
Analysis of Absolute Scattering Intensity Under Uncertainty

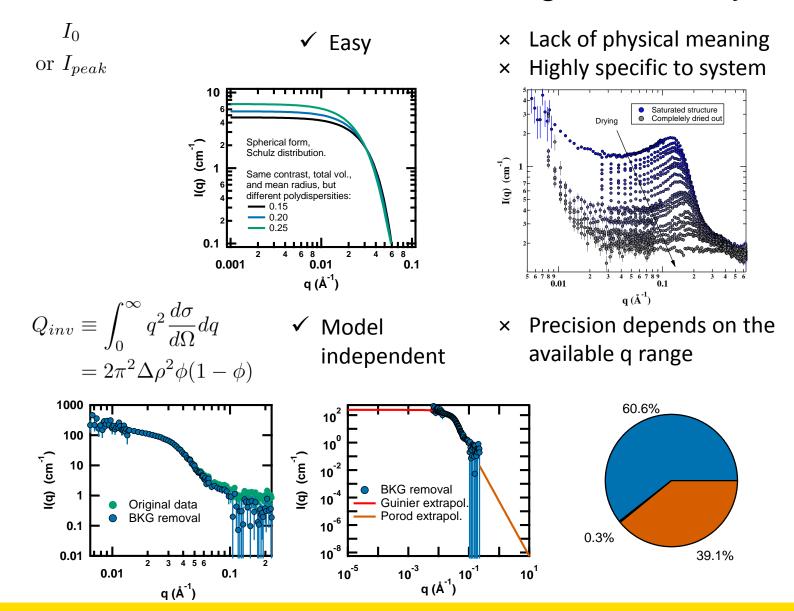
Hao Shen

Advisors: Michael Mackay and Yun Liu NCNR Low Q Seminar 3/05/2014

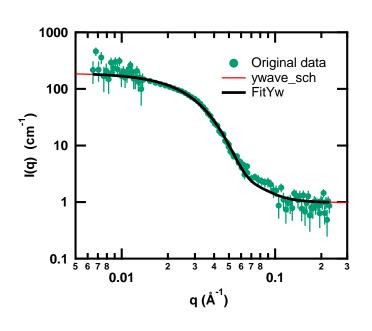
Differential Scattering Cross Section vs. Intensity

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{\text{number of neutrons scattered per second into } d\Omega \text{ at } \theta,\phi}{\Phi d\Omega} [=] Area$$

 Φ : flux of the incident neutrons.


If we transform the angles into \vec{q} and normalize it by the sample volume:

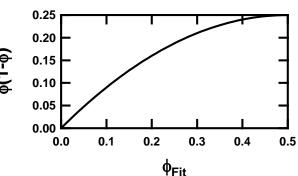
$$\frac{d\sigma}{d\Omega}(\vec{q}) \simeq I(\vec{q})[=] \mathrm{cm}^{-1}$$


Given:

- Correct instrument calibration
- Known neutron beam area and flux
- Known sample thickness

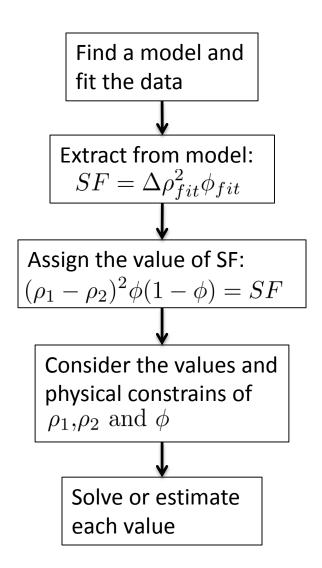
Indices for Absolute Scaling of Intensity

Extract The Scale Factor From A Fit Function


Spherical form with Schulz distribution:

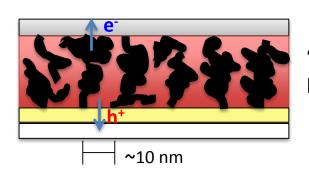
Parameter	Value
Volume Fraction (scale)	0.204276
mean radius (A)	57.9304
polydisp (sig/avg)	0.236649
SLD sphere (A-2)	3.6e-06
SLD solvent (A-2)	1.10836e-06
bkg (cm-1 sr-1)	0.98013

- Three parameters, but only one independent variable for scaling: $\Delta
 ho_{fit}^2 \phi_{fit}$
- For concentrated system, the actual scaling variable is $\Delta \rho^2 \phi (1-\phi)$
- $\rightarrow \phi$ need to be corrected
- Regardless, the following quantity will be constant:


$$\Delta \rho_{fit}^2 \phi_{fit} = \Delta \rho^2 \phi (1 - \phi) \equiv \text{Scale Factor (SF)}[=] \mathring{A}^{-4}$$

 SF is the scaling of measured data, so theoretically it is also <u>model independent</u>

A Slight Revision of SANS Data Fitting Procedure



This method is especially important when:

- 1. The system is concentrated
- 2. One or more of the SLDs cannot be independently measured

A Complicated Example: Polymer-Based Solar Cells


Aluminum

"Bulk-Heterojunction"

PEDOT:PSS Conducting Glass

- Excitons in polymer have short diffusion length ~10 nm
- Thus, morphology in the bulkheterojunction dictates the device performance

P3HT (poly(3-hexylthiophene))

PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)

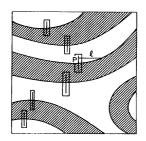
- The system is concentrated: A typical active layer consists of 50% or more PCBM.
- 2. One can assume the phaseseparated PCBM in the mixture has the same SLD as its pure form.
- 3. Still, unknown amount of fullerene is suspended within amorphous P3HT, and the SLD is unknown.

Two models to describe the PCBM phase

Polydisperse spheres with Schulz distribution:

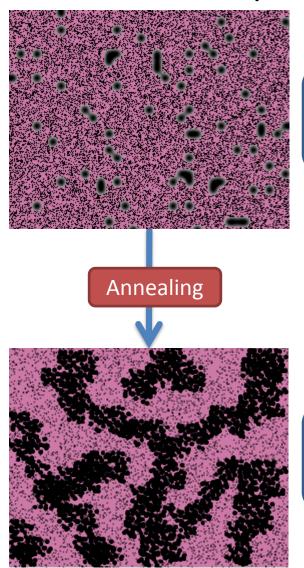
$$I(q) = \rho_0^2 v^2 \frac{9(sin(qR) - qRcos(qR))^2}{(qR)^6} \qquad \text{ Single sphere}$$

$$f(R) = (z+1)^{z+1} \left(\frac{R}{R_{avg}}\right)^z \frac{\exp[-(z+1)\frac{R}{R_{avg}}]}{\Gamma(z+1)R_{avg}} \qquad \text{Schulz distribution}$$


$$I_0 = \phi(1-\phi)(\Delta\rho)^2 \frac{4\pi}{3} R_{avg}^3 \frac{(z+6)(z+5)(z+4)}{(z+1)^3}$$

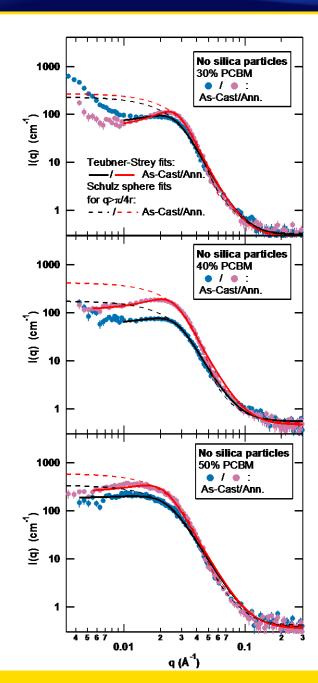
Teubner-Strey Model:

$$I(q) = \frac{\phi(1-\phi)(\Delta\rho)^2(\frac{8\pi}{\xi})c_2}{a_2 + c_1q^2 + c_2q^4} + Bkg$$


$$d=2\pi\left[\frac{1}{2}\left(\frac{a_2}{c_2}\right)^{\frac{1}{2}}-\frac{c_1}{4c_2}\right]^{-\frac{1}{2}}$$
 Repeat distance: average center to center distance

$$\xi = \left[\frac{1}{2}\left(\frac{a_2}{c_2}\right)^{\frac{1}{2}} + \frac{c_1}{4c_2}\right]^{-\frac{1}{2}} \qquad \begin{array}{l} \text{distance} \\ \text{Correlation length:} \\ \text{dispersion of } d \end{array}$$

Phase Separation Upon Annealing

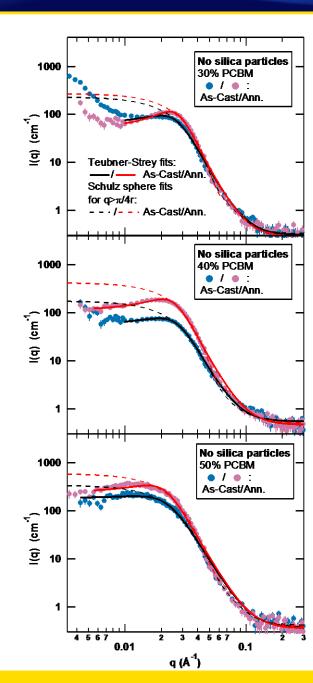

Trapped states due to fast drying of spin coating

$$\begin{split} \rho_{PCBM} &= 3.6 \times 10^{-6} \, \text{Å}^{-2} \\ \rho_{P3HT} &= 7 \times 10^{-7} \, \text{Å}^{-2} \\ \rho_{matrix} &= {\phi_2}' \rho_{PCBM} + (1 - {\phi_2}') \rho_{P3HT} \\ SF &= (\rho_{PCBM} - \rho_{Matrix})^2 \phi (1 - \phi) \\ \text{same} \end{split}$$

Toward complete phase separation

Overall effect: SF \uparrow However, both φ and ρ_{matrix} are unknown.

UNIVERSITY OF DELAWARE



Effect of Annealing on SF

	As-Cast		Annealed	
PCBM Wt%	SF	SF	SF	SF
	Spheres	T-S	Spheres	T-S
30%	1.09	1.04	1.37	1.21
40%	0.925	0.907	1.91	1.81
50%	1.42	1.51	2.03	2.05

SF Unit: 10¹² Å⁻⁴

- Relative constant SF extracted from two different models
- Significant increase in SF after annealing
- Need additional physical constraint: Total mass balance of PCBM, to solve φ and ρ_{matrix}

Solving ϕ_1 and ϕ'_2 (ρ_{matrix}) from SF

Total Mass Balance of PCBM:

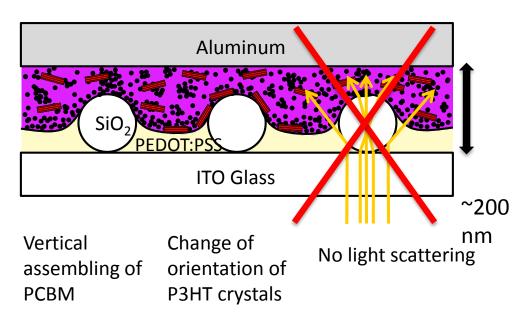
$$\phi_{PCBM,bulk} = \phi_1 + \phi_2$$
 (wrt. vol. of sample)

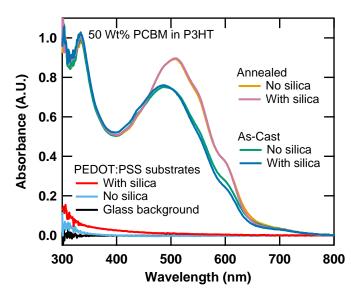
Phase-separated Trapped in matrix

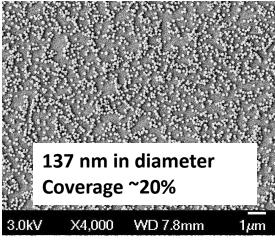
$$\phi_2' = \frac{\phi_2}{1 - \phi_1} \text{ (wrt. vol. of matrix)}$$

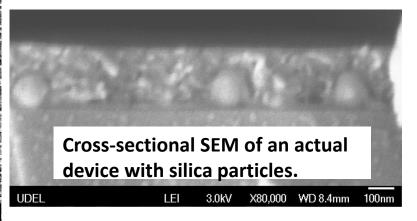
$$= \frac{\phi_{PCBM,bulk} - \phi_1}{1 - \phi_1} \qquad (1)$$

$$\rho_{matrix} = \phi_2' \rho_{PCBM} + (1 - \phi_2') \rho_{P3HT}$$


$$\begin{aligned}
\rho_{matrix} &= \varphi_2 \ \rho_{PCBM} + (1 - \varphi_2) \rho_{P3HT} \\
\Delta \rho &= (1 - {\varphi_2}') (\rho_{PCBM} - \rho_{P3HT}) \\
SF &= (1 - {\varphi_2}')^2 (\rho_{PCBM} - \rho_{P3HT})^2 \phi_1 (1 - \phi_1)
\end{aligned} (2)$$


Solve (1) and (2) simultaneously


	As-Cast			Annealed		
PCBM Wt%	SF Spheres	ф ₁	φ'2	SF Spheres	Ф1	φ'2
30%	1.09	0.20	0.096	1.37	0.24	0.050
40%	0.925	0.22	0.20	1.91	0.36	0.012
50%	1.42	0.37	0.15	2.03	0.46	0.014



Controlling the phase separation of PCBM using silica



Goal:

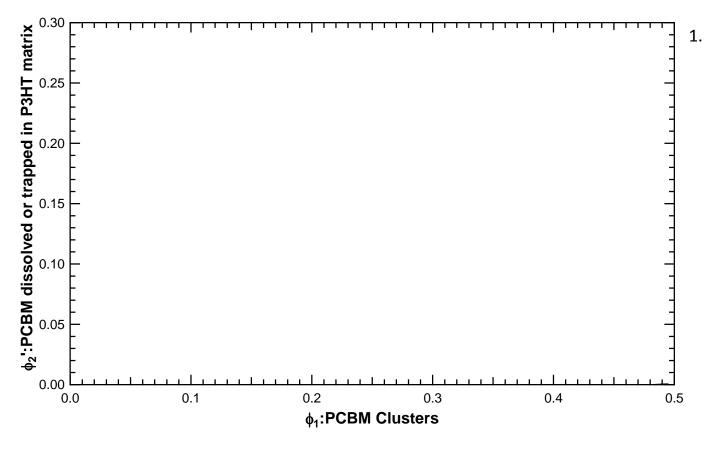
- Eliminate optical (surface plasmon) and electrical effect of nanoparticles
- Focus only on the effect of morphology

UNIVERSITY OF DELAWARE

What if SF drops after annealing?

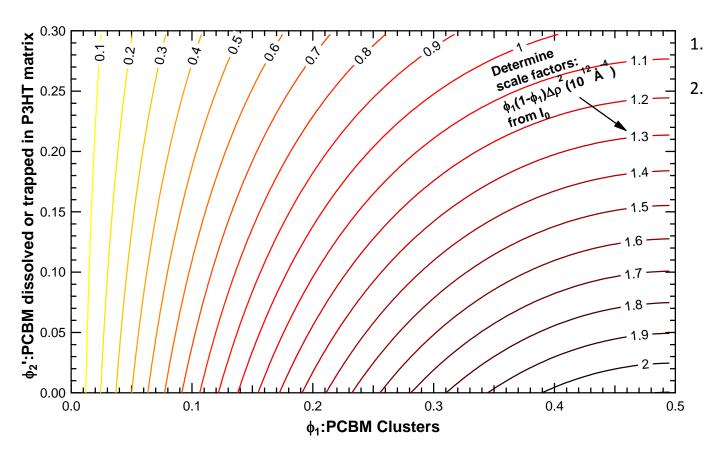
	As-Cast		Annealed	
PCBM	SF	SF	SF	SF
Wt%	Spheres	T-S	Spheres	T-S
30%	1.31	N/A	0.98	N/A
40%	1.46	N/A	1.33	N/A
50%	1.74	N/A	1.59	N/A

SF Unit: 10¹² Å⁻⁴


Dropping of SF after annealing could mean either thing:

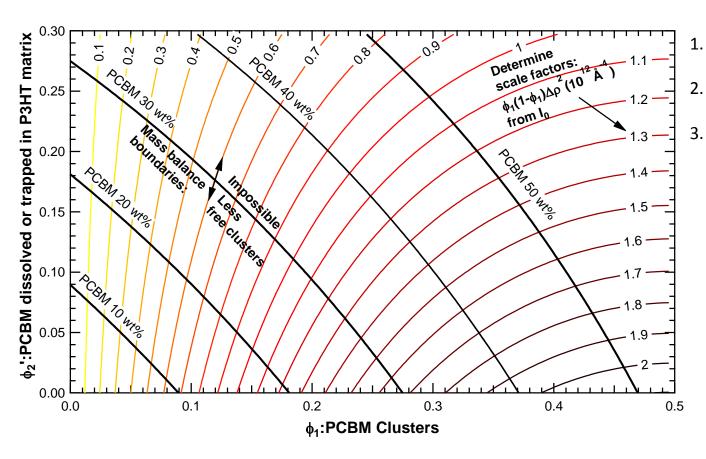
1. Given mass balance, PCBM is re-dissolve back to matrix → unlikely

$$SF = (1 - \phi_2')^2 (\rho_{PCBM} - \rho_{P3HT})^2 \phi_1 (1 - \phi_1)$$


2. The apparent mass balance does not hold, because PCBM is forming large structure with silica, falling outside the size range of SANS

$$SF = (1 - \phi_2')^2 (\rho_{PCBM} - \rho_{P3HT})^2 \phi_1 (1 - \phi_1)$$

Consider the solution space of ϕ_1 and ϕ'_2

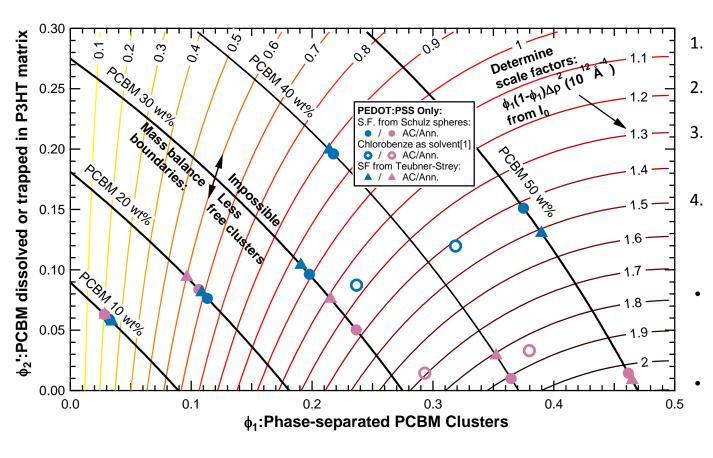

$$SF = \phi(1 - \phi)(\Delta \rho)^{2}$$
$$= (1 - {\phi_{2}}')^{2} (\rho_{PCBM} - \rho_{P3HT})^{2} \phi_{1} (1 - \phi_{1})$$

Consider the solution space of ϕ_1 and ${\phi'}_2$ Calculate all possible SF as a function of ϕ_1 and ${\phi'}_2$

$$SF = \phi(1 - \phi)(\Delta \rho)^{2}$$

= $(1 - {\phi_{2}}')^{2}(\rho_{PCBM} - \rho_{P3HT})^{2}\phi_{1}(1 - \phi_{1})$

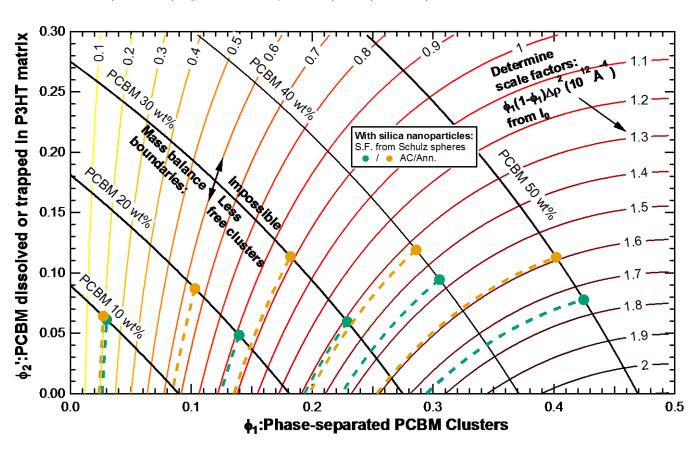
$$\phi_2' = \frac{\phi^* - \phi_1}{1 - \phi_1}$$



Consider the solution space of ϕ_1 and ϕ'_2 Calculate all possible SF as a function of ϕ_1 and ϕ'_2 Put the mass balance limits for each bulk concentration

$$SF = \phi(1 - \phi)(\Delta \rho)^{2}$$
$$= (1 - {\phi_{2}}')^{2} (\rho_{PCBM} - \rho_{P3HT})^{2} \phi_{1} (1 - \phi_{1})$$

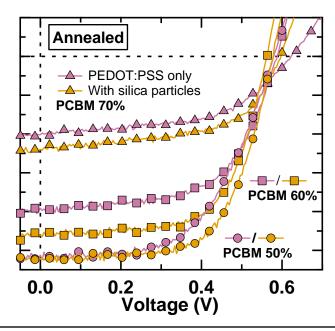
$${\phi_2}' = \frac{\phi^* - \phi_1}{1 - \phi_1}$$



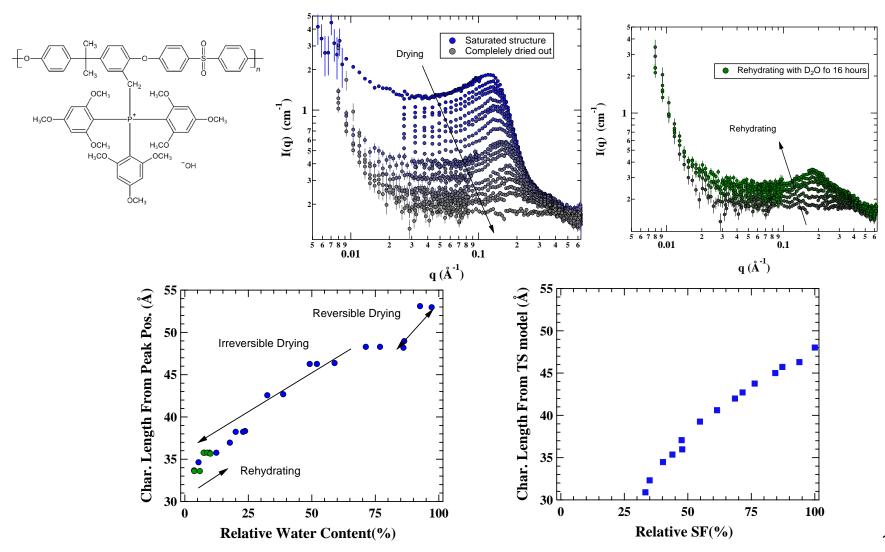
- Consider the solution space of ϕ_1 and ${\phi'}_2$ Calculate all possible SF as
 - a function of ϕ_1 and ${\phi'}_2$ Put the mass balance limits for each bulk concentration
 - Put the experimentally determined SF on the graph
- SF is a measurable physical constant, independent of the models.
- At least ~5% of PCBM will be trapped in the matrix

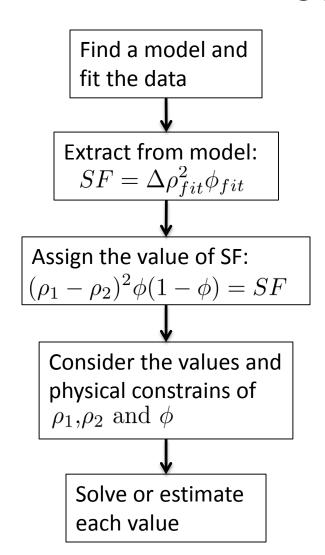


$$SF = \phi(1 - \phi)(\Delta \rho)^{2}$$
$$= (1 - {\phi_{2}}')^{2} (\rho_{PCBM} - \rho_{P3HT})^{2} \phi_{1} (1 - \phi_{1})$$


$${\phi_2}' = \frac{\phi^* - \phi_1}{1 - \phi_1}$$

- Does large-scale phase separation happen?
 No → crossing is the unique solution.
 Yes → any point on the left side of the SF curve can be the solution.
- For 20-30% PCBM, the amount of PCBM at scale of ~10 nm must decreases after annealing in the presence of silica.
- We may conclude the aggregation of PCBM onto silica due to the high surface energy.


Performance of solar cells


Efficiency, annealed (%)			
PCBM (Wt %)	No silica	With silica	Relative Improvement
50	3.17±0.553	3.74±0.208	20%
60	2.75±0.059	3.35±0.169	30%
70	1.38±0.179	1.69±0.121	20%

Structure of water in an ion-exchange membrane

Conclusion

$$I = SF S(q)P(q)$$