Hydration-dependent dynamics of confined water

Christopher E. Bertrand (christopher.bertrand@nist.gov)

NIST Center for Neutron Research, Gaithersburg, MD

February 5th, 2013

Low-Q Seminar

Overview

Properties of water

Single-particle dynamics of bulk water

Single-particle dynamics of confined water

Hydration-dependent dynamics of confined water

Anomalous properties of water

G. S. Kell, J. Chem. Eng. 12, 66 (1967)

D. E. Hare and C. M. Sorensen, J. Chem. Phys. 87, 4840 (1987)

F. Sette et al., Phys. Rev. Lett. 77, 83 (1996)

Argon: a model simple liquid

Pair potential

$$V_{\rm LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

- J. L. Yarnell, *Phys. Rev. A* 7, 2130 (1973)
- L. Verlet, Phys. Rev. 165, 201 (1968)

Water: an associating liquid

Effective isotropic two-body potential

M. E. Johnson et al., J. Chem. Phys. 126, 144509 (2007)

How do the single-particle dynamics of water and a simple liquid differ?

Collective Dynamics

Full-intermediate scattering function: Local density
$$F(Q,t) = \frac{1}{N} \int d\mathbf{x} \; e^{i\mathbf{Q}\cdot\mathbf{x}} \, \langle \rho(\mathbf{x},t)\rho(0,0) \rangle$$

Theory: Navier-Stokes Equation

$$m \frac{\partial}{\partial t} \rho(\mathbf{x}, t) + \nabla \cdot \mathbf{p}(\mathbf{x}, t) = 0$$
$$\frac{\partial}{\partial t} \mathbf{p}(\mathbf{x}, t) + \nabla \cdot \mathbf{\Pi}(\mathbf{x}, t) = 0$$
$$\frac{\partial}{\partial t} e(\mathbf{x}, t) + \nabla \cdot \mathbf{J}^{e}(\mathbf{x}, t) = 0$$

Experiment: Inelastic X-ray Scattering, Dynamic Light Scattering, Neutron Spin-echo

Single-particle dynamics

Self-intermediate scattering function:

Tagged particle position

$$F_{\rm s}(Q,t) = \int d\mathbf{x} \ e^{i\mathbf{Q}\cdot\mathbf{x}} \left\langle \delta(\mathbf{x} - [\mathbf{R}(t) - \mathbf{R}(0)]) \right\rangle$$

Theory: Langevin equation

$$m\frac{d}{dt}\mathbf{v}(t) = -\xi\mathbf{v}(t) + \delta\mathbf{F}(t)$$
$$\langle \delta F_i(t+t')\delta F_j(t')\rangle = 6\xi k_{\rm B}T\delta(t)\delta_{ij}$$

Experiments: Quasielastic neutron scattering, Pulsed gradient spin echo NMR

Quasielastic neutron scattering (QENS) essentially measures the selfintermediate scattering function of hydrogen atoms

The self-intermediate scattering function

Gaussian approximation:

$$F_{\rm s}(Q,t) \approx \exp\left(-\frac{1}{6}Q^2\left\langle [R(t) - R(0)]^2\right\rangle\right)$$

Long-time limit:

$$\lim_{t \to \infty} F_{\rm s}(Q, t) \approx e^{-\Gamma(q)t}$$

Decay rate

$$\Gamma(Q) = DQ^2$$

Self-diffusion coefficient

$$D = \frac{k_{\rm B}T}{\xi}$$

Argon near the triple point

Single particle dynamics of bulk water

Decoupling approximation:

$$F_{\rm s}(Q,t) = F_{\rm short}(Q,t) \cdot F_{\rm long}(Q,t)$$

Relaxing-cage model:

$$F_{\text{short}} = \exp\left\{-v^2 Q^2 \left[\frac{1-C}{\omega_1^2} \left(1 - e^{-\omega_1^2 t^2/2}\right) + \frac{C}{\omega_2^2} \left(1 - e^{-\omega_2^2 t^2/2}\right)\right]\right\}$$

$$F_{\text{long}} = e^{-\Gamma(Q)t}$$

S. H. Chen et al., Phys. Rev. E 59, 6708 (1999)

Water near the triple point

Non-Fickian decay rate

J. Teixeria et al., *Phys. Rev. A* **31**, 1913 (1985)

Jump-diffusion model:

$$\Gamma(Q) = \frac{1}{\tau} \left[\frac{(\ell Q)^2}{1 + (\ell Q)^2} \right]$$

$$\lim_{\ell Q \to 0} \Gamma(Q) = \frac{\ell^2}{\tau} Q^2$$

$$\lim_{\ell Q \to \infty} \Gamma(Q) = \frac{1}{\tau}$$

K. S. Singwi and A. Sjolander, *Phys. Rev.* **119**, 863 (1960)

How does confinement affect the single-particle dynamics of water?

Confined water

Confinement introduces finite-size and surface effects

MCM-41 mesoporous silica material

Suppression of freezing

G. H. Findenegg et al., ChemPhysChem 9, 2651 (2008)

Confined water dynamics

Confined water dynamics are slow, non-exponential and inhomogeneous

P. Gallo et al., J. Phys.: Condens. Matt. 24, 064109 (2012)

Dynamic crossover

Arrhenius:

$$\tau = \tau_0 \exp\left(\frac{E_a}{k_{\rm B}T}\right)$$

super-Arrhenius:

$$\tau = \tau_0 \exp\left(\frac{DT_0}{T - T_0}\right)$$

A. Faraone et al., J. Chem. Phys. 121, 10843 (2004)

How do the single particle dynamics of confined water depend on the hydration level?

MCM-41 at different hydration levels

Experimental QENS spectra

Scattering intensity:

$$I(Q, E) \sim \int dt \ e^{iEt/\hbar} F_{\rm s}(Q, t)$$

Fit model:

$$F_{\rm s} \simeq A \exp\left[-(\Gamma t)^{\beta}\right]$$

 $\beta = 0.5$

C. E. Bertrand, K-H. Liu, E. Mamontov and S.-H. Chen, *Phys. Rev. E* 87, 042312 (2004)

Experimental decay rates

Relaxation times

Proposed mechanism for dynamic crossover

Conclusions

 Measurements of water dynamics at low hydration can be used probe surface-water interactions.

 The single particle dynamics of water remain jump-diffusive in confinement.

 Water does not exhibit a dynamic crossover at monolayer hydration.

Collaborators

Kao-Hsiang Liu, MIT

Sow-Hsin Chen, MIT

Eugene Mamontov, ORNL

This project was funded by Office of Basic Energy Sciences, U. S. Department of Energy

Thank you for your attention