Magnetic Ground State of Industrial Sensors

Teresa Turmanian (Juniata College) in collaboration with Dr. Brian Kirby (NIST), Dr. Alex Grutter (NIST), Dr. Joe Davies (NVE Industries)
Background
Magnetic particle

Ferromagnet

Synthetic anti-ferromagnet
AKA wafer
Purpose: Determine thickness and magnetization

- No external magnetic field AKA ground state
- High resistance

- External magnetic field
- Low resistance
neutron wave
Constructive Interference

Destructive Interference

Bragg condition
\[n\lambda = 2d \sin \theta \]
Interference from layers of varying thickness

- Reflected Intensity
- Angle of incidence

-thick layers

-thin layers
\[Q \equiv \frac{4\pi \sin \theta}{\lambda} = \frac{n2\pi}{d} \propto \theta \]

\[V = \frac{2\pi \hbar^2}{m} N b = \frac{2\pi \hbar^2}{m} \rho \]

\[\rho = \rho_{\text{nuclear}} \pm \rho_{\text{magnetic}} \]

\[\vec{M} \propto \rho_{\text{magnetic}} \]
Top View of wafer

- M_{\parallel}: No spin flip; tells about ρ_{nuclear}
- M_{\perp}: Spin flip; tells about ρ_{magnetic}

Vectors \vec{M}_{\parallel} and \vec{M}_{\perp} represent the magnetic moment components parallel and perpendicular to the field \vec{H}.
Experiment
Spin – flip scattering

- Polarizer (Spin down)
- Flipper A (on)
- Flipper B (off)
- Analyzer (Spin down)
- Detector

Non – spin – flip scattering

- Polarizer (Spin down)
- Flipper A (on)
- Flipper B (on)
- Analyzer (Spin down)
- Detector
Multilayer repeat
• Rotated the sample and detector angle in magnetic fields of 20 mT and 0.5 mT
• Detector measured the intensity of the reflected neutrons as a function of sample angle over time
Results
&
Conclusions
Data Analysis Process

Model based on assumptions → Python Script → Refl1-D → Chi squared value → Set Aside
Experimental Data at High Field

\[Q_A = \frac{2\pi}{d} \]
\[Q_B = \frac{4\pi}{d} \]
\[\bar{d}_{\text{actual}} = 68 \text{ A} \]
Best Model at High Field

Scattering Length Density $x 10^{-6} (\text{Å}^{-2})$

Depth Profile of Nuclear and Magnetic SLD and Magnetization Angle

$\theta_M (^\circ)$
depth (Å)
Best Fit at High Field
Actual High Field Result

Unit cell 1
Unit cell 2
Unit cell 3
Unit cell 4

\vec{H}

0°

NFC seed

CoFe$_1$

NFC$_1$

CoFe$_2$

NFC$_2$

CoFe$_3$

NFC$_3$

CoFe$_4$

NFC$_4$
Experimental Data at Low Field
Best Model at Low Field

Scattering Length Density

$\times 10^{-6} (\text{Å}^{-2})$

Magnetization Angle ($^\circ$)

Depth Profile of Nuclear and Magnetic SLD and Magnetization Angle
Best Fit at Low Field
Expected Low Field Result

\[\vec{H} \]

0°

NFC seed

NFC₁

NFC₂

NFC₃

NFC₄

CoFe₁

CoFe₂

CoFe₃

CoFe₄
Actual Low Field Result

$\theta_{\text{separation}} = 88^\circ$
$\theta_{\text{separation}} = 108^\circ$
$\theta_{\text{separation}} = 143^\circ$
$\theta_{\text{separation}} = 141^\circ$

θ_M angles are measured relative to H field
Continuing Work
Why aren’t the magnetic layers coupling anti-ferro-magnetically at low field?
Acknowledgments

• SURF Program at NIST
• Dr. Brian Kirby (NIST)
• Dr. Alex Grutter (NIST)
• Dr. Julie Borchers (NIST)
• SURF directors
• NCNR staff
• Dr. Joe Davies (NVE Industries)
• Juniata College