vSANS Sample Environment

- 1) Collimation Options → New Sample Sizes
- 2) Sample Holder Options for Complex Fluids
 - a. Commercial (Hellma-type) Quartz Cells
 - b. New sizes of Ti-Cells (Circular and Rectangular)
- 3) New Sample area layout
 - a. Rad. Safety Interlocked Sample Staging area
 - b. No sample chamber → Condensation issue
 - c. Larger available area → Larger sample blocks
- 4) Heat Transfer Calculations / Meas. w Current 10CB
- 5) Possible New Cooling Block Design Features
 - a. Insulate (foam and/or vacuum)
 - b. Double Block/Bath using "Leap-Frog" T-settings
 - c. Reduce Block Volume for Quicker Equil. Response
- 6) Shutdown Fabrication "to do" List

Sample Aperture Sizes

{ beam current ~ area }

- For circular aperture: 30 mm dia.
- For Narrow slit

1.5 mm or 3 mm x 75 mm

• For Converging Beams:

38 mm x 75 mm

USANS Beam Current:

16 mm (5/8") dia. →28,000 s-1 (current Ti-Cell)

22 mm (7/8") dia. → 48,600 s-1 (gain 1.7)

29 mm (9/8") dia. → 67,900 s-1 (gain 2.4)

18 Converging Beams:

3 x 6 beams using 12.5 mm dia. Lenses:

Width = $3 \times 12.5 \text{ mm} = 38 \text{ mm}$

Height = 6 x 12.5 mm = **75 mm**

Largest Commercial Quartz Cell Options (Hellma)

Order Number 404-1-46 404.000-QX Type Material Color Code: QX Light Path: 1 mm Volume: 700 µl **Outer Dimensions:** 47,5 mm Height: Width: 23,6 mm Depth: 3,5 mm **Inner Dimensions:** 18,5 mm Width: Base Thickness: 2,5 mm 2 Number of windows: **Print** Height: 38 mm

Width: 18.5 mm

Disadvantages:

- sometimes hard to clean properly
- Lost of cells through breakage
- Significant cost > \$300 each

Hellma - Precision in SpectroOptics Worldwide - Küvetten für Fluoreszenzmessungen

1/6/11 5:01 PM

Possible choice for Narrow Slits... → 1.5 mm wide x 75 mm tall: Also quartz capillaries or custom cells

Height: 37 mm Width: 9.5 mm

Height: 37 mm Width: 9.5 mm

Existing Ti-Cell Design:

19 mm dia. Fill volume

25 mm dia. x 1.6 mm a-Quartz windows

Enlarged Ti-Cell Design → **Circular Apertures**

32 mm dia. Fill volume

38 mm dia. x 1.6 mm a-Quartz windows

Other Design Changes:

- Thin body by 2.5 mm
- Retaining plates from **Aluminum**
- Increase max. scat. angle from 25° to 30°
- Bolts from #8 Low-heads to #10 Buttonhead
- Fill Port from #10 to 1/4"-20

{ Drawing Markups Complete }

New Rectangular Style "Large" Ti-Cell

44 mm wide x 95 mm tall fill volume

Window: a-Quartz 70 mm x 120 mm x 3.2 mm

Notes:

Grade 5 Ti for low Bgd Window.

• One rectangular window.

One O-ring sealed to glass{ Eliminates excess fill gap }

Offsetted Fill + Exhaust Port

Sample Area space: Center of Beam to Obstruction:

vSANS: 55" NG7-SANS: 32"

vSANS Velmex slide: 60" dovetail, 48" travel (2.5x current 30m instr. range)

Possibility of higher beam current (40 to 500x) and ability to walk thru beam requires:

1) Wall shields to maintain Low radiation areas + ALARA

2) Interlock shutter

New vSANS sample Area→ No Sample Chamber

Cutaway view of detector vessel showing three movable detector carriages

Possible design changes for new **Heating/Cooling Blocks**: (Choice of materials, plumbing, insulation, size ...)

SANS Thermostat Sample Holder

Ancillary code: SC-1

Quokka (ANSTO) Cooling Block Designs (similar to NCNR's blocks... massive)

Quokka (SANS) 10 sample positions

Based on a design at the NIST neutron scattering facility in the USA this 10 position sample changer operates between 20C and 300C.

Sample Changer - SANS (twenty position)

Ancillary code: SC-2

Used on:

20 sample positions

Quokka (SANS)

Based on a design at the NIST neutron scattering facility in the USA this 20 position sample changer operates between -10C and 80C.

PSI 10-CB: Vacuum (Thermos) Insulation, samples bolted to copper sink, small thermal mass.

Material Choices for Block, cells and windows

Material	Density	Heat Capacity	Thermal Conduc.	Thermal Diffus.	Corrosion Resist.		Scattering Bgd
Copper	8.94 g/ cm3	3.4 J/ cm3/K	3.94 J/ cm/s/K	1.16 cm^2/s	Poor	Medium	Medium
Aluminum (pure)	2.70	2.43	2.22	0.91	Fair	Excel.	Low
Aluminum (6061)	2.70	2.43	1.67	0.69	Fair	Excel.	High
Titanium Grade 2	4.51	2.35	0.16	0.068	Excel.	Excel.	Medium
Titanium Grade 5	4.44	2.35	.067	0.029	Excel.	Excel.	Low
Stainless Steel 304	8.00	4.0	0.16	0.04	Excel.	Medium	High
Silicon	2.33	1.65	1.49	0.90	Excel.	Excel.	v. Low
a.Quartz	2.20	1.65	0.014	0.0085	Excel.	Excel.	~Low

Block: → Aluminum 6061 (low weight, easily machined, low activation)

Sample Cell Bodies → Titanium Grade 2 (Corrosion resistance, easily machined)

Windows → a-Quartz, Silicon, Titanium Grade 5 (low Bgd, low cost)

Suggested changes over current 10-CB

- Two vs. Four flow channels
- Reduce block volume (thermal mass..)
- Increase scat. Angle from 30° to 45°.
- Vacuum tight design (thermos).

Comments:

- Sample (inner block) in dry Nitrogen
- Outer under Vacuum (Thermos)
- Quartz and Ti (grade 5) Windows.
- Only Two-cooling bath channels in base.

Heating of 10-CB from 25 C° to 90 C° with Neslab RTE-7 { Normal ramp, bath preheated to 90 C° and 105 C° }

Comments:

- Slow bath heat rate
- Large T undershoot (-3.5 C°)
- Julabo Bath is much faster!

time

time (min)

RTE-7 Bath Flowrate:

Calculated: 5 Ltr/min

Measured from Temperature Curves: 2.5 Ltr/min

$$h_L = 2C_f \frac{L}{D} \frac{V_x^2}{g}$$

FLUID	HEAT CAPACITY
Water	4.2 J/ cm^3/K
50% Water 50% E. Glycol	3.2
100% E. Glycol	2.2
Silicone Oil	1.6

Prandtl Number for various Heat Transfer (bath) fluids

$$R_e = \frac{v_x D}{v}$$

$$C_F \cong \frac{0.331}{\left[\ln\left(\frac{5.74}{R_e^{0.9}}\right)\right]^2}$$

m H

0.1

$$S_T = \frac{C_F/2}{1 + 5\sqrt{C_F/2}[P_r - 1]}$$

$$E_{TR} = \frac{T_L - T_S}{T_O - T_S} = \exp\left[-S_T \frac{4L_B}{D_B}\right]$$

Efficiency of Heat Transfer from Bath to block:

Bath Specs Comparison

Spec.	Neslab RTE-7	Julabo LH45	Huber "Tango"
Bath Volume	7.2 Ltr	2.5 Ltr	2 Ltr
Pump (max) pressure	0.5 Bar	1.6 Bar	0.9 Bar
Max. Pump rate	15 Ltr/min	24-33 Ltr/min	33 Ltr/min
Fluid	Water+ E. Glycol	Silicone Oil	Silicone Oil
Heat Capacity (T=25 C)	3.24 J/cm3/K	1.63 J/cm3/K	1.63 J/cm3/K
Heater	800 Watts	1800 Watts	1500 Watts
Cooler (max)	500 Watts	1200 Watts	450 Watts
Heating rate (pump+10 CB)	1.4 C°/min	8.0 C°/min	6.9 C°/min
Cooling rate (pump+10 CB)	-0.9 C°/min	-5.3 C°/min	-2.1 C°/min
Temp Range	-25 C° to 150 C°	-40 to 250 C	-40 to 200 C

Item	Julabo	Neslab
Undershoot (C°)	8.0 C	2.1 C
Time to 0.1 C eq.	72 min	57 min

New Cooling Block Design Choices:

- 1) Two blocks+baths in one allows one block to be at Temperature while other equilibrates ("Leap Frog"). Will require ICE to command two separate baths.
- 2) Insulate with Silicone foam insulation + outer shell. Reduces temperature gradients and temperature undershoot by factor of two, and eliminates condensation.
- 3) Insulate with vacuum. Removes condensation and reduces gradients and undershooting by factor > 20x. Inner sample block must be air/vacuum tight.
- **4) Reduce** volume (**thermal mass**) of block. Reduces equilibration time and undershoot. (Similar to PSI or D11 design). May involve fewer sample positions.
- 5) Increase efficiency of heat transfer E_{TR} by using serial vs split-parallel flow...
- 6) Increase pump rate dS/dt by using larger ID tubing and fittings.

Priority List and Budget for new Ti-Cell Sizes

Description Cost 1) Velmex Slide: 48" travel \$3,189 2) 32 mm diameter fill cells (Qty: 50 x 1mm, 50 x 2 mm, 30 x 4 mm) \$13.000 3) **5**-position room temperature holder for BT-5 USANS \$2,000 4) **20**-position room temperature holder for VSANS and 30m SANS \$6.000 5) Two **9**-position cooling blocks (-25 C \leq T \leq 130 C) for vSANS + \$10,000 30m to be used in tandem. 6) **4**-position cooling block (-25 C \leq T \leq 130 C) for BT-5 USANS \$4,000 7) 44 mm x 95 mm Ti Cells for 18 conv. Beams on vSANS \$16,000 2012 (Qty: 30x 1mm, 30 x 2 mm, 20 x 4 mm) 8) **12**-position room temperature holder for 18 beams on vSANS \$6,000 9) Two **5**-position cooling block for 18 beams on vSANS \$10,000 **Total** \$70,189

2011