Esoteric Background Correction for SANS Measurements

By John Barker 8/13/2008

Talk Overview

Background signal: Any signal collected by detector that is **not** produced By Small-angle scattering (SAS) from *'desired'* sample structure.

- 1) Background Sources Review
 - Internal to sample
 - External to sample
- 2) Annie Brulet's Paper Review: large scattering angle (θ) corrections
 - Sample Transmission
 - Cell / Window Transmission
 - Detector Efficiency
 - Detector Gondola Effect
- 3) SAS Tests with Vanadium Single Crystal

Sources of Background Internal to Sample

1) Liquid Samples

- a) Quasi-elastic incoherent background
- [?nearly? Isotropic/flat scattering, strong in hydrogenous materials.]
- b) Inelastic Incoherent or Coherent Background
- [Not truly isotropic, but may appear to be at small θ ...]
- c) Elastic Coherent Wide-Angle Scattering [Most important for D₂O and amorphous silica/quartz,
 - Diffuse scattering peak produced by nearest atom correlations.
 - Compressibility creates I(0) > 0 which may appear nearly isotropic/flat at small angles.]
- d) Enhanced Incoherent Bgd from D/H isotopic mixtures
- e) Multiple Scattering Distortions
- [where $T_{scat} < 0.9$, Shape + amplitude altered \rightarrow sample geometry]

Simulation of **Multiple Scattering**From Isotropic Scattering Disks

Scattering is pushed away from 90°

Scattering is thus enhanced at 0°.

Sources of Background Internal to Sample

1) Crystalline Samples

- a) Quasi-elastic incoherent background[?nearly? Isotropic/flat scattering, strong in hydrogenous materials.]
- b) Inelastic Incoherent or Coherent Background [Not truly isotropic, but may appear to be at small θ ...]
- c) Double Bragg Scattering
 - Polycrystal: $I_{DBS} \sim q^{-m} 2 < m < 3$ Taglauer, E. (1968)
 - Single Crystal: can produce streaks or spots.

[eliminate by using $\lambda > \lambda_{cutoff}$, reduce by improving crystalline perfection.

- d) Grain Boundaries, twins or dislocations
 - Very weak signal from lower density dislocation core.
 - Strong signal from chemical segregation
 - Strong signal in ferromagnets via demagnetization.

[Pure materials annealed to increase grain size or lower dislocation density.]

e) Surface Scratches: $I \sim q^{-m} 2 < m < 3 \text{ Roth, M. (1977)}$.

[Very weak for typical polished surface...]

f) Ferromagnetic Domain Walls - Very Strong multiple Scattering !!! [Remove walls in saturating magnetic field...]

Sources of Background External to Sample

- 1) Windows and Sample Cells
 - Includes All internal source types
 - SAS from internal structure (... precipitates ...)

[Care must be taken in evaluating possible shadowing from shielding.

```
... position in multiple sample changer ... ]
```

- 2) Air scattering
 - Appears nearly isotropic at small angles.
 - Severely affected by shadowing from shielding.
 - Large geometric solid angle gain produced near detector...

```
[ Vacuum P < 0.1 Torr, also sensitive to changes in P ]
```

- 3) Collimation Scattering (Parasitic Halo)
 - a) Aperture edge scattering (SAS + Refraction) $I \sim q^{-3}$

```
[ Use Gd foil and polish edge ]
```

b) Aperture Diffraction $I \sim q^{-3}$

Sources of Background External to Sample

- 4) Fast Neutron Background
 - weak source (< 0.2 s⁻¹) from instrument guide extremely stable
 - External sources may change! { NG-6 Physic's shutter...~10 s⁻¹ }
- 5) External Thermal neutrons
- [Proper Cd shielding of detector chamber eliminates source.]
- 6) 2D Detector Dome Scattering: I~q-2
 - [0.5 % of neutrons scatter ~ isotropically via phonons]
- 7) Gamma-Rays [Current detectors have very low sensitivity...]
- 8) Reactor-off Background: (Stable ~ 1 s⁻¹)
 - a) Cosmic Rays
 - b) Activity in aluminum of detector
 - c) Detector electronics "false" counts

Annie Brulet's Paper Review: large scattering angle (θ) corrections

Annie Brulet et al, J. Appl. Cryst. (2007). 40, 165-177.

Important large angle corrections in Brulet's paper:

- 1) Flat detector solid angle correction $\sim \cos^3(\theta)$ [C. Glinka, 1980's]
- 2)Sample transmission correction [Steve Henderson, 1990's]
- 3)Detector Efficiency Correction [Lindner, 2000 → Kline, 2008]
- 4)Cell + Window transmission correction

[Brulet, 2007 ... not presently incorporated at NIST

5)"Gondola Detector Correction

[Deformed counter window causes nonuniformity of ³He gas depth]

- Produces –dependent detector sentivity
- Sensitivity varies radially from detector center

Current Ordela 2660N detectors seem to be **okay**....constant depth

Detector Efficiency Correction:

$$\varepsilon_D(\lambda \theta) = 1 - \exp\left[\frac{-\mu(\lambda)t}{\cos(\theta)}\right]$$

Angle-dependent Transmission Correction Brulet's eq. 9

$$T(\theta) = T \frac{1 - T^{a(\theta)}}{-a(\theta)\ln(T)}$$

$$a(\theta) = \frac{1}{\cos(\theta)} - 1$$

Cell + Window transmission correction (Brulet)

Figure 8 Schematic representation of the scattering by a sample of thickness $z_{\rm s}$ in a container with front and back windows of thicknesses $z_{\rm ec1}$ and $z_{\rm ec2}$, respectively.

Brulet's Data Corrections:

- Detector efficiency
- Sample + Cell Transmission

$$F_{s}(\theta) = \frac{I_{S}(\theta) - B}{z_{s}T_{S}\alpha_{S}(\theta)} - \gamma_{S}(\theta) \left[\frac{I_{EC}(\theta) - B}{\beta_{EC}(\theta)T_{EC}} \right] + \gamma_{S}(\theta) \left[\frac{T_{EC}^{a(\theta)}}{\beta_{EC}(\theta)} - \frac{T_{S}^{a(\theta)}}{\beta_{S}(\theta)} \right] F_{b}(\theta).$$
 (12)

The dimensionless quantities $\alpha_S(\theta)$ and $\beta_S(\theta)$ tend to 1 for $\theta \to 0$ and/or $T \to 1$. They are defined by

$$\alpha_{\rm S}(\theta) = T_{\rm EC}^{a(\theta)/2} \frac{-\left(T_{\rm S}/T_{\rm EC}\right)^{a(\theta)}}{-a(\theta)\ln\left(T_{\rm S}/T_{\rm EC}\right)}$$
$$= \mathcal{E}_2[a(\theta)\ln\left(T_{\rm EC}\right)] \times \mathcal{E}_1[a(\theta)\ln\left(T_{\rm S}/T_{\rm EC}\right)] \quad (13)$$

and

$$\beta_{\rm S}(\theta) = \left[1 + \left(\frac{T_{\rm S}}{T_{\rm EC}^{1/2}}\right)^{a(\theta)}\right] \times \frac{1 - T_{\rm EC}^{a(\theta)/2}}{-a(\theta)\ln(T_{\rm EC})}$$

$$= \mathcal{E}_3\left[a(\theta)\ln(T_{\rm S}/T_{\rm EC}^{1/2})\right] \mathcal{E}_4\left[a(\theta)\ln(T_{\rm EC})\right], \quad (14)$$

with $\mathcal{E}_2(x) = 1 + x/2 + x^2/8 + x^3/48 + x^4/384 + \dots$, $\mathcal{E}_3(x) = 1 + x/2 + x^2/4 + x^3/12 + x^4/48 + \dots$ and $\mathcal{E}_4(x) = 1 + x/4 + x^2/24 + x^3/192 + x^4/1920 + \dots$ The quantity $\gamma_S(\theta)$ has the dimension of a reverse thickness. It is defined as

$$\gamma_{\rm S}(\theta) = \frac{1}{z_{\rm s}} \frac{\beta_{\rm S}(\theta)}{\alpha_{\rm S}(\theta)}.$$
 (15)

Vanadium Single Crystal as a Detector Sensitivity Standard

Vanadium versus Hydrogenous Material (Plexiglas or water)

Pro: Very small amount of inelastic scattering

Pro: optically thin sample \rightarrow limits multiple scattering.

Con: Small and expensive

Sample: 99.99% pure, 3.5 mm thick, 10 mm diameter (at λ = 6 Å, 24% isotropic incoherent scattering, 76 % absorption)

Vanadium data collection on NG3 using SDD = 1.3 m In absolute units and corrected for background. (vacuum in sample chamber...)

