Overview of Current Methods in the Study of Biomolecular Structure by SANS in the Dilute Solution Limit

Susan Krueger (and many others who I will try to acknowledge along the way)

Low - q Seminar October 1, 2014

Biology SANS Applications Dilute Limit

Biological Macromolecules in Bulk Solution

- Proteins
- Nucleic acids
- Protein-nucleic acid complexes
- Multi-subunit protein complexes
- Protein-lipid complexes
- Membranes and membrane components

The Scattering Process: A Review

$$e^{i\vec{k}_i\cdot\vec{r}} \rightarrow e^{i\vec{k}_i\cdot\vec{r}} + f(\Omega) \frac{e^{i\vec{k}_f\cdot\vec{r}}}{r}$$

The Scattering Process

$$\frac{dS}{dW} = \frac{\text{neutrons/sec scattered into solid angle d}\Omega}{\text{neutrons/sec/cm}^2 \text{ on target}}$$
Differential scattering Φ (beam flux)

Differential scattering cross section

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = 4\pi |f(\Omega)|^2 = 4\pi |b|^2 \text{ in units of area (cm²)}$$
 1 barn = 10⁻²⁴ cm²

Total scattering cross section

Scattering length (per atom)

$$\sigma_{coh} = 4\pi (\overline{b})^{2}$$

$$\sigma_{inc} = 4\pi [(\overline{b}^{2}) - (\overline{b})^{2}]$$

$$\sigma = \sigma_{coh} + \sigma_{inc} + \sigma_{abs}$$

$$\sigma = \sigma_{coh} + \sigma_{inc} + \sigma_{abs}$$

Neutron Cross Sections

Atomic nucleus	b _{coh} (fm)	σ _{coh} (barns)	σ _{inc} (barns)	σ _{abs} (barns)
¹ H	- 3.741	1.758	80.26	0.333
² D	+ 6.671	5.592	2.05	0.000
¹² C	+ 6.651	5.559	0.0	0.004
¹⁴ N	+ 9.37	11.03	0.5	1.91
¹⁶ O	+ 5.803	4.232	0.0	0.000
31 P	+ 5.13	3.307	0.005	0.172
³² S	+ 2.804	0.988	0.0	0.54

From the Special Feature section of neutron scattering lengths and cross sections of the elements and their isotopes in *Neutron News*, Vol. 3, No. 3, 1992, pp. 29-37.

Small Angle Scattering

Constructive interference from structures in the direction of q

Diffraction length scale
$$d \approx \frac{2\pi}{q}$$
 where $q = \frac{4\pi}{\lambda} \sin \theta$

$$2q \gg \frac{/}{d} \gg \frac{6 \, \mathring{A}}{10 \text{ to } 1000 \, \mathring{A}}$$
 $2q \gg 0.3^{\circ} \text{ to } 5^{\circ}$

Differential Scattering Cross Section

$$\frac{dS}{dW} = |f(W)|^2 \sum_{ij} e^{-i\vec{q} \cdot (\vec{r}_i - \vec{r}_j)} \quad \text{where} \quad \vec{q} = \vec{k}_f - \vec{k}_i$$

Coherent:
$$\frac{dS}{dW} = \sum_{ij} b_i b_j \ e^{-i\vec{q}\cdot(\vec{r}_i - \vec{r}_j)}$$
 All-atom representation

Replace:
$$\sum_{i}^{N} b_{i} \rightarrow \int_{V} r(\vec{r}) d\vec{r} \quad \text{where} \quad \rho(\vec{r}) = b_{i} \delta(\vec{r} - \vec{r}_{i})$$

$$\frac{dS}{d\Omega}(\vec{q}) = \frac{1}{N} \left| \hat{\mathbf{0}} \ \Gamma(\vec{r}) \, e^{i\vec{q} \times \vec{r}} \ d\vec{r} \right|^2$$

Scattering length density

Differential Scattering Cross Section

Normalizing by sample volume:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{N}{V} \frac{d\sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \left| \int_{V} \rho(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r} \right|^{2}$$

Rayleigh-Gans Equation

Neutron Scattering Length Densities

H₂O: $\rho = -0.562 \times 10^{10} \text{ cm}^{-2}$ D₂O: $\rho = 6.404 \times 10^{10} \text{ cm}^{-2}$

 $H_2O:D_2O$ mixture: $\rho = (-0.562 + 6.966y) \times 10^{10}$ cm⁻²,

where $y = fraction of D_2O$

	ρ in H ₂ O (10 ¹⁰ cm ⁻²)	ρ in D ₂ O (10 ¹⁰ cm ⁻²)
protein	1.8	3.2
DNA	3.4	4.1
RNA	3.6	4.3
PC Lipid Head Group	1.1	1.1
CH ₂	-0.31	-0.31
CH ₃	-0.85	-0.85

SLDs in H₂O and D₂O depend on H:D exchange.

The Scattered Intensity

Rayleigh-Gans Equation:

$$I(q) \propto \frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \left| \int_{V} \rho(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d\vec{r} \right|^{2}$$

Assume there are N randomly-oriented, homogeneous particles:

$$\frac{dS}{d\Omega}(\vec{q}) = \frac{N}{V} r^2 V^2 \left\langle \frac{1}{V} \hat{0} e^{i\vec{q} \cdot \vec{r}} d\vec{r} \right|^2 \right\rangle$$
Average over all orientations

Particle volume

$$F(\vec{q}) \text{ (depends on particle shape)}$$

Macromolecules in Solution

Reciprocal Space

I(q)

Macromolecule in Solvent

U

$$\int_{V} e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

+

$$\rho_{\rm s} \, \delta(0)$$

 $r_s \int_{\mathcal{R}} e^{i\vec{q}\cdot\vec{r}} d\vec{r}$

Uniform Scattering Length Density, ρ , in V

Solvent of Infinite Extent (Not Observed!)

Solvent Scattering Length Density, ρ_s , in V

Real Space

$$I(q) = \frac{N}{V} (D \Gamma)^2 V^2 \left\langle \left| F(\vec{q}) \right|^2 \right\rangle$$
, where $D \Gamma = \Gamma - \Gamma_s$

The Guinier Approximation

$$I(q) @ I(0) \exp(-q^2 R_g^2 / 3)$$

valid when $qR_g \leq 1$

$$I(0) = \frac{d\sum(0)}{dW} = \frac{N}{V}(Dr)^2 V^2$$
 Data on absolute scale

R_g: radius of gyration (about the particle C.M.)

$$R_g^2 = \frac{\int \rho(\vec{r}) r^2 d\vec{r}}{\int \rho(\vec{r}) d\vec{r}}$$

Guinier Plot

$$\ln[I(q)] = \ln[I(0)] - \frac{q^2 R_g^2}{3}$$

The Forward Scattering on an Absolute Scale

$$I(0) = \frac{d\Sigma(0)}{dW} = \frac{N}{V} (Dr)^2 V^2$$

Number density of particles

Concentration of particles

$$I(0) = \frac{cN_A}{M_w} (\text{Dr})^2 \left(\frac{M_w \overline{v}}{N_A}\right)^2 = \frac{cM_w \overline{v}^2}{N_A} (\text{Dr})^2$$

Partial Specific Volume

Modified Guinier Analyses

Rod-shaped Particles where I>>r

$$I(q) \cong \frac{1}{q} I_c(0) \exp(-q^2 R_c^2 / 2)$$

Plot ln[q-l(q)] vs q²; R_c related to cross-sectional radius

Disk-Shaped particles where r>>t

$$I(q) \cong \frac{1}{q^2} I_t(0) \exp(-q^2 R_t^2 / 12)$$

Plot ln[q²·I(q)] vs q²; R_t related to thickness

Low Resolution Shape Models

Guinier Fits

Simple Dimer Models

Distance Distribution Function

$$P(r) = r^{2}\gamma(r) \qquad \gamma(r) = \frac{1}{2\pi^{2}r} \int qI(q)\sin(qr)dq$$

Debye-Porod Correlation Function

 $4\pi P(r) \equiv$ number of distances within the molecule

$$I(q) = 4\pi V \int_{0}^{D_{\text{max}}} P(r) \frac{\sin(qr)}{qr} dr$$

 $D_{\text{max}} = \text{maximum distance within the molecule}$

$$P(0) = 0$$

$$P(2r \ge D_{\text{max}}) = 0$$

Distance Distribution Function

P(r) for All-atom Models

r(Å)

Advanced Modeling Techniques

Modeling efforts are underway at most neutron and x-ray facilities.

All the modeling in the world doesn't help if your sample isn't good...

- Concentration: 1-5 mg/mL → monodisperse, noninteracting
- Volume: 350-700 μL per sample
- Data collection time: 0.5-6 hrs per sample
- Typical biology experiment: 1-3 days
- Deuterated solvent is highly desirable.
- Multiple concentrations are usually necessary.
- Specific deuteration may be necessary.
- Multiple solvents of different deuteration → contrast variation

Practical Issues

Sample Preparation Challenges

Mondispersity

Complex formation

Large quantities

Deuterium labeling

suitable solvent conditions

under multiple contrast conditions (D₂O effects)

needed for multiple contrasts

many neutron facilities now have labs to support

users

Analytical tools

SEC-MALS, AUC (SE and SV), DLS

Experiment Planning Tools

Contrast Calculator (SASSIE)
Starting All-atom and Hybrid hi-res/low-res Structures
(for in silico contrast variation experiments)

proteins nucleic acids lipids carbohydrates

Intrinsically Disordered Proteins

A Definition:

Proteins or regions of proteins that fail to form specific 3-D structure under physiologic conditions in vitro.

from Le Gall et al., J. Biomolecular Struct. and Dynamics 24, 325 (2007)

Backbone Ramachandran angles vary significantly over time with no specific equilibrium values.

Software Needs:

>10,000 structures in minutes

"Thumbs up" or "Thumbs down" on model structures

(Image adapted from: Kissinger CR, et al. 1995. "Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex." Nature 378:641-4.)

http://www.disprot.org/

SASSIE: An Approach to Structure Modeling

Geometric ensemble sampling based on energetics of dihedral angle motion.

Build Starting Structure Include "missing" residues

Dihedral Phase Space Search

Pick regions to vary Pick $\Delta\Phi$, $\Delta\Psi$, overlap (basis and cutoff) Generate Structures

Calculate SAS

Filter Results
Compare to SAS data

SASSIE Software

Clean up and organize coordinate files Build topology files (force field) All-atom or coarse-grain

Structure alignment, centering, translation, rotation Coordinate manipulation, data interpolation Contrast calculator, experiment planning

Graphically "move" structures
Calculate SANS and reflectivity curves in real time

Protein/RNA dihedral search; grid search Structure minimization; torsion angle MD; normal modes; free energy solvation

SANS, SAXS, reflectometry EM to SANS; HYDROPRO Spin echo; backscattering, TOF

Chi-squared filtering to SAS data

Density plots of conformation space

All-atom Modeling: SASSIE

PARP-1 Solutions: SASSIE

One structure from an ensemble that fits the SAXS and SANS data.

Antibody Ensemble: SASSIE

Single Stranded RNA: SASSIE

Complexes: MCM DNA Helicase

ONE Cryo-EM Structure of MCM

Crystal structure is available for the N-terminal domains.

Solution Structure of N-terminal Domain of MCM DNA Helicase

Build a Starting Structure

Possible flexible regions: 88-107 and 243-274

Chi-squared Filtering

Flexible: 243-274 Flexible: 88-107 and 243-274

Best Fits

Full-length MCM

Possible flexible regions: 89-108, 244-246 and 580-600

Chi-squared Filtering

Flexible: 89-108 and 580-600

Flexible: 89-108, 244-246 and 580-600

Best Fits

Flexible: 89-108 and 580-600

Flexible: 89-108, 244-246 and 580-600

Structure Comparison

Original Starting Structure

Best Fit Structure Allowing Three Flexible Regions

Compound Particles

$$I(q) \propto \left\langle \left| (\Delta \rho)_1 \int_{V_1} e^{i\vec{q}\cdot\vec{r}} d\vec{r}_1 + (\Delta \rho)_2 \int_{V_2} e^{i\vec{q}\cdot\vec{r}} d\vec{r}_2 \right|^2 \right\rangle =$$

$$(\Delta \rho)_{1}^{2} \langle |F_{1}(q)|^{2} \rangle + (\Delta \rho)_{2}^{2} \langle |F_{2}(q)|^{2} \rangle + (\Delta \rho)_{1} (\Delta \rho)_{2} |F_{1}| |F_{2}| \frac{\sin(qr_{12})}{qr_{12}}$$

Compound Particles

$$I_1(q) = (\Delta \rho)_1^2 F_1^2$$

$$I_2(q) = (\Delta \rho)_2^2 F_2^2$$

$$I_{12}(q) = 2(\Delta \rho)_1 (\Delta \rho)_2 F_1 F_2 \frac{\sin(qr_{12})}{qr_{12}}$$

Separate scattering from subunits using contrast variation.

Scattered Intensity Two-Component System

Scattered intensity from the two components can be separated by solving a set of simultaneous equations.

$$I(q) = \Delta \rho_1^2 I_1(q) + \Delta \rho_1 \Delta \rho_2 I_{12}(q) + \Delta \rho_2^2 I_2(q)$$

 $\Delta \rho_1$, $\Delta \rho_2$: contrast for components 1 and 2

recall:
$$Dr = r - r$$

 $I_1(q)$, $I_2(q)$: intensity for components 1 and 2

 $I_{12}(q)$: cross-term between components 1 and 2

Neutron Contrast Variation in Biology

Used to separate the scattering contribution from the components in a two-component complex.

- Protein-nucleic acid complexes
- Protein-protein complexes*
- Protein-lipid complexes

^{*}One component must be deuterated.

Contrast Variation

Contrast Variation Experiment

Model data prior to experiment

- Predict contrasts values and match points based on chemical composition (amino acid sequence, bases, type of lipid, etc.)
- Predict SANS curves at various contrasts if a low or high resolution starting model structure is available.

Match point determination

Determine the contrast match point for the complex and individual components.

Stuhrmann Analysis and Parallel Axis Theorem

- Determine Rg for the individual components and the spatial relationship between the two components.
- Test Model Structures Against ALL Data

Match Point Determination

For
$$q = 0$$
:
$$(cm^{-1})$$

$$I(0) = n \left(D r V \right)^2 = \frac{cM_w}{N_A} \left(D r \overline{v} \right)^2$$
Partial Specific Volume (cm³/g)

Since $\Delta \rho$ varies with the %D₂O in the solvent:

$$\frac{I(0)}{c} = \frac{M_w}{N_A} \left(D r \overline{v} \right)^2 \implies \frac{I(0)}{c} \propto \left(D r \right)^2 \implies \sqrt{\frac{I(0)}{c}} \propto \% D_2 O$$

Plot $\sqrt{\frac{I(0)}{c}}$ vs %D₂O to obtain the match point.

Two Component System: R_g vs $\Delta \rho$

Stuhrmann Analysis

$$R_g^2 = R_o^2 + \frac{\partial}{\mathsf{D}r} + \frac{b}{\left(\mathsf{D}r\right)^2}$$

 $\beta \neq 0 \Rightarrow$ centers of mass of the two components are not concentric

 R_g of an equivalent homogeneous complex

Ibel, K. and Stuhrmann, H. B. (1975). *J. Mol. Biol.* **93**, 255–265

Parallel Axis Theorem

$$R_g^2 = \frac{\mathsf{D} r_1 V_1}{\mathsf{D} r V} R_1^2 + \frac{\mathsf{D} r_2 V_2}{\mathsf{D} r V} R_2^2 + \frac{\mathsf{D} r_1 V_1 \mathsf{D} r_2 V_2}{\left(\mathsf{D} r V\right)^2} D^2$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

Contrast Variaton: Biology Example

- Two-component protein in H₂O/D₂O solvent.
- One subunit is deuterated (d-protein).
- Scattering length densities of the two components are different from one another.

Protein subunit is "matched".

d-protein subunit is "matched".

PAI:VN complex with 65% deuterated PAI and non-deuterated VN.

Two structures that fit all of the data (except 100% D₂O) well.

Chromatin Solution Structure

Summary: SANS and Biology

- If used correctly, SANS can be a powerful tool to study the structure of biological macromolecules in solution.
- Contrast variation can be easily applied using neutrons.
- Can be combined with SAXS to obtain data at higher q values (q > 0.3 Å⁻¹).
- Excellent facilities are available worldwide. Many groups are actively developing software for structure modeling.
- Sample quality is extremely important. Consistency checks must be performed.
- Use information from other techniques to narrow down the possible model structures.