Background Correction for SANS Measurements II

By John Barker 8/25/2014

Talk Overview

Background signal: Any signal collected by detector that is **not** produced By Small-angle scattering (SAS) from *'desired'* sample structure.

- Detector Efficiency Contribution to BGD
- Double Bragg Scattering / Precipitates / Slit Diffraction
- Integrating (adding) BGD along flight path
- Gas scattering: Ar, He and Air (Sachs & Teller theory)
- Liquid scattering: H₂O, D₂O, and PMMA (plexiglas)
- Phonon (inelastic) scattering in Solids (Debye model)
- How to improve S/N
- Conclusions

Motivation: Ability to reduce background to make more sensitive measurements of

Weak scattering samples: S << N

Rubinson et al, 2008 0.5% Protein in D₂O

Figure 6 SANS data from 5 mg ml $^{-1}$ lysozyme in D₂O buffer and the resulting model SANS curves from *CRYSON* and *XTAL2SAS* using the structure from the PDB-listed parameters of 6lyz. The *CRYSON* curve represents the best fit to the SANS data assuming a 3 Å bound D₂O layer (fit parameters shown in Table 4), whereas the *XTAL2SAS* model curve assumes no hydration layer. The *XTAL2SAS* curve with a baseline having a constant 0.0035 cm $^{-1}$ subtracted is also shown for comparison. Error bars in the data for $q < 0.2 \text{ Å}^{-1}$ are smaller than the data points. The inset shows the SANS curve in the full measured q range.

Russell et al, 1995 170 nm thick sample Macromolecules, Vol. 28, No. 3, 1995

Figure 3. $d\Sigma/d\Omega$ as a function of Q for a mixture of PS-760K and dPS-690K (a) as-cast from a toluene solution and (b) heated to 130 °C for 15 h. The sample thickness is 170 nm. The solid lines are fits the scattering profiles using a Debye function.

Background Correction

Three separate scattering measurements:
Sample, Empty and Beam Blocked
Corrected = Sample – T*Empty – (1-T)* Blocked Beam

$$I_c(q_i) = I_s(q_i) - T_s I_E(q_i) - (1 - T_s) I_B(q_i)$$

Assumption: Detector efficiency is the same or is corrected between measurements.

Detector "dead time" correction: Detector efficiency decreases as the count rate increases

$$c_t @ \frac{c_o}{1 - c_o t_d}$$
 $t_d = \text{detector dead time}$ $c = \text{count rate, o} \rightarrow \text{observed, t} \rightarrow \text{true}$

Correction incorporated in IGOR data reduction software.

Dead time is measured as ratio (R) of count rate with the two different size apertures:

$$R_o = R_t + t_d (1 - R_t) c_{so}$$

All three SANS Ordela detectors exhibit oscillating detector efficiency dependence on count rate, which is **NOT** corrected by data reduction.

→ Background is not completely subtracted: f_E*I_E + f_B*I_B

Dead time measured on SANS Ordela 2D detectors

Detector Efficiency can also change with **time**: Measured **VSANS tube detectors** efficiency once an hour over two days.

Ordela 2D Detectors are stable to 0.1% day to day.

Observed 7% variation caused by amplifier gain changing with temperature.

Pulse Height Spectrum for one-hour runs made 2.5 hours apart.

Observed count rates are 729 s⁻¹ for first and 752 s⁻¹ for second run.

Double Bragg Scattering:

Produces scattering which mimics structural SANS Eliminated if wavelength chosen larger than 2d_{max}

Scattering from 99.99% pure Al and Al alloy 6061

Structural Metal Alloys:

Typically contain small precipitates that Scatter strongly!!!
Some alloys have high strength with lower BGD { fine grain size + substitional + martensitic } Example: Ti - 6AI - 4V

Scattering from Al alloy 6061 having preferred texture Aligning disks along (111) orientation. { Guinier Preston Zones – copper precipitates.

Slit Diffraction: Fraunhofer diffraction of the beam occurs as it passes through the circular sample aperture

$$\frac{dS_F}{dW}(q) = \frac{4\rho R_2^2}{I_0^2} \left[\frac{J_1(qR_2)}{qR_2} \right]^2 \qquad \frac{dS}{dW}(q) @ \frac{4}{R_2 d_s I_0^2} q^{-3}$$

$$\frac{dS}{dW}(q) @ \frac{4}{R_2 d_s /_0^2} q^{-3}$$

 R_2 = aperture radius d_s = sample thickness

Parasitic BGD around beam stop Is typically 4x prediction.

... Another source ???

To Minimize background:

- Use larger sample aperture
- Use longer wavelength

To put raw corrected intensity into absolute units:

$$\frac{dS}{dW}(q_i) = \frac{I_c(q_i)}{e_D(I)J_B d_s T_s DW_i} = k_{sp}I_c(q_i)$$

 J_B = Beam current, d_S = sample thickness, T_S = transmission ϵ_D = detector efficiency, $\Delta\Omega$ = solid angle

"Flat" Scattering BGD sources:

$$\frac{dS}{dW}(q) @ G_D(I)G_q(q) \frac{(1-T_s)}{4\rho d_s T_s}$$

{ Inelastic scattering + Multiple Scattering Corrections }

G_D Correction depends upon the **detector**:

Three SANS detectors:

 $BF_3 \rightarrow ILL (1970's - 2000)$, Saclay

³He → NIST, etc..

Scintillator → FRM2 (KSW2), ISIS

Inelastic scattered neutrons have short

Wavelength: 1 Å to 2 Å

Quasi-Isotropic scattering: scattering is equally probable over all 4π solid angle. Valid for incoherent scattering.

1) Calculate for infinite slab, no absorption using Monte Carlo

2) Analytical Solution from Astronomy: {Chandrasekhar, 1950}

Transmitted:

$$G_q(q) = \frac{A_G m_0}{m_T (m_T - m_0)} [Y(m_T) X(m_0) - X(m_T) Y(m_0)]$$

Reflected:

$$G_{q}(q) = \frac{A_{G} m_{0}}{m_{R}(m_{R} + m_{0})} [X(m_{R})X(m_{0}) - Y(m_{R})Y(m_{0})]$$

Large Angle Transmission correction:

$$T(q) = T_0 \frac{T_0^{a(q)} - 1}{a(q)\ln(T_0)}$$

$$a(q) = \frac{1}{\cos(q)} - 1$$

{ Incorporated into Igor data reduction }

Multiple Scattering increases the measured Cross section for 1 mm H₂O by 50 % assuming Quasi-isotropic scattering.

Inelastic scattering events are less likely to be detected:

$$G_D(/) = \frac{1}{e_D(/)} \grave{0} P_{/_F}(/_F) e_D(/_F) d/_F$$

$$P_{I_F}(I_F) = 2f_i \frac{I_T^4}{I_F^5} \exp_{\hat{\mathbf{C}}}^{\Re - I_T^2} \frac{\ddot{\mathbf{O}}}{I_F^2 \mathring{\mathbf{O}}} + (1 - f_i) P_{QE}$$

Gas Scattering

The total scattering cross-section from gasses can be estimated according to the formalism originally developed by Sachs & Teller (1941),

$$S_{i,s} = S_{i,b} \stackrel{\text{R}}{\varsigma} \frac{A_e}{A_e + 1} \stackrel{\ddot{0}^2 \acute{e}_{R}}{\overset{\dot{e}}{\varrho}} \frac{1}{2x^2} + \frac{1}{2x^2} \stackrel{\ddot{0}}{\overset{\dot{e}}{\varrho}} erf(x) + \frac{1}{x\sqrt{\rho}} e^{-x^2} \stackrel{\grave{u}}{\overset{\dot{u}}{u}}$$

Ideal Gas law:

$$S_s = \frac{PN_{av}}{RT} \stackrel{N}{\underset{i=1}{\overset{N}{\bigcirc}}} X_i S_{i,s}$$

Temperature & Wavelength Dependence:

$$\chi^{2} = \frac{A_{e}E_{N}}{k_{b}T} = \frac{A_{e}k_{E}/I^{2}}{k_{b}T}$$

Lines assume quasi-isotropic scattering & $G_D = G_\theta = 1$

Scattering from Air: Is not flat at large wavelengths !!!

For window scattering,

thickness $d_{s,b}$, Detector distance $L_{2,b}$

$$\frac{dS_e}{dW}(q) = C_f \frac{dS}{dW}(q_e)$$

$$C_f = \frac{d_{s,b}}{d_s} \frac{DW_b}{DW} \left(\frac{Cos(q_b)}{Cos(q)} \right)^3 \approx \frac{d_{s,b}}{d_s} \left(\frac{L_2}{L_{2,b}} \right)^2$$

$$q_e = q \frac{\sin(q_b/2)}{\sin(q/2)} \approx q \frac{L_2}{L_{2,b}}$$

Background scales as:

- 1) Ratio of window to sample thickness: $d_{s,b} / d_s$
- 2) Ratio of sample-to-detector distances: (L_2 / $L_{2,b}$)²
- 3) Ignores transmission corrections, see:
- A. Brulet, et al (2007) J. Appl. Cryst. 40, 165-177

Residual air in Detector vacuum tank:

Air scattering near detector is enhanced via larger solid angle

$$C_{F} = \frac{L_{2}^{2}}{d_{s}} \mathop{0}_{L_{bs}+X_{bs}}^{L_{2}} \frac{\cos \oint \tan^{-1} (R/x) \mathring{y}^{3}}{x^{2}} dx$$

Note that enhancement factor C_F can be very large when integrated over the entire Length of detector vessel. $C_F > 10^4$

Dashed lines: beamstop located at detection plane:

$$X_{BS} = 0$$

Solid line: beamstop in front of dome: (shadowed)

 $X_{BS} > 26 \text{ cm}$

Detector dome scattering:

20 cm of Helium, P = 2 bar 0.48 cm of aluminum

Figure 3.9. Measured scattering (No beam stop) from dome of the detector, and calculated contributions from helium and aluminum window.

Porod Scatterer: Spherical glass beads

 $I(q) = Aq^{-4}$

 $d_s = 2 \text{ mm}$, 35 µm diameter

Scattering should be horizontal line:

Scattering from PMMA (Plexiglas) 1.35 mm thick

Total cross-section → Transmission

Forward cross section (5° to 20°)

- Increase with wavelength dominated by inelastic scattering
- · Weak temperature dependence
- Forward scattering much stronger than isotropic approximation

Scattering from H₂O 1 mm thick

Total cross-section → Transmission Forward cross section (5° to 20°)

- Increase with wavelength dominated by inelastic scattering
- Strong temperature dependence
- Forward scattering much stronger than isotropic approximation and higher than at other facilities (higher efficiency detector ??)

Scattering from D₂O 4 mm thick

Total cross-section → Transmission Forward cross section (5° to 20°)

- Increase with wavelength dominated by inelastic scattering
- Strong temperature dependence
- Forward scattering much stronger than isotropic approximation and higher than at other facilities (higher efficiency detector ??)

Phonon Scattering from Solids

Steyerl (1977) has given an expression for the calculation of the temperature-dependent single phonon scattering as a function of temperature T as

$$S_{sph}(I,T) = \frac{C_{sph}S_{bat}Q_D^{1/2}I}{M_e}R(x)$$

$$S_{bat} = \Gamma_m N_A \frac{1}{N} \frac{1}$$

$$S_{tot}(/,T) = S_{abs}(/) + f_{sph}S_{sph}(/,T)$$

Freund 3R(X)

10²

10¹

Fit f_{sp} depends upon choice for Debye Temperature Θ_D

Assume Phonon scattering is quasi-isotropic:

$$\frac{dS}{dW}(0) = g_{sph} \frac{(S_{sph} + S_{inc})}{4p}$$

Measured "Flat Background from 5° to 20° for all materials: T = 298 K, λ = 10 Å

Scattering by thickness:

Strongest \rightarrow H₂O, D₂O Weakest \rightarrow Ar, He gas (1 bar) Scattering per atom: Strongest → H₂O, Air Weakest → Sapphire, Silicon **TOF** measurements with disk chopper to separate inelastic from quasi-elastic scattering:

Flat Background from 1 mm thick D₂O Sample:

Material Thickness
Air 150 mm
aQuartz 3.2 mm
Sapphire 3.2 mm
Silicon 6.4 mm
Vacuum (0.1 Torr) 4000 mm

For **low signal** Experiments, S/N can be increased by factor of three if:

- 1) Use TOF to remove inelastic scattering
- 2) Use vacuum, He or Ar in sample chamber
- 3) Replace aQuartz with Sapphire windows

Conclusions

- Detector performance critical for subtracting weak signal from strong Bgd.
- Metal alloy windows should not be used due to strong Bgd from precipitates
- Wavelength should be chosen long enough to eliminate Double Bragg Scattering.
- Wavelength should be chosen short enough to minimize inelastic scattering.
- TOF can be used to eliminate inelastic Bgd.
- Single crystal windows preferred over amorphous guartz over metal alloy.
- Any air in path produces significant Bgd:
 - minimize path length or replace with Ar gas or evacuate
- Vacuum in Detector tank must be P < 0.1 Torr
- Parasitic halo around beamstop has slit diffraction component: I ~ q⁻³
- { Major concern for VSANS instrument }
- Scattering in **Detector Dome** can produce an overlap problem {Lense config.}

Future Work:

Resolve discrepancy in Bgd measured at different facilities