Neutron Diffraction Study of Pressure-Dependent Magnetism in Molecule Based Magnets

S.E. Conklin, D. M. Pajerowski, J. Leao, L.W. Harriger, F. Majkrzak, K. Krycka

Presented by: Steven Conklin
University of Puerto Rico-Rio Piedras
Mentor: Daniel Pajerowski
NCNR
Outline

Pressure dependent magnetism
- MBMs and PBAs
- FeCr
- NiCr

FeCr
- Synthesis
- First Principles Calculation
- Elemental analysis
- Structural analysis
- Conclusion

NiCr
- Synthesis
- First Principles Calculation
- Elemental analysis
- Structural analysis
- Conclusion

The Big Kahuna!
Pressure Dependent Magnetism

- Magnetostrictive materials
- Villari effect (inverse magnetostrictive effect)
- Device application: sensor, sonar.

Images taken from Wikipedia, NCTE, and Subseaworldnews.com
Molecule Based Magnets (MBMs) & Prussian Blue Analogues (PBAs)

MBMs
- Ferromagnetism
- Room-temperature synthesis
- Highly tunable

PBAs
- Tunable magnetic ordering
- Mixed valency system
- FCC structure
- Fm$\bar{3}$m (225)
FeCr PBA

- $KFe_3[Cr(CN)_6]_2 \cdot nH_2O$

- Magnetization \downarrow: Pressure \uparrow

- Hypothesis:
 - Linkage isomerism with spin-crossover (LI)
 - Intrinsic spin-crossover (SC)

NiCr PBA

- $\text{KNI}_3[\text{Cr(CN)}_6]_2 \cdot n\text{H}_2\text{O}$

- **Hypothesis:**
 - LI
 - Random spin-canting
 - Domain wall movement

- **Magnetization ↓:** Pressure ↑

FeCrx: Synthesis

- $\text{K}_3\text{Cr(CN)}_6$
- FeCl_2
- Cold D_2O
- No heat
- Dumped together
FeCr: DFT

Variation of FeCr isomers' energy with given lattice

Variation of FeCr isomers' moment with given lattice
FeCr: Elemental Analysis

FT-IR

Linkage isomerization of the cyanide ligand in FeCr

K$\text{Fe}[Cr(CN)\text{6}]_{0.8}$

XPS

K 2p

C 1s

O 1s

N 1s

Cr 2p

Fe 2p
FeCr: XRD

- (2,0,0)
- (2,2,0)
- (2,2,2)
- (4,0,0)
FeCr: Neutron Diffraction
FeCr: Neutron Diffraction
FeCr: Conclusion
NiCr: Synthesis

- $K_3Cr(CN)_6$
- $NiCl_2$
- KCl
- D_2O
- $60 \, ^\circ C$
- Peristaltic Pump
NiCr: DFT

Variation of NiCr isomers' energy with given lattice constant (Å):

- Energy (eV) decreases as the lattice constant increases.
- The energy difference between Ni (C-N) and Ni (N-C) is noticeable.

Variation of NiCr isomers' moment with given lattice constant (Å):

- The Ni moment (µB) increases as the lattice constant increases.
- The moment difference between Ni (C-N) and Ni (N-C) is evident.
NiCr: Elemental Analysis

FT-IR

XPS

$K_{0.42}\text{Ni}[\text{Cr(CN)}_6]_{0.89}$
NiCr: XRD

![Graph showing XRD peaks at (2,0,0), (2,2,0), and (2,2,2)]

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5000</td>
</tr>
<tr>
<td>Cr</td>
<td>0.5000</td>
<td>0.0000</td>
<td>0.5000</td>
</tr>
<tr>
<td>C</td>
<td>0.0000</td>
<td>0.2413</td>
<td>0.5000</td>
</tr>
<tr>
<td>K</td>
<td>0.7500</td>
<td>0.2500</td>
<td>0.7500</td>
</tr>
<tr>
<td>N</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.3490</td>
</tr>
</tbody>
</table>
NiCr: Neutron Diffraction
NiCr: Neutron Diffraction
More depolarization at HIGH PRESSURE shows presence of domains effect.
NiCr: Conclusion

LI

Domain wall movement

Random spin-canting
The Big Kahuna!

- No LI in either sample.
- Domain wall movement (NiCr)
- Intrinsic spin-crossover (FeCr)
Acknowledgements

- Daniel Pajerowski
- Julie Borchers, Robert Shull, Terrell Vanderah
- Rob Dimeo, Dan Neumann
- NIST
- CHRNS
- NCNR
- And all of those who helped us in the process.
It was a pleasure working with you guys!
Questions?

“The Great Wave off Kanagawa” by Katsushika Hokusai (c. 1829-32)