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In V3Si, a first-order structural phase transition from hexagonal to square flux-line lattice occurs at approxi-
mately 1 T with H� to the a axis. In this paper, we demonstrate the reentrant structural transition in the flux-line
lattice, which reverts to hexagonal symmetry as the magnetic field approached Hc2�T�. This behavior is
described very well by a nonlocal London theory with thermal fluctuations. The phase diagram of the flux
lattice topology is mapped out for this geometry.
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In 1957, Abrikosov predicted the existence of quantized
vortices which would form a hexagonal flux-line lattice
�FLL� above the lower critical field Hc1 in type-II supercon-
ductors. Small-angle neutron scattering �SANS� and decora-
tion experiments performed on Nb �Ref. 1�, tetragonal
borocarbides,2 and V3Si �Ref. 3� have shown that the hex-
agonal FLL actually occurs only at low H close to Hc1, while
at higher H, the FLL begins to reflect the underlying sym-
metry of the crystalline lattice �see Fig. 1�. This behavior was
explained by a nonlocal London theory, which accounts for
coupling of vortex supercurrents to the lattice.4 Weak nonlo-
cal effects can result in FLL symmetry transitions from
square to triangular since the energy difference between the
two structures is small ��2% �. A similar transition also fol-
lows from a modified Ginzburg-Landau �GL� theory with
higher-order gradient terms in the vicinity of the critical tem-
perature T�Tc �Refs. 5 and 6�.

Coupling between the FLL and the crystal results from the
basic nonlocal relation4 between the current density and the
vector potential, J��q�=K���q�A��q�. For H along the z axis,
nonlocality adds a short-range vortex attraction potential
V�x ,y� with the symmetry of the crystal to the longer-range

isotropic interaction with a spatial extent of order the London
penetration depth �. The kernel K�� decays over the nonlo-
cality radius, �, which depends on the mean free-path, �, and
the BCS coherence length �0 at T=0. At low fields, where V
is negligible due to the large vortex spacing, the FLL is hex-
agonal but its orientation is determined by the crystal. With
decreasing intervortex spacing, the short-range potential
V�x ,y� locks the FLL onto certain crystalline directions. This
results in orientational FLL transitions due to softening of the
rotational elastic modulus of the FLL �Ref. 7�, as was indeed
observed in borocarbides.8

Further, the interaction between nonlocality and vortex
fluctuations can result in a new effect manifested by a reen-
trant square to rhombic transition at high fields. This unusual
behavior was explained in the nonlocal London theory as a
competition between the square-symmetric nonlocal interac-
tion and the isotropic fluctuations which wash out the non-
local contribution, thus favoring the triangular FLL to maxi-
mize spacing between repulsing vortices.9 A similar reentrant
transition was also obtained in a GL theory with thermal
fluctuations included10 and the Eilenberger theory taking into
account the anisotropy of the Fermi surface.11 The strength

FIG. 1. �Color� The observed diffraction pattern in V3Si with the field H=1 T parallel to the a axis at �a� T=11 K, �b� T=12.5 K, and
�c� T=14 K. The fraction of the rhombic FLL at 11 K is less than 10% �the intensity is on a logarithmic scale�. The neutron wavelength was
8 Å, the sample to detector distance=10 m, and the effective divergence of the beam at the sample was 0.2°. The pattern was obtained by
summing over a rocking curve of +/−1° in 0.1° steps in order to get the different reflections on the Bragg condition.
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of the thermal fluctuations and nonlocality is quantified by
the parameters,
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Here �0 is essentially the Ginzburg parameter ��0�10−3

−10−2 for borocarbides and V3Si�, and �0 and �0 are the
nonlocality radius and the London penetration depth at T
=0, respectively. The reentrant transition occurs if the mean-
squared vortex thermal displacement 	u2
1/2 becomes compa-
rable to �0. This condition can be satisfied even in low-Tc
superconductors for which thermal fluctuations are weak �0
�1, unlike FLL melting, which requires stronger fluctua-
tions with 	u2
1/2�cLa�B�, where cL�0.2 is the Lindemann
number. Thus, fluctuations can cause FLL structural transi-
tions even in nearly isotropic superconductors.

In this paper we report SANS measurements of the hex-
to-square transition curve B��T� in a clean cubic V3Si single
crystal for which nonlocal effects are expected to be most
pronounced while the effect of anisotropy of the Fermi sur-
face is very weak.1 We show directly that the curve B��T� is
indeed two valued, indicating a reentrant square-to-hex FLL
transition at higher fields. The curve B��T� is described very
well by the nonlocal London theory with thermal fluctuations
included.9

Our single crystal of V3Si is a very clean material with a
mean-free path of several hundred Å; in addition, it is a
rather perfect crystal with a mosaic that is resolution limited
in various characterization measurements. The crystal has
Tc=16.4 K, �0=1050 Å, and �0=35 Å, as calculated from
the observed slope of Bc2�T�. We carried out SANS measure-
ments of the Bragg scattering from the FLL as a function of
temperature and field to explore the FLL symmetry with H�

to the a axis.
The sample was aligned on a diffractometer in the hhl

plane �uncertainty �2°�. Subsequently, the sample was
aligned in this plane to have the field parallel to the a axis to
within 0.5° on the SANS machine by using the observed
metallurgical scattering parallel to the a axis. A horizontal
field geometry was used, where the neutron beam is aligned
parallel to the applied field and the a axis of the sample. The
D11 SANS at the ILL and the NG7 SANS at NIST were used
for the measurements. All data points were taken as the
sample temperature was changed in a fixed external applied
field. The structural differences between heating and cooling
to a particular temperature were investigated up to fields of 3
T; no differences were observed. At the lowest temperatures
and low field, the FLL had rhombic symmetry, which
changed sharply at �0.9 T to one with square symmetry. A
narrow region of coexistence of both rhombic and square
contributions was observed and no intermediate structures
were seen, suggesting that the transition is first order. The
field at which this rhombic-square behavior was observed
remained constant for T�10 K.

This result is somewhat at variance with STM and SR
work that show a gradual and continuous transition over a
much wider field range. We point out that sample quality is
extremely important as pinning can smear the transition. Fur-

ther, a distorted hexagonal lattice persists to higher fields
with the field misaligned by a few degrees to the a axis. We
presume sample quality and alignment contribute to the ob-
served discrepancy between STM and SR results and ours.

At fields above which the FLL was square at low tempera-
ture, a transition to a slightly distorted hexagonal structure
was clearly observed. Again, no intermediate crossover
structures between the square and rhombic existed, but there
was a regime in which both structures contributed. This tran-
sition is markedly different from that reported12 by Eskildsen
et al. for the borocarbide system. In their case, although
broadening of the azimuthal width of the Bragg peaks was
readily apparent, a distinct hexagonal lattice was not the only
conclusion, especially in the absence of comparable Bragg-
peak intensities at Qx=0 and Qy =0 �for the symmetry
equivalent peaks of the two rhombic domains� to the for-
merly “square” peaks. In the case for V3Si here, not only did
no remnant of the square peaks exist at temperatures near Tc,
higher-order peaks of the rhombic lattice were clearly visible
�when the sample was at the appropriate angle for the Bragg
condition of the higher-order peak to be observed�. Azi-
muthal and radial peak widths in the two phases were not
remarkably different, though the FLL rocking curve widths
were not resolution limited in either phase. The rocking
widths are a measure of the straightness of the flux lines over
their length, the azimuthal width measures the perfection of
the FLL order, and the radial width measures lattice spacing
perfection.

Although, from symmetry considerations, two equivalent
domains should exist �as shown in the schematic in Fig. 2�,
the domain with the plane normal vertical �along one of the
symmetry related 110 directions� had considerably higher
population than the domain rotated by 90°. It is likely that
this is due to the “dominant” 110 being better aligned with
the magnetic field, since the sample was rotated about the
vertical axis to align the a axis parallel to the applied field
using the metallurgical scattering as a guide.

At T=2 K, the region of coexistence of square and rhom-
bic lattices was between 0.8 T to just above 1.1 T. At low
temperatures and fields, the rhombic �often referred to as
“hexagonal”� structure was not always a perfect hexagon;

FIG. 2. �Color� A schematic explaining the origin of the multiple
peaks visible in a region of phase space that has coexisting square
and hexagonal FLL domains. Since the a and b axes are equivalent
in this cubic system, two hexagonal domains could be expected to
exist. The two square FLL coincide with each other.
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small distortions to it were observed. These distortions di-
minished as the temperature was increased, i.e., the angle
between the Bragg spots were closer to �though not exactly�
60° as Tc was approached. The observed opening angle �
between the spots above and below the horizontal line at
0.75 T is 55.7±0.1° up to �8 K. Above this temperature, �
changes gradually to 57° at 14 K. Further, � at T=2 K was
60° at very low fields �Fig. 3� but monotonically decreased to
about 55° just prior to the transformation to square symme-
try.

The intensity of the Bragg spots corrected for the Lorentz
factor and the form factor is shown in Fig. 4. This intensity
should vary as e−Cq2�2

. Values for C in the borocarbides were
close to 1. Here, in Fig. 4, there appears to be a discontinuity
between the intensities of the rhombohedral Bragg peaks and

the square Bragg spots. One explanation is that the FLL is
always nucleated as a triangular lattice and then turns into a
square FLL at lower temperature. It is possible that the
change in symmetry is associated with random disorder,
caused by pinning, since at these fields the symmetry change
occurs well below Tc. This would give rise to a decrease in
intensity from a Debye-Waller-like term, though the disorder
is presumably static rather than dynamic. If it is assumed that
there is a scale factor difference between the lattices of tri-
angular and square symmetries, the data here are consistent
with a much smaller value for the constant C�0.25 in the
triangular phase and a larger value for C�0.75 in the square
phase.

At temperatures above 10 K, the rhombic phase persisted
to higher fields, giving the appearance of a “nose” on the
square-hex transition boundary on the phase diagram. The
coexistence region was somewhat broader at the lower fields.
At fields of 5 T and higher, a hexagonal component to the
FLL was observed only very near Tc. It is seen that the
transition field H� is multivalued at higher temperature. Our
data suggest that there may be additional local structures in
H� at around 1 T.

The phase diagram of the FLL topology is summarized in
Fig. 5. The line shows B��T� calculated from the following
equation of the nonlocal London theory with thermal
fluctuations:9

�
mn

e−pg

d
�2pmn�2 + �8m2n2

d
− g��p +

1

d
�� = 0. �2�

Here, p= �2�C+��T���t ,b� /s�b��b, b=B� /Bc2, s2=b�1
−b�3ln�2+1/�2b�, g=m2+n2, d=+g+
�b��m2−n2�2, 

FIG. 3. �Color online� The opening angle ��� as a function of
applied field at base temperature=2 K.

FIG. 4. �Color online� The intensities of rhombic and square
FLL intensities as a function of applied field at 2 K are shown.
Since the Bragg intensity is proportional �B /q2�2 from the form
factor and further, has a 1/q term from the Lorentz factor, Iq5 /B2

should be constant if all other factors �such as lattice perfection,
Debye-Waller factor, for example� remain the same.

FIG. 5. �Color� The phase diagram of the FLL topology ob-
tained from the diffraction patterns shows that a rhombic FLL
�green triangles� dominates at low fields and near Hc2�T� curve
�black line�, while a square FLL �blue squares� is stable at lower
temperatures above �1.1 T. The theoretical transition curve B��T�
�Ref. 9�, is indicated by the solid red line. The shaded region indi-
cates the observed coexistence of both rhombic and square phases.
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=1/2�b�2, and the parameters �=16�2�3�2T /	0
2� and 


=�b�� /��2 /2 quantify the amplitude of thermal displace-
ments and the nonlocal corrections. We took 
0=1.5, and
�0= .01 calculated using the observed �0=1050 Å, �0
=35 Å, and �=� /�=26. Furthermore, we used the two-fluid
temperature dependence for ��T�=�0�1− �T /Tc�4�−1/2, taking
��T� in the clean limit,4 and ��T� from the observed Bc2�T�
curve.13 The value of C=0.25, which accounts for the finite
vortex core size in the London theory,14 was already dis-
cussed earlier; it was adjusted to reproduce the observed up-
per branch of B��T� �Ref. 15�. In turn, 
0 was independently
fixed by the position of the lower branch of the B��T� curve
at low T for which neither thermal fluctuations nor vortex
core effects are essential. As follows from Fig. 5, the theory
is in excellent agreement with our experimental data.

The contribution of thermal fluctuations is more pro-
nounced in V3Si than in the borocarbides. Although the pa-
rameters �0 and 
0 are comparable for both materials ��0
= .01 for V3Si and 0.007 for LuNi2B2C�, the value of C�1
in borocarbides is greater than C�0.25−0.5 for V3Si, as
discussed above. This may explain why the gap between the
upper branch of B��T� and Bc2�T� in LuNi2B2C �Ref. 12� is

considerably wider than that for V3Si studied in this work.
The larger difference between B��T� and Bc2�T� in borocar-
bides can also result from the essential anisotropy of the
Fermi surface,11 which is absent in V3Si �Ref. 1�.

In conclusion, we present SANS measurements of the
hexagonal-to-square structural transitions in the vortex lat-
tice in V3Si. We report a clear indication of the reentrant
square-to-rhombic transition vortex lattice transition at
higher fields approaching Bc2�T�. Our results are described
well by a nonlocal London theory with thermal fluctuations
included.
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