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LEFT -- Ferritin molecule. RIGHT -- computer model of the defined structure for the
"off" state of the cyclic AMP receptor protein found in mycobacterium tuberculosis.
The two sub-units of the protein are genetically identical but asymmetric in shape in
certain regions (Figure courtesy of Travis Gallagher, NIST).



Background -- Specular Neutron Reflectometry
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The specular reflectivity is typically measured to an accuracy of 1 %
on an absolute scale, normalized to the incident beam intensity. It is
a highly quantitative probe from which real space structural depth
profiles can be obtained with sub-nanometer resolution -- despite
thin film sample volumes of the order of a millionth of a cubic
centimeter.
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Trial + Error
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Figure 10.
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Phase Determination with 3 References
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What's good about specular neutron reflectometry is that you can
obtain, in principle (and in practice given data to high enough Q and
of sufficiently low statistical uncertainty), a unique SLD profile
along the surface normal with sub-nanometer spatial resolution
(under proper conditions) for a protein/membrane system.

What's not so good about specular neutron reflectometry is that you
can obtain, in principle (and in practice given data to high enough Q
and of sufficiently low statistical uncertainty), a unique SLD profile
only along the surface normal . . ..

Is it possible to apply methods used in phase-sensitive specular
neutron reflectometry, an inherently one-dimensional spatial probe,
to SANS in the dilute solution limit, an intrinsically
three-dimensional investigative tool?

On the one hand, dilute solution SANS can be analyzed in a
less-complicated theoretical framework due to the validity of the
Born approximation while, on the other hand, the intrinsic
orientational disorder has to be dealt with.
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Phase-sensitive small angle neutron scattering

C.F. Majkrzak®, K. Krycka®, S. Krueger?, N.F. Berk®, P. Kienzle®, and B. Maranville®

“Center for Neutron Scattering, National Institute of Standards and Technology, Gaithersburg, MD
Department of Materials Science and Engineering, University of Maryland, College Park, MD

[Published in Journal of Applied Crystallography 47 (2014) 780-787.]

Abstract

A method is described for determining the neutron scattering length density distribution of a
molecular-scale object directly from phase-sensitive small angle neutron scattering (SANS). The
structure factor amplitude is obtained through the use of a reference structure for a collection of
randomly oriented, identical objects in the dilute solution limit (negligible inter-particle correlations).
This work extends some of the techniques developed in recent years for phase-sensitive, specular
neutron reflectometry to SANS, although the approach presented here is applicable only within the
range of validity of the Born approximation. The scattering object is treated as a composite consisting
of an "unknown" part of interest plus a reference component, the real-space structure of the latter being
completely known. If, for example, the reference part of the object is composed of a ferromagnetic
material (the magnetization of which is saturated), then polarized neutron beams can be employed to
extract the information required for an unambiguous inversion of the scattering data without chemical
substitution. The angular averaging over all possible relative orientations of the composite object does
not result in a cancellation of the phase information since the reference and unknown parts of each
object have a fixed spatial relationship. The new approach proposed here is not simply another type of
isomorphic substitution, but also involves a reformulation of the underlying mathematical analysis of
this particular scattering problem.
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Figure 1. Diagram of a composite object (only a two-dimensional cut perpendicular to the z-axis is
shown) consisting of some arbitrary component of interest, the structure of which is of unknown shape
and scattering length density distribution, and an adjacent (and attached) reference part which is
completely characterized. For clarity of exposition, it is assumed, without loss of generality, that the
reference part is a simple rectangular solid of uniform SLD and centered on the origin of the reference
frame fixed to the composite object. Thus, the reference part of the composite object is symmetric in
this coordinate system. (The dimensions of the reference part are 2D, x 2Dy x 2D, .) The other
component, which can be of any shape and SLD distribution, is divided into sub-units of equal cubic
volume d’. This coordinate system is fixed with respect to the object.



Composite system = reference part + "unknown" part

) = [[[ p(r) €% dr = [[[,x p(x,y,2) expli(Qx+Qy+Q.z)] dxdydz

(2) Fc(Q)=F: (Q) + Fs (Q)

(3) Fof* = |Faf + [Fo + 2ReF, ReF,

since Fy is real for a symmetric reference.




Orientational averaging

(4) <|F >=<|F >+ <|Fg| >+ < 2ReF; ReF; >

() D(Q) = <[Feal"> - <[Fasl" > = < [Fra| > - <[Fis| >+ 2U(Q)

where U(Q) = < ReFg, ReF > - < ReFy; ReF >

(6) U(Q) = (1/2) [MEASD(Q) - (CALC< |FRA|2 > = carc< |FRB|2 >)]

= [< ReFRA ReFS > -< REFRB ReFS > ]




Structure factor for reference

(7)  Fu=f[f pre™ dr = [[[, pr expli(Qx+Qy+Q.z)] dxdydz
= pr [[[x expliQ.x] exp[iQ,y] exp[iQ,z] dxdydz

=[8p: / (QQ,Q,)] sin(Q,D,)sin(Q,D,)sin(Q,D,) = ReF,




Structure factor for "unknown" sample part

(8)  Fs=[[[x ps(X,y,2) expliQ.x] expliQ,y] expliQ,z] dxdydz

Consider, for example, an expansion of the integration along the x-direction
in Equation (8):

.[X pS(Xay:Z) eXP[lQXX] dx

Dx+2d

= pau(¥32) oo 7 expliQx] dX + poa(52) peea T expliQx] dx + - - -

Dx+ Ld

+ p51(y,Z) Dx + (I-1)d I Dl exp [IQ.x] dx + DSL(Y,Z) Dx+(L-1)dJ‘ exp [1Q.x] dx

=Y " pa(v,2) (2/Q)) exp{iQ,[D, + (d/2)(21-1)]} sin (Q,d/2)



After doing similarly along the y- and z-directions, we obtain
(9)  ReF; =1[8/(Q.Q,Q,)] sin (Q.d/2) sin (Q,d/2) sin (Q,d/2) e
Y me Y ae Y sPimn €OS{Q[D, - (d/2) +1d] + Q[D, - (d/2) + md] +
Q.[D, - (d/2) + nd]}
where d is the edge of a sub-unit cube of the sample part of the object's

volume which is rendered into L. x M x N such sub-units, each one having an
individual but constant SLD, spim , corresponding to the (I,m,n) th sub-unit.




Interference term

Using Equations (6), (7), and (9), we can now write the function U(Q)
explicitly as

(10) U(Q) = < ReFy, ReF; > - < ReFy; ReF, > = < ReFy, ReF; - ReFy; ReF; >
= < [ReFqs - ReFyg ] ReF; >
= < [8/(Q.QQ)T (pra - prs) sin(Q.D,)sin(Q,D,)sin(Q.D,) @
sin(Q,d/2)sin(Q,d/2)sin(Q,d/2) e
2 Y ma X as 2 Y s pimn €0s{QU[D, - (d/2) + 1d] + Q,[D, - (d/2) + md] +

Q.[D. - (d/2) + nd]}>

or U(Q) = 1=1 Z . m =1 Z " n=1 Z N Splmn < Clmn ( Qx, Qy! QZ) >



Coefficients

(11) <Cm (Q.,, Q,, Q) > =<[8/(QQQ)I" (Pra - Prs) ®
sin(Q,D,)sin(Q,D,)sin(Q,D,) e
sin(Q,d/2)sin(Q,d/2)sin(Q,d/2) e
cos{Q.[D, - (d/2) + 1d] + Q[D, - (d/2) + md] + Q[D, - (d/2) + nd]}>
where the orientational averaging is defined (Andrews, 2004) as
(12) <Cm(Q., Q, Q) >=[1/81)] [ffupy Cimn (@, B, ) sin B dPB dax dy
in which the integration limits for the angles a, B, and y are zero to 2m, n, and

2m, respectively, and the rectangular components of Q, (Qx, Qy, Q. ), in the
object coordinate system are expressed in terms of the angles of integration

by

(13) Q,=Q(cosy cos a-cosfsinasiny)
Q, = Q (- siny cos a - cos 3 sin & cos y)

Q. =Q (sin B sin )

Q=1Q=(Q’+Q’+Q2)"”=[4nsin(SA/2)] / A



Figure 2. The schematic (on the right) illustrates the relationship between axes of the object and
laboratory in terms of the Euler angles (Goldstein, 1980). The diagram on the left shows the scattering
geometfry in the laboratory frame of reference for one plane of a continuum rotated about the incident
beam direction (along the nominal k; ). (Q = ke - k;.) (Right part of figure courtesy of L. Brits,

Wikipedia.)



Saturated ferromagnetic reference

One possible reference choice for SANS, if a polarized incident beam and polarization analysis of the
reflected beam is available, is a ferromagnetic material, either saturated in a remanent state along a
specific direction in the reference frame fixed to each object or along a single direction in the
laboratory frame of reference as defined by the application of an external magnetic field. For a
non-magnetic sample part of the object, the selection rules for polarized neutron scattering (Moon et

al., 1969) are such that only non-spin-flip (NSF) scattering processes convey structural information
about it. If neutrons are incident in the "+" state (one of two possible spin eigen-states), then the
reflected beam will also be in that same polarization state -- and analogously for an incident beam in
the "-" state. Taking the neutron polarization axis to be along the Z-direction in the laboratory frame of
reference, the two corresponding expressions for the SLDs for a polarized neutron beam are given by

(14) P= PnE PumQuvz

where py and py, correspond to the nuclear and magnetic SLDs, respectively, + / - indicates the neutron
spin state, and Qv iS the Z-component of the Halperin vector (Moon et al., 1969) which determines
the extent of the coupling between the neutron spin and the atomic magnetic moments of the material
through the relationship

(15) Qivz = COS Qz COS Pgs - COS P

where @q is the angle between Q and the neutron polarization direction (as already specified to be the
laboratory Z-axis), (qs is the angle between Q and the atomic spin (opposite to its associated magnetic
moment), and @sz is the angle between the atomic spin and the laboratory Z-axis.



For the specific case where the neutron polarization P is along the laboratory Z-axis (which is
perpendicular to Q , which in turn has been taken to lie along the laboratory X-axis) and each object's
ferromagnetic magnetization points along the laboratory Z-axis as well (by application of an applied
external magnetic field), then quy; =+ 1 so that

(16) P= pvt Pu

The nuclear and magnetic contributions to the overall SLD of the reference part effectively add or
subtract depending on the spin state of the incident neutron. (In practice, it is simpler to maintain the
neutron polarization axis along the incident beam direction k;, but the correction for this case is small
compared to that for which P is always arranged to be exactly perpendicular to Q -- and the difference
has negligible consequences for the simpler example we have chosen to illustrate.) Two references are
thereby achieved without any physical change to the composite object and all that is required is to
collect two scattered intensity data sets, one for neutron spin plus and the other for spin minus incident,
to obtain U(Q). Note that in this particular case, the magnetic reference in conjunction with polarized
neutron beam measurements is essentially equivalent to an isotopic exchange of material with a
different nuclear SLD in the reference part,



Alternatively, if the neutron polarization P is still along the laboratory Z-axis (again, perpendicular to
Q which is along the laboratory X-axis) but the magnetization of each object is always directed along
the negative z-axis of the coordinate system fixed in the same orientation to each object (in a remanent
state), then p is given by

(17) P= pxt PuCOSP

where cos [ is simply the direction cosine between a given object's z-axis and the Z-axis of the
laboratory reference system.




Non-magnetic reference

Although the use of polarized neutrons and saturated ferromagnetic references attached to the sample
of interest may have certain distinct advantages, there are other reference possibilities. Suppose, for
instance, that the sample object of interest can be chemically attached to a known molecular structure.
Then, in analogy to Equation (4) we can write

(18)  <|F¢*> =<|Fxe|" >+ < |Fmp|" > + < 2ReFx ReFgp >

where it is assumed that the scattered intensity as a function of Q can be measured in separate
experiments for: 1) the composite system (denoted by the subscript "C"); 2) the "known reference" part
"KR" alone (taken to be symmetric and not yet attached to the unknown "to be determined" part
"TBD"); and 3) the unknown part TBD by itself. Since all of the components on the RHS of Equation
(18) can be measured independently (< |Fx|° > could also be calculated, in principle) and ReFy; can be
calculated, then the SL.Ds associated with a finite element decomposition of TBD, the part of interest,
can be determined in the same way as shown previously in the derivation culminating in Equation (10).

As long as the structure factor for the composite object can be expressed as a sum of separable terms,
one for the sample part and the other corresponding to the reference component, then the method
presented here is applicable. For example, it is possible to adopt a configuration in which the reference
volume is contained within that of the sample component -- or, vice versa -- assuming that the structure
and material composition of the reference part is completely known in either case.

The choice of reference is not completely arbitrary, however. The symmetry of the reference part can
be important. For example, consider a simple two-dimensional square sample object divided into four
square sub-cells where the reference part is also taken to be square (D, = D,) with its sides parallel to
those of the sample part of the composite object. Then the inversion of U(Q) can only yield SLD
values for the two sample sub-cells lying along a diagonal perpendicular to the reference diagonal
which runs from the origin out to the point (D, , D,) which are equal to their average. Optimization of
the reference structure can be an important consideration.



2D model calculation
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Results of inversion (by SVD)

3.4999999999998708E-06
1.0000000000002320E-06
2.9999999999999607E-06
2.9999999999999298E-06
3.9999999999997135E-06
5.0000000000001029E-06
8.0000000000002012E-06
5.9999999999997062E-06
4.5000000000000755E-06
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Model calculation in 3D

-

Figure 3. An exploded view (the layers are actually in contact with one another along the z-axis) of a
model SLD distribution described within a volume containing 27 cubic sub-cells, each 10 Angstrom on
a side. Adjacent to this sample object, a ferromagnetic reference consisting of a single rectangular
block of dimensions (2 x 15 A) x (2 x 25 A) x (2 x 35 A), along the x-, y-, and z-axes, respectively, is
centered at the origin of the composite object reference system and has a uniform SLD. Advancing
along the positive z-axis, there is a counter-clockwise chirality. The alternative index "j" of the (1,m,n)
th sub-cell shown in the diagram is given by j = (n-1)NM + (m-1)M + 1 where the total number of
sub-cellsis Lx M x N =3 x 3x 3 =27. The SLDs of sub-cells 4, 5, 14, 17, 23 and 24 are zero.
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Figure 4. The scattering function U(Q) as calculated from the formulas derived in earlier sections
using the model values of the sub-cell SLDs listed in Table 1 multiplied by Q° for clarity in the plot (+
symbols). The dashed line represents the function U(Q) as calculated for the SLD values obtained by
inversion of the original U(Q) computed from the starting model SLD values. The SLD values
obtained via inversion are also given in Table 1.



Table I. Original model SLDs and the corresponding set obtained by inversion of U(Q).

Sub-cell index Model SLD (A SLD via inversion of U(Q) (A?)

1 8.0e-06 7.9952567492373344E-06
2 5.0e-06 5.1581725329032674E-06
3 3.0e-06 3.0569598364690891E-06
4 0.0 -7.2533473459990216E-08
5 0.0 -1.5660148421135301E-07
6 2.0e-06 2.2978778672140286E-06
7 5.0e-06 4.8739136996700097E-06
8 3.0e-06 2.9930326061456065E-06
9 2.0e-06 2.1984348123739998E-06
10 3.0e-06 2.9629299578242556E-06
11 2.0e-06 2.1925726598984072E-06
12 2.0e-06 1.6436400553807519E-06
13 5.0e-06 4.7519473764813062E-06
14 0.0 1.5486577358675494E-07
15 3.0e-06 3.1727620721836486E-06
16 8.0e-06 7.9598602881746376E-06
17 0.0 -6.9083620588432130E-07
18 5.0e-06 5.2662142595539992E-06
19 2.0e-06 2.2331881840833366E-06
20 3.0e-06 2.7336203622214004E-06
21 5.0e-06 4.9615602336763678E-06
22 2.0e-06 2.2545626421854936E-06
23 0.0 2.2333899747162826E-07
24 0.0 -5.4189888528353584E-08
25 3.0e-06 2.8814918203719384E-06
26 5.0e-06 5.0080273594332235E-06

27 8.0e-06 7.9999309055434301E-06
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Figure 5. Histogram representation of the distribution of SLD values of the sample sub-cells as solved
numerically by singular value decomposition (dashed line) compared to the original corresponding
model values (solid line). The same information is contained in Table 1. The agreement between the
SLD distribution obtained by inversion of the model generated scattering function U(Q) and that of the
original model is remarkably good.



Conclusions

<> We have proposed a procedure to directly and unambiguously
obtain the SLD distribution for a molecular structure via SANS
through the use of reference structures attached to the object of
interest. The proposed method is applicable for a collection of
identical molecular-scale objects which are randomly oriented in
angle in solution in the dilute concentration limit (where
inter-particle correlations are negligible) where the Born
approximation is valid. In particular, saturated ferromagnetic
references in conjunction with polarized neutron beams make it
possible, in principle, to employ a single form of the composite
object.

<> The new method proposed here is not simply another type of
isomorphic substitution, but also involves a reformulation of the
underlying mathematical analysis of this particular scattering
problem. Instead of extracting a radius of gyration or distance
distribution function, a finite element approach in conjunction with a
rearrangement of the structure factor expressions, including the
angular averaging over all possible orientations of the sample object,
allows for a direct and unambiguous determination of the SLD
distribution. Numerical simulations of the technique presented here
on model systems support these conclusions.

<> Given that the proposed method has been demonstrated in
principle here, practical realization will require reference structures
which can be used to create the necessary composite samples.
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"/ AKADE TEN ) THE NOBEL PRIZE IN CHEMISTRY 2014

POPULAR SCIENCE BACKGROUND

How the optical microscope became a nanoscope

Eric Betzig, Stefan W. Hell and William E. Moerner are awarded the Nobel Prize in Chemistry 2014
for having bypassed a presumed scientific limitation stipulating that an optical microscope can never
yield a resolution better than 0.2 micrometres. Using the fluorescence of molecules, scientists can
now monitor the interplay between individual molecules inside cells; they can observe disease-related
proteins aggregate and they can track cell division at the nanolevel.

Red blood cells, bacteria, veast cells and spermatozoids. When scientists in the 17th century for

the first time studied living organisms under an optical microscope, a new world opened up before
their eyes. This was the birth of microbiology, and ever since, the optical microscope has been one
of the most important tools in the life-sciences toolbox. Other microscopy methods, such as electron
microscopy, require preparatory measures that eventually kill the cell.



Glowing molecules surpassing a physical limitation

Figure5. The centre image shows lysoscme membranes and is one of the first ones taken by Betzig using single-molecule microsccpy.
To the left, the same image taken using conventicnal microscopy. Tc the right, the image of the membranes has been enlarged. Note
the scale division of 0.2 micrometres, equivalent to Abbe’s diffraction limit. The resolution is many times improved. Image from
Science 313:1642-1645.



