
Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 1

User Manual for “ga_refl”

1 INTRODUCTION .. 1
2 GENETIC ALGORITHM.. 1

2.1 Initial Population .. 2
2.2 Evaluation of fitness.. 2
2.3 Selection of parents ... 3
2.4 Breeding... 3
2.5 Mutation... 3
2.6 Creation of new population .. 3

3 INSTALLATION... 3
4 SETTING UP A FIT .. 3

4.1 Headers.. 4
4.2 Initial set-up .. 4
4.3 Resolution .. 5
4.4 Initial model .. 6
4.5 Parameters .. 6
4.6 Constraints .. 7

5 RUNNING GA_REFL .. 8
5.1 Compiling the setup file .. 8
5.2 Run options.. 8
5.3 Interrupt options.. 8
5.4 Restarting .. 9
5.5 Seeing results... 9

1 Introduction
“Ga_refl” is a C++-based system for modelling reflectivity data using Paratt-formalism optical matrices,

and model refinement using a genetic algorithm. It has been designed from the outset to enable the
simultaneous fitting of multiple datasets, which may have parameters in common or parameters linked in
complex fashion, and above all it has been designed to be flexible to allow individual users to describe their
own systems. It can be used with magnetic (polarised) and non-magnetic data, and with X-ray and neutron
data. There is no limit to the number of datasets or parameters which can be fitted. It has so far been
tested on Linux, Cygwin for Windows, and Mac OS X. It does not have a graphical interface, however,
and requires a functioning C++ and Fortran compiler and some understanding of basic programming to
make it work.

Future improvements will hopefully include: steepest descent model refinements, detailed error
estimation, simplex model refinements, free-form reflectivity modelling, functional-form based SLD
profiles, and a simpler user interface.

It is very much a work in progress. Suggestions / ideas / bug reports (especially bug
solutions) should be addressed to Paul Kienzle or Mathieu Doucet at reflectometry-
software@nist.gov.

2 Genetic Algorithm
A genetic algorithm borrows from the ideas of evolution to produce a model refinement method that

explores parameter space in a semi-directed fashion, but which avoids being trapped in local minima. The
general scheme of a typical genetic algorithm is illustrated below. Sets of possible values of fitting
parameters are created, which, borrowing from the terminology of genetics, are known as a population of
chromosomes. These chromosomes are then evaluated against a test function (for example chi-squared) for
their fitness, which is used to determine the probability that a given chromosome will contribute to the next
generation of the population. Pairs of chromosomes are then selected, and are “bred” to produce new

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 2

chromosomes for the next generation, a process repeated as many times as necessary to populate the new
generation. Finally the new “children” chromosomes are exposed to the randomising effects of mutations,
before the new population replaces the old.

There is a large body of published literature on the subject of genetic algorithms, and they have been
shown to be effective minimisation tools in many systems. In part this is because the method does not
depend on specific functional derivatives of the fitness function with respect to the fitting parameters, which
allows us to use complicated sets of parameters and relationships between them. Computationally the
largest overhead of the method is the evaluation of the fitness function, which involves the calculation of a
reflectivity for each dataset using each chromosome, in each generation. Nevertheless experience so far has
shown the method to converge quickly in representative systems, and the optimisation of the many aspects
involved may produce further improvements

The scheme of a typical genetic algorithm.

2.1 Initial Population
The size of the population (number of different sets of parameter values considered in each generation)

is a user-defined variable. The trade-off is between speed in calculating generations, and the size of the
parameter-space which is explored in each generation. The default is 50.

The initial population of chromosomes uses randomly-generated values for all the parameters (although
optionally one can include an initial guess as one of the chromosomes). Each chromosome in the
population is created by taking each input parameter value, and normalising it to a number between 0 and
1 with respect to its fitting range. Parameters cannot leave their fitting range. The chromosome is then
simply the list of these values, and the population the list of all the chromosomes. The population is
regularly stored to disk during a calculation, and can also be written on demand to facilitate restarting a
run.

2.2 Evaluation of fitness
Genetic algorithms are normally maximising functions, so the fitness defined for each set of parameter

values is calculated as χ2max-χ2 where χ2max is a user-defined constant value (by default 5000 × number of
datasets). Parameter sets which give rise to χ2>χ2max are given a fitness of zero. Each time the fitness of a
chromosome is better than the current best the user is notified and the parameter values are stored.

Initial population of
parameter sets
(chromosomes)

Evaluate fitness

Select two parents

Breed parents to create
children

Insert children into new
population

New population

Repeat until a complete
new population has been
generated

Mutate children

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 3

2.3 Selection of parents
The probability of a chromosome being selected as a parent for breeding purposes is linearly

proportional to its rank by fitness as a fraction of the sum of the ranks of the population, so better fitting
parameters are more likely to be represented in the next generation.

2.4 Breeding
Breeding is not always performed when creating children from selected parents – a parameter is defined

which gives the breeding probability (default 0.85). If the parents are not bred, the children created are
clones of the parents. Otherwise breeding occurs by taking the chromosome of each parent, listing the
values as a single long string of numbers, choosing randomly a crossing point, and swapping all the digits
after the crossing point from one chromosome to the other (algorithm type 0, default). An alternative
method uses the same principle, but crosses each parameter value separately rather than the chromosome
as a whole (algorithm type 2). A third method averages the parameter values of the two parents (algorithm
type 1). The default appears to give the best results so far. Two children are always produced from each
pair of parents.

2.5 Mutation
Each digit in each parameter value of the child chromosome is then assessed for mutation. The

probability of mutation is initially set to 0.2, but varies during the routine within the range 0.01 – 0.35,
increasing as the degree of variation in the population decreases (and vice versa). If a digit is mutated, it is
replaced with a random number.

2.6 Creation of new population
The above process is repeated as many times as necessary to create a new population of chromosomes

the same size as the initial population. With the “elite” option set (default) the fittest chromosome (best set
of parameter values) is always preserved from one generation to the next, ensuring that the best fit never
becomes worse (although worse fits are obviously still considered in each generation, and contribute to the
exploration of parameter space). The new population then replaces the old, and a new generation begins.

3 Installation
You need to unzip and then extract the distribution provided:

djm% gunzip ga_refl-2005.03.11-src.tar.gz
djm% tar -xf ga_refl-2005.03.11-src.tar

This will produce a directory ga_refl_nnnn.nn.nn-src/ with all necessary files and sub-directories (including
sub-directories of example files).

In the ga_refl directory, type

djm% ./configure [--disable-magnetic] [FLIBS=-lg2c]
which will automatically produce the necessary configuration files [use the --disable-magnetic switch if

you do not wish to analyse magnetic data. If you wish to analyse magnetic data you must also have a
Fortran 77 compiler installed. For Mac OS X.3 the flibs may be necessary], and finally
djm% make

which will compile the main ga_refl code.

4 Setting up a fit
The initial model, data sets, constraints and beam details are adjusted in the setup.c file. The initial

model is called only once in setting up the optical matrices, but the constraints are evaluated each time the
fitness of a chromosome is tested. An example setup.c file is attached (Appendix A) but the pieces that make
it up are described individually below. Anything bracketed by /*…*/ is only a comment.

The setup.c file consists in order of Headers, Constraints, Initial Set-up, Initial Model, Parameters.

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 4

4.1 Headers
#include <stdio.h>
#include "refl.h"
#define MODELS 2
double vol_fract1, vol_fract2, rho_spacer, rho_alkyl;

MODELS defines the number of models which will be created – normally the number of datasets being
evaluated. Non-standard fitting parameters should be declared here as well (in this example vol_fract1 etc.)

4.2 Initial set-up
/*===========INITIAL SETUP===*/
fitinfo* setup_models(int *models)
{
 static fitinfo fit[MODELS];
 int i;
 fitpars *pars = &fit[0].pars;
 fitpars *freepars = &fit[1].pars;
 *models = MODELS;

 for (i=0; i < MODELS; i++) fit_init(&fit[i]);

 Data is loaded here. Datafiles are expected to be in white space separated columns of Q, R, Err(R) (or
Q, log(R), 1/ln10•Err(R)). Four column data, in which the final column consists of the Err(Q), will be
accepted in the future. The number of datasets expected is defined by the parameter MODELS, set in the
Header section. Each dataset will have a model and beam description associated with it, in the structure
fit[i], where i is the zero-base index of the dataset.

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 5

/*Non-magnetic data*/
fit_data(&fit[0],"/Users/djm/data/wc02.yor");
fit_data(&fit[1],"/Users/djm/data/wc03.yor");
fit_data(&fit[2],"/Users/djm/data/wc06.yor");
fit_data(&fit[3],"/Users/djm/data/wc07.yor");

/*Magnetic data*/
dataset = "f167+169bf"; /*datafile base*/
snprintf(fa,sizeof(fa),"%s.qa",dataset);
snprintf(fb,sizeof(fb),"%s.qb",dataset);
snprintf(fc,sizeof(fc),"%s.qc",dataset);
snprintf(fd,sizeof(fd),"%s.qd",dataset);
fit_polarized_data(&fit[0],fa,fb,fc,fd);
/* one for each dataset */

4.3 Resolution
The program allows the instrumental resolution to be defined differently for each data set, and also

allows some flexibility in defining the resolution differently for different data points within a single data set,
to allow for the variety of collection methods possible.
/* Assign resolution to points in the data.
 *
 * Fixed slits:
 * data_resolution_fixed(data,L,dLoL,0.,0.,dT);
 *
 * Opening slits:
 * data_resolution_varying(data,L,dLoL,0.,0.,dToT);
 *
 * Fixed below |Qlo| then opening:
 * data_resolution_fv(data,L,dLoL,|Qlo|,dTlo,dToT);
 *
 * Opening between |Qlo| and |Qhi|, fixed above and below:
 * data_resolution_fvf(data,L,dLoL,|Qlo|,|Qhi|,dTlo,dToT,dThi);
 *
 * Fixed in stages (e.g., from TOF source):
 * data_resolution_fixed(data,L,dLoL,0.,Q1,dT1);
 * data_resolution_fixed(data,L,dLoL,Q1,Q2,dT2);
 * data_resolution_fixed(data,L,dLoL,Q2,Q3,dT3);
 * ...
 * data_resolution_fixed(data,L,dLoL,Qn,0.,dT3);
 *
 * If instrument uses angle T rather than Q:
 * #include "reflcalc.h"
 * Q = T2Q(L,T)
 *
 * To compute dT from slit openings and separation use:
 * #include "reflcalc.h"
 * dT = resolution_dT(s1,s2,d)
 *
 * For opening slits, dToT also needs an incident angle in degrees:
 * #include "reflcalc.h"
 * dToT = resolution_dToT(s1,s2,d,T)
 */

/* Initialize instrument parameters for each model.*/
 for (i=0; i < MODELS; i++) {
#include "reflcalc.h"
 const double L = 5.0042,dLoL=0.020,d=1890.0;
 double Qlo,Tlo,dTlo,dToT,s1,s2;
 Qlo=0.0154,Tlo=0.35;
 s1=0.21, s2=s1;
 dTlo=resolution_dT(s1,s2,d);
 dToT=resolution_dToT(s1,s2,d,Tlo);
 data_resolution_fv(&fit[i].dataA,L,dLoL,Qlo,dTlo,dToT);
 fit[i].beam.lambda = L;
 interface_create(&fit[i].rm, "erf", erf_interface, 30);
 }

For this example all measurements were made in the same conditions (the values are appropriate for
AND/R), so a loop can be used across all the datasets. Otherwise the fit[i].beam information needs to
altered for each dataset individually. beam.lambda is the radiation wavelength (Å). Other possible variables to

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 6

adjust here are beam.frontbackratio (default 1), beam.background (1e-10), and beam.intensity (1). Roughness is
treated by calculating dividing each density step between slabs into a fixed number of smaller substeps with
a given shape, here an error function of 30 substeps per density step.

4.4 Initial model
/*=============INITIAL MODEL – Non magnetic=====================================*/
for (i=0; i < MODELS; i++) {
 model_layer(&fit[i].m, 0.000, 2.07e-6, 0.0e-8, 0.00); /* 0 silicon */
 model_layer(&fit[i].m, 7.000, 3.40e-6, 0.0e-8, 3.00); /* 1 oxide */
 model_layer(&fit[i].m, 5.800, 3.01e-6, 0.0e-8, 3.00); /* 2 chromium */
 model_layer(&fit[i].m, 90.70, 4.50e-6, 0.0e-8, 3.00); /* 3 gold */
 model_layer(&fit[i].m, 18.00, 1.00e-6, 0.0e-8, 3.00); /* 4 spacer */
 model_layer(&fit[i].m, 28.00, -0.2e-6, 0.0e-8, 3.00); /* 5 alkyl tails*/
 model_layer(&fit[i].m, 100.0, 6.35e-6, 0.0e-8, 3.00); /* 6 solvent */
 }

or

/*=============INITIAL MODEL – Magnetic=====================================*/
for (i=0; i < MODELS; i++) {
 model_magnetic(&fit[i].m,0,0,0,0,0,0,0,0); /*vacuum*/
 model_magnetic(&fit[i].m,110.0,7.1e-6,2.7e-9,9.8,5.7e-07,9.8,246.0,9.82);/*X*/
 model_magnetic(&fit[i].m,270.0,6.8e-6,2.7e-9,43.2,1.0e-6,43.2,263.2,90.0);/*Fe3O4*/
 model_magnetic(&fit[i].m,134.0,8.2e-6,5.7e-9,11.8,4.7e-6,11.0,272.2,11.8);/*Fe*/
 model_magnetic(&fit[i].m,100.,5.3e-6,2.1e-10,3.5,0.0,3.5,272.2,3.5);/*MgAl2O4*/
 }

This creates a model from series of slabs for each dataset loaded above, and stores it in fit[i].m. In this
example there are the same number of layers for each dataset, so a loop is used across the number of
models – otherwise a separate model can be created for each dataset individually. The parameters for each
slab are in order thickness (d / Å), SLD (rho / Å-2), absorption (mu / Å-1), and the FWHM roughness
between this slab and the previous slab (rough / Å) [and for magnetic samples P, P roughness, theta, and
theta roughness]. There is no limit to the number of layers.

 /*correct layers for different models*/
 fit[1].m.rho[6]=3.4e-6;
 fit[2].m.rho[6]=-0.57e-6;
 fit[3].m.rho[6]=4.0e-6;

Any differences in the models for the different datasets can be altered afterwards (here the solvent SLD
varies for the four different datasets). The convention is fit[i].m.variable[k], where i refers to the dataset
number, variable is one of d, rho, mu, or rough [or the magnetic specific parameters], and k is the layer number
(starting from layer 0, the incident medium).
 rho_spacer=0.60e-6;
 rho_alkyl=-0.20e-6;
 vol_fract1=0.9;
 vol_fract2=0.99;

Non-standard variables should also be initialised here.

4.5 Parameters
Parameters are described as fit and/or free parameters. Fit parameters are adjusted by the genetic

algorithm, and the adjusted value is, by default, copied into all models. To prevent a parameter being
overwritten it must be added to the free parameter list – free parameters are parameters whose values are
allowed to differ between models. A fit parameter may also be a free parameter (for example, the SLD of
the solvent is different for each dataset, so each one must be a free parameter. To fit the SLD of the
solvents as well they are simply added as fit parameters). There is no limit to the number of parameters in
either case.

/*=============== FIT PARAMETERS ===============================*/
 pars_add(pars, "Oxide thickness", &(fit[0].m.d[1]), 5., 30.);
 pars_add(pars, "Cr thickness", &(fit[0].m.d[2]), 5., 30.);
 pars_add(pars, "Au thickness", &(fit[0].m.d[3]), 40., 150.);

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 7

 pars_add(pars, "Au density", &(fit[0].m.rho[3]), 4.0e-6, 4.8e-6);
 pars_add(pars, "Spacer thickness", &(fit[0].m.d[4]), 5., 20.);
 pars_add(pars, "Spacer volume fraction", &(vol_fract1), 0, 1);
 pars_add(pars, "Alkyl chain thickness", &(fit[0].m.d[5]), 5., 30.);
 pars_add(pars, "Alkyl volume fraction", &(vol_fract2), 0, 1);
 pars_add(pars, "SLD solvent 0", &(fit[0].m.rho[6]), 5.0e-6, 6.5e-6);
 pars_add(pars, "SLD solvent 1", &(fit[1].m.rho[6]), 3.0e-6, 4.5e-6);
 pars_add(pars, "SLD solvent 2", &(fit[2].m.rho[6]), 5.0e-6, 6.5e-6);
 pars_add(pars, "SLD solvent 3", &(fit[3].m.rho[6]), 3.0e-6, 4.5e-6);

These lines set up the fit parameters, assigning them a “name”, pointing to the parameter in question (a
standard variable or a non-standard variable declared and initialised earlier, e.g. vol_fract1 above), and
setting the lower and upper limits of the parameter range. The free parameters are defined below. The
name and range is unimportant for these as the freepars only marks them as differing from model 0.

 pars_add(freepars, "SLD solvent 2", &(fit[1].m.rho[6]), 0., 1.);
 pars_add(freepars, "SLD solvent 3", &(fit[2].m.rho[6]), 0., 1.);
 pars_add(freepars, "SLD solvent 4", &(fit[3].m.rho[6]), 0., 1.);
 pars_add(freepars, "rough_cr_au", &(fit[0].m.rough[3]), 0., 1.);
 constraints = constr_models;
 return fit;
}

Finally the constraints are assigned to complete the model formation.

4.6 Constraints
Although assigned at the end of the initialisation the constraints should be defined before, and hence

appear near the beginning of the setup.c file. The constraints are extremely flexible – each slab of the matrix
model can be altered in any way, or set equal to other slabs’ values. These constraints are evaluated each
time the fitness of a chromosome is tested.
/*=========== CONSTRAINTS =====================*/
void constr_models(fitinfo *fit)
{
 int i,k;

 /* Rescue the free parameters from the model. */
 for (i=0; i < fit[1].pars.n; i++)
 fit[1].pars.value[i] = *(fit[1].pars.address[i]);

 /* Go through all layers copying parameters from model 0 to other models */
 tied_parameters(fit);

 /* copy the global roughness to all interfaces*/
 for (i=0; i< MODELS; i++) {
 for (k=1;k<7; k++) fit[i].m.rough[k]=global_rough;
 }

 /* Restore the free parameters to the model. */
 for (i=0; i < fit[1].pars.n; i++){
 *(fit[1].pars.address[i]) = fit[1].pars.value[i];
 }

 /* allow the cr_au roughness to differ from the global rough
 * - this was saved as a free parameter for model[0], now copy to
 * other models
 */
 for (i=1; i< MODELS; i++) {
 fit[1].m.rough[3]=fit[0].m.rough[3];
 }
 /*calculate the layer densities for layers given in vol fractions*/
 for (i=0; i< MODELS; i++) {
 fit[i].m.rho[4]= vol_fract_spacer*rho_spacer+(1-vol_fract_spacer)*fit[i].m.rho[6];
 fit[i].m.rho[5]= vol_fract_alkyl*rho_alkyl+(1-vol_fract_alkyl)*fit[i].m.rho[6];
 }
}

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 8

The function tied_parameters set all values of thickness/density/mu/rho [and magnetic values] to be the
same across all the models, except for those previously defined as free parameters. Following this is an
example of the kinds of custom constraints that can be used – here the SLD of the “spacer” layer and the
“alkyl chain” layer for each of the datasets is calculated from the volume fraction of the molecule and the
solvent SLD, which differs for each dataset. It is thus the volume fraction of the molecule which is directly
fitted, rather than the individual SLDs of the layers. Also a global roughness is modelled – one roughness
value for all interfaces except the specifically excluded Cr-Au interface.

5 Running ga_refl

5.1 Compiling the setup file
- ensure that the Makefile is in the same directory as the setup.c file

- type “make” (or “gmake” on Jazz) in this directory

Note that errors may be reported if you have not correctly formed your setup.c file. These errors are
reported by the compiler with the line number of the error. Common mistakes include incorrect closures of
brackets, use of variables that have not been initialised, or forgetting to use a semi-colon to end an
instruction.

Warning: you must always recompile after making alterations to your setup.c file or the
alterations will have no effect.

5.2 Run options
The command “fit -h” will provide a quick guide to the starting options. These are –

usage: fit [-pmgFLM] [-x n] [-c cutoff]
 -A <%> accelerated by computing at most % partial chisq
 -F fit the parameters, writing to fit.log each step (default)
 -g write profile.dat and fit.dat[ABCD] for the initial model
 -m print the initial model and profile to the screen
 -p use saved population from pop.dat
 -x <nth> print chisq landscape of the nth parameter using initial model values
 -i keep initial model parameters in initial population (default uses random population)
 -c <value> define the chisq value cut-off
 -L log all parameter sets and associated chisq to fit.log
 -t trace period for writing pop_bak.dat (0 for none, default=20)
 -N create new pop_##.dat file each trace period
 -s seed value for random number generator (allows completely reproducible runs)
 -w force unweighted fit
 -W force weighted fit (default)

Standard usage is either “fit” for a new fit, or “fit -p” to restart a previously interrupted fit. To restart a
previous fit the population must have been saved upon exit (see below), or the backup population which is
periodically written to disk must be renamed to “pop.dat”. When restarting a fit the existing parameter file
“par.dat” is appended to, in starting a new fit the parameters are overwritten.

5.3 Interrupt options
By default the genetic algorithm continues to run until manually stopped. To interrupt the fitting press

“Ctrl-C”. This will bring up a menu with a range of options –

Select an option:
 q (quit)
 w (write population)
 b (write and quit)
 a (run amoeba from current best)
 A (accelerate)
 r (randomize)
 x (plot chi^2)
 c (change a parameter)
 p (print current best values)
 R (Change range for a parameter)
 any other character to continue

Duncan McGillivray invino:Users:djm:Desktop:ga_refl:doc:ga_refl.doc 06 April 2005 9

 “write” and “write and quit” both write the current population of chromosomes to disk in the file
“pop.dat”, “quit” exits the program without storing the current population. The population is
automatically stored to a backup file, “pop_bak.dat” every 20 generations by default.

The other options work with specific parameters. The parameter number is the zero-based index of the
parameter, as is printed on screen by using the “p” option.

“randomize” allows you to randomise the population’s values for a specific parameter, but does not
affect the fittest chromosome.

“plot chi-squared” prints to screen the chi-squared landscape for the selected parameter using the fixed
current best values for all other parameters.

“c” and “R” allow you to change the value of a parameter and its range respectively. When the value of
the parameter is changed it is changed in all chromosomes, including the best. This may result in a
worsening of the overall chi-squared of the fit. As the value is altered in all the chromosomes, it is normally
a few generations before differences between chromosomes are seen. Altering the range of a parameter
should be used with care, as this may lead to inconsistencies between a stored population and the initial
model when a fit is restarted.

5.4 Restarting
Fits may be restarted by using the “fit -p” option. This will cause the program to initialise based on the

compiled setup.c file, but it will then use the stored population in “pop.dat” as its initial population.
Information will be appended to the parameter file “par.dat” rather than overwriting it.

5.5 Seeing results
Output from the fitting is stored in “.dat” files in the same directory as the program is run. The datafiles

used, parameters fitted, their ranges, and each improvement in the best values are all stored in the
“par.dat” file. This file also records modifications to the fit in progress, such as alteration of parameter
values or ranges, or notes a restart.

As noted above the population of chromosomes can be written to the “pop.dat” file, and is
automatically written to the “pop_bak.dat” file every 20 generations by default.

The actual optical matrix parameters used in calculating the best fit are stored in “modeln.dat”, where n
refers to each dataset. This is a useful place to check that special constraints are doing what they should.

The data and best fit are stored in “fitn.dat”.

The model profiles of the best fit are stored in “profilen.dat”, where the columns are vertical distance
from the interface (z), rho, mu, [and then P and theta for magnetic systems].

To plot the the data sets a script has been written which uses gnuplot, and is called gaplot. This is
invoked from the X-window command line.

djm% gaplot rho|mu|P|theta|fit|chisq|chisurf [file.ps]

For more detail on gaplot options type

djm% gaplot

