Aggregation of α-Chymotrypsinogen A in Aqueous Solutions

Aaron Aziz Advisor: Dr. Yun Liu Colleague: Dr. Jiang Du

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

What is Protein Aggregation?

Figure 1. Schematic diagram of protein aggregation pathways.

Quality control of protein folding in extracellular space. J. J. Yerbury.

- It is a broad term used to define a type of protein self assembly
- Classified as native or nonnative proteins
- Can include both soluble and insoluble protein aggregates
- Typically these aggregates are unfavorable products

Why is it important?

1. Bio-processing operations

2. Pharmaceuticals

3. Debilitating diseases

4. Cytotoxicity

Our study

• α-Chymotrypsinogen A

Goals:

- Aggregation dynamic of α-Chymotrypsinogen A
- 2. Broaden this understanding to other proteins
- 3. Apply to real world problems <u>Techniques</u>:
- 1. Dynamic Light Scattering
- 2. Circular Dichroism
- 3. Small-Angle Neutron Scattering

"...30% of the original protein sample aggregated in a period of 2 hours into clusters comprising four or more molecules each."

Dynamic Light Scattering Results

5 mg/ml pH=7.3

Decay Curve Fitting Results

$$I_2(t) = A(e^{-2t/\tau}) + B$$

```
clc;
clear;
h = fopen('testdata.txt', 'r');
data = fscanf(h, '%g %g', [4 inf])';
```

t = data(:,1); Rexp = data(:,2); loglog(t,Rexp,'ro'); hold on

bo = [.22 40 1]; b = lsqnonlin(@expfunc, bo,[],[],[],data)

 $\begin{aligned} & \text{Rcal} = (b(1)^* \exp(-2^* t/b(2))) + b(3); \\ & \text{plot}(t, \text{Rcal}, 'b'); \end{aligned}$

 $\begin{aligned} &k = 2*pi/(782.7e-9/1.33); \\ &q = (sqrt(2)*k); \\ &D = 1/((b(2)*(10^{-6}))*(q^{2})); \\ &a = (1.3806503e-23*298.15)/(6*pi*8.94e-4*D) \end{aligned}$

Hydrodynamic Radius:

$$a = 2.2293e-009 = 2.23 \text{ nm}$$

Dynamic Light Scattering Results

Dynamic Light Scattering Results

Decay Curve Fitting Results

Circular Dichroism

Figure 5. Far-UV CD spectra of chymotrypsinogen and α -chymotrypsin at pH 7. The inset shows the difference spectrum (chymotrypsinogen – chymotrypsin) as the solid curve (right ordinate) and the CD spectrum of N-acetyl-L-tryptophanamide as the dashed curve (left ordinate). The data on chymotrypsin(ogen) are from unpublished work of M. J. Gorbunoff and S. N. Timasheff, and those for AcTrpNH₂ are from Shiraki (1969). (Reprinted with permission from Cantor and Timasheff, 1982, by permission. © 1982, Academic Press, Inc.)

Circular Dichroism and the Conformational Analysis of Biomolecules. Gerald D. Fasman.

Small-Angle Neutron Scattering (SANS)

Small-Angle Neutron Scattering (SANS)

Conclusion

Aggregate

- Linear semi-flexible polymer chain
- Does not precipitate

Future Plans

- Chymotrypsin Testing
- Trypsin Inhibitor
- Vary pH
 - □ pH = 3
 - □ pH = 9
 - □ pH = 11

Acknowledgements

Yun Liu Jiang Du Paul Butler Andrea Hamill Christopher Roberts NIST SURF/NCNR

Thank You!

NIST

¿Questions?

References

- Velev, O. D, and E. Kaler, and A. Lenhoff. (1998). Protein Interactions in Solution Characterized by Light and Neutron. *Biophysical Journal*, 75 pp. 2682-2697.
- Yerbury, J. J, and E. Stewart, and A. Wyatt, and M. Wilson. (2005). Quality control of protein folding in extracellular space. *EMBO Reports*, *6* (12), pp. 1131-1136.

Materials

- α-chymotrypsinogen
- deionized water from a Millipore Milli-Q system (solutions for DLS)
- NaCl (used to adjust the electrolyte concentration)
- 10 mM citrate buffer (0.01 mol/L) deionized water (1 L) citric acid (192.14 x 0.01= 1.9214 g)
- 0.1 M NaOH (0.1 mol/L) deionized water (0.1 L) NaOH (40.01 x 0.01= 0.4001 g)
- 0.1 M HCl dilute from concentrated HCl solution