VSANS

The Very Small-Angle Neutron Scattering (VSANS) Diffractometer at NIST

November 19th, 2014
John Barker, Charlie Glinka, Jim Moyer,
Nick Maliszewskyj & Steve Kline
NIST Center for Neutron Research
Gaithersburg, Maryland

VSANS Instrument

Why VSANS?

- To improve measurement efficiency
 - extending the q-range of the 30 m NIST SANS instruments would enable most SANS experiments to be completed on one instrument

- To add new measurement capabilities
 - 2% or 12.5 % or "white" Beam (4 Å $\leq \lambda \leq 8$ Å) wavelength band
 - expandable (~2 m) sample staging area
 - multiple detectors to extend q-range of a single measurement

Comparison of Count rates: USANS vs SANS w Lenses: $q_{min} = 0.001 \text{ Å}^{-1}$

$$\frac{C_s}{C_u} @ \frac{N_{col} \mathsf{D} q_{\mathit{pixel}}}{\mathsf{D} q_u} \left(\frac{\textit{/}_s}{\textit{/}_u}\right)^2 \frac{I_s}{I_u}$$

128 x
$$\frac{2.5e - 4 æ}{2e - 5} = \frac{8.1}{2.38} = \frac{0^2 æ}{25,000} = 12,000$$

Obtain same statistics 10,000 Times faster on SANS vs USANS

Assumptions:

- Same sample thickness and transmission
- Same 8 mm radius sample aperture

R. Triolo Marble: 10 min time Lens Config.(SDD= 15 m, λ = 8.1 Å)

VSANS: $q_{min} = 2e-4 \text{ Å}^{-1}$: Narrow slit collimation $\rightarrow 100,000$ times faster ... Converging beam collimation $\rightarrow 1,000$ times faster

Plan View of VSANS Instrument in Guidehall

Initial Operation: Fall, 2016

45 m long

From outside, looks like a typical SANS instrument...

Includes:

• High Resolution (1 mm) 2D Anger Camera

• Three Detector Carriages

• New Optics

Instrument Characteristics (Blue → New or improved feature)

Source	Guide 60 mm wide x 150 mm tall	
Wavelength Range	4 to 20 A	
Wavelength resolution	2% (graphite), 12.5 % (Selector) and "White" Beam: $4 \text{ Å} \le \lambda \le 8 \text{ Å}$	
Source-to-sample distance	4 m to 22 m in 2 m steps	
Sample-to-detector distance	0.6 m to 22.5 m continuous	
Collimation	• Circular pinhole – several sizes up to 60 mm diameter	
	• Rectangular XY slits – continuous range 0-60 mm x 60-150 mm	
	• Multiple (18) Converging circular beams + lens + prism	
	• Multiple (3) converging narrow rectangular beams + lens	
Sample Size	• Circular: 1 mm to 30 mm diameter	
	• Rectangular width 1 to 18 mm, height 12 to 75 mm	
	 Converging beams: typically 35 mm x 72 mm 	
Q-range	2x10 ⁻⁴ A ⁻¹ to 1.0 A ⁻¹ { In one measurement }	
Detectors	1) 1.2 mm fwhm res., 2D, 150 mm wide x 450 mm tall	
separate carriages	2) 8 mm fwhm res. 2D (tubes), four panels: 384 mm x 1000 mm	
	3) 8 mm fwhm res. 2D (tubes), four panels: 384 mm x 500 mm	

Cutaway view of detector vessel showing **three** movable detector carriages { **delivery spring 2016** }

Movable 2D Detector Panels to form a Picture Frame:

- Side Panels 384 mm x 1000 mm
- Top/bottom 500 mm x 384 mm
- 8 mm dia. He(3) Tubes, one layer

Extends Q-range by factor of 30x

- D33, ILL Grenoble France
- BILBY, ANSTO, Australia

Panels received from General Electric in Feb, 2012

High Resolution Detector Procurement: fy 2015

SNS-type Anger camera \rightarrow 15 cm x 45 cm

Instrument rotated 0.3° to avoid reactor core Gamma rays

Installation of Anger Cameras in SNAP.

Specifications

Active area: 15 x 15 cm

Scintillator: 2 mm GS20 Li glass

PMT: H8500; 9 PMTs, each with

64 anodes

Pixels gain compensated

Tileable

NIST Cold (T=32 K) Neutron vs "typical" Xray Source Brilliance

20 MW Reactor: 1e18 s⁻¹ excess neutrons

1) Large emitting source surface

Moderated peak flux \rightarrow 430 mm dia. sphere

Moderated surface flux \rightarrow 1.5e12 mm⁻²s⁻¹

2) Isotropic source....

Per mrad² \rightarrow 1.2e5 mm⁻²s⁻¹mrad⁻²

3) "White" (T=32 K) Maxwellian λ

Distribution at $\lambda = 3.5 \text{ Å}$

Per 0.1 % $\Delta \lambda / \lambda \rightarrow 20 \text{ mm}^{-2} \text{s}^{-1} \text{mrad}^{-2} 0.1 \%^{-1}$

Neutron Sources have up to 18 orders of Magnitude lower brilliance than some Xray Synchrotron sources !!!!

Larger samples \rightarrow 2-3 orders gain Larger bandwidth $\Delta\lambda \rightarrow$ 2 orders gain

←NIST neutron source **→**

• Circular Apertures $D_1 + D_2$:

Longer instruments → **larger samples**

→ Higher beam current

• 18 Converging Beams + lens:

Gain =
$$18 \times (10 \text{ mm}/ 3 \text{ mm})^2 = 200$$

• Narrow Slits: 150x5 + 75x2.5

Gain = 1,400

'white' beam: $4 \text{ Å} \leq \lambda \leq 8 \text{ Å}$

Additional gain → 5

Detector Solid Angle Comparison:

2D high res Detector vs USANS

0.15 m/22 m=6.8e-3 Rad vs 7.6e-6 Rad

Gain → 1,000

Beam current on sample for various instrument configurations...

18 Converging Beams:

- Prisms to counter gravity
- Lenses for focusing
- Intermediate masks to stop crosstalk

Other Converging Beam Instruments:

Saclay, France + V16, Berlin, Germany

Extended Q-range: \sim 2e-4 to \sim 1 Å⁻¹ in one measurement:

3 Collimation Options:

- Narrow slit
- Converging Beams
- Large Pinhole

Detector Carriage	front	Middle	Back
Resolution (fwhm)	8 mm	8 mm	1 mm
Sample-to-Detector Distance	1.5 m	10 m	22.5 m
Panel Spacing	180 mm	160 mm	~

Front & Middle Carriages: 8 mm res.	Four Detector Panels Each:
Left & Right Panels	384 mm wide x 1000 mm Tall
Top & Bottom Panels	500 mm wide x 384 mm Tall
Back Carriage: 1 mm res. Anger camera	~ 150 mm wide x 450 tall mm

Collimation type	Narrow Slit	Converging Beams	Large Pinhole
Source Aperture	5 mm x 150 mm	6 mm dia,	60 mm dia.
Sample aperture	2.5 mm x 75 mm	35 mm x 72 mm	30 mm dia.
		{10 mm dia. Each}	
Beam stop	10 mm x 300 mm	10 mm dia.	120 mm dia.
Sample-to-detector	22.5 m	22.5 m	22.5 m
Wavelength	6 Å	7.5 Å	6 Å
Q_{\min}	2.3e-4 Å ⁻¹	1.9e-4 Å ⁻¹	2.8e-3 Å ⁻¹
Q _{max}	0.45 Å ⁻¹	0.36 Å ⁻¹	0.45 Å ⁻¹
Beam Current	9.7e4 s ⁻¹	9.0e3 s ⁻¹	1.4e6 s ⁻¹

Side View

Front View

Front View at 5x

Front View at 50x

Narrow slits Option: Effect of Smearing

Source: 150 mm x 5 mm

Sample: 75 mm x 2.5 mm \rightarrow triangle...

Detector: 320 mm → see graph →

$$I_S(q) = \grave{0} P_L(u) I \left(\sqrt{u^2 + q^2} \right) du$$

Spherical Particles:

5,000 Å radius

{ ignoring wavelength smearing }

"White Beam Option"

- Beryllium filter cuts $\lambda < 4$ Å
- Cut-off Mirror cuts $\lambda > 8 \text{ Å}$

Gain of factor 5 but with Additional smearing ...

Options for larger liquid cells:

• Current Ti Cell →

19 mm diameter \rightarrow 284 mm²

• "medium" Ti-cell \rightarrow 28 mm diameter \rightarrow 616 mm²

(1.25" window, 2 mm and 5 mm cells on order)

• Helma cell $404 \rightarrow$

18.5 mm x 38 mm \rightarrow 703 mm²

• Large Ti cell →

40 mm diameter \rightarrow 1260 mm²

• Custom quartz Cell →

 $35 \text{ mm x } 72 \text{ mm} \rightarrow 2500 \text{ mm}^2$

Hellma - Precision in SpectroOptics Worldwide - Küvetten für Fluoreszenzmessungen

1/6/11 5:10 PM

Hellma - Precision in SpectroOptics Worldwide - Küvetten für Fluoreszenzmessungen

Order Number 404-1-46 Type 404.000-QX Material Color Code: QX Light Path: 1 mm 700 ul Volume: **Outer Dimensions:** Height: 47,5 mm 23,6 mm Width: 3,5 mm Depth: Inner Dimensions: Width: 18,5 mm Base Thickness: 2,5 mm Number of windows: **Print**

Order Number Type	120-000-1-40 120-QS	
Material Color Code:	QS	
Light Path:	1 mm	
Volume:	280 µl	
Outer Dimensions:		10-1
Height: Width:		ass
Depth:	3,5 mm	
Inner Dimensions:		
Width:		
Base Thickness:		
Number of windows:	2	Print

1/6/11 5:01 PM

Signal-to-Noise for VSANS Collimation: How will it compare to USANS and Pinhole w Lens??

Filter + Velocity Selector Bunker { Installed, Nov 2014, Deflector in spring }

Cutaway view of first section of pre-sample vessel

- All motion control devices are inside vacuum enclosure-

Cutaway view inside a typical 2-m long section of the VSANS presample vacuum vessel

New vSANS sample Area → No Sample Chamber

New Capabilities summary:

- Factor of four smaller q → higher resolution (1 mm) detector
- Higher beam current:
 - Converging beams → larger sample size (35 mm x 72 mm)
 - Narrow slits → additional smearing
 - "White" beam → additional smearing
- Extend q-range \rightarrow three independent detector carriages \rightarrow $q_{max}/q_{min} = 2,000$
- Larger sample area → 2 m
- Other Automated Optics:
 - Graphite monochromator $\Delta \lambda / \lambda = 2\%$
 - Double V polarizer P > 99% (w RF flipper + 3 He analyzer)

Predictions:

- Many experiments that have weak scattering or small samples will opt for Narrow slits / White beam to increase count rate.
- Signal to noise will not improve...