging. Again only the
transverse form factor is affected by the angular average,
whereupon we reach Eq. (A14) again, this time without re-
quiring that gR be large.

Here we make use of well-controlled approximations in
computing the angular averages, but it is also possible to
compute the structure factor Egs. (A10) or (A13) using direct
numerical methods. This is the approach of Ho er al. [22],
and we have numerically computed the structure factor using
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values typical of that study: core thickness 22=10 A, inter-
sheet spacing A=50 10\, sheet radius R=3000 A, standard de-
viation of sheet spacing =3 A, and number of layers N
=20. We find the structure factor so computed has strong
oscillations in the wave number range 0.003 A~'<g
<0.1 A‘l, not observed in the data.

APPENDIX B

First we consider the scattering at small wave number
resulting from a system of polydisperse spheres. The form
factor for a sphere of radius R is

R sin(gR) — gR cos(gR)
(gR)’

To compute the structure factor for a sample of randomly
located polydisperse spheres, we average the square of this
form factor over an assumed probability distribution for R.
Here we take a power law distribution of R, and so obtain

frlg) =4 (B1)

S(q) = f dRR™fx(q)*. (B2)

0

Substituting the explicit expression for the form factor, we
have

S(g) <« q‘“‘”fw dxx~Msin(x) — x cos(x)]%. (B3)
q

This integral converges for large x if k>3 [for large x, we
have approximately the integral of x>~ cos?(x)]. For small x,
we expand sin(x) —x < cos(x)~x?/3, and see that for k<7
the integral converges even as g approaches zero. Thus for
3<k<7, we find for polydisperse spheres with P(R) scaling
as R, the structure factor scales as g~7%.

APPENDIX C

Here we examine the behavior at smallish wave numbers
of our scattering model, described in Sec. II F and Appendix
A. By “smallish” we mean ¢é<1, but not necessarily
gA < 1. Furthermore, we are interested in the limit gR>>1,
i.e., very large transverse tactoid dimensions.

Thus we consider the large-argument limit of the Dawson
function factor in Eq. (A13), D(¢gR/2)/(gR/2). For large u,
D(u)/u scales as 1/u?; thus the factor D(gR/2)/(qR/2) con-
tributes a factor of g2 to the g dependence of the structure
factor [at all but the smallest wave numbers, where finite R
leads to a rolloff in S(g)].

For ¢gé< 1, the exponential factor resulting from random-
ness in intersheet spacing in Eq. (A5) may be dropped. Then
the double sum becomes simply

N N
E 2 xk—k’

k=1 gr=)

(C1)

which is actually a product of two arithmetic sums. After a
bit of arithmetic, this sum can be shown to be
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sin(Ag,n/2) )2 )

Zilag0 =( sin(Aq./2)

in which we have replaced x using its definition x
=exp(ig.A).

As in Appendix A, the average over the tactoid orientation
results in Eq. (A13), but with the above expression for 2,,,.

Now the average over the distribution of the number of
layers in the stack, described in Sec. II F and leading to Eq.
(17), can be simplified. We take the average of the limiting
form of 3, over the pure power law limit of our layer distri-
bution function Py (n) [i.e., Py (n) ~n~] to obtain

Ealg,e-00p 2 (sin(Aq/Z) '

n=1

(C3)

Now we go ahead and assume gA <1, but not gnA<1.
After a bit of rearranging we have
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Colgeodp ~ 722 ntsin®(Agn/2). (C4)

n=1

Because gA assumed small, the contributions from large n to
the sum can be approximated by an integral, leading to

Colgeodp ~ 4 f dxx*sin?(x/2). (C5)
q

This integral is convergent when q approaches zero for k
<3, and converges for large x when k> 1.

Hence for 1 <k<3 we find a power law for small wave
number (but gR>>1) of ¢*3. Combined with the ¢~2 from
the Dawson function factor, we have that S(g) for small g
scales as qk‘s. For values of k near k=2, then, we have power
laws around q‘3, consistent with the observed scattering data.
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