EFFECTS OF TETHERING ON GLASS TRANSITION TEMPERATURE (T_G) FOR CONFINED THIN FILMS
Polymer chains in bulk have random coil conformation with average size of radius of gyration (R_g).

- High grafting density (~0.5 chains/nm2) leads to chains stretching normal to the surface, creating a highly confined system.
Glass transition temperature (T_g) – the point of transition at which amorphous materials change from brittle, glass state to soft, rubber state.

- Physical properties (specific volume, heat capacity, viscosity, thermal expansion coefficient) change.

- Thermal expansion coefficient change is directly proportional to the thickness change for the thin films.
T_G VS. MELTING POINT

A heat vs. temperature plot for an crystalline polymer, on the left; and a amorphous polymer on the right.
MOTIVATION

- For Polystyrene (PS) thin films the T_g decreases as films get thinner.
- Proven recently that tethering alters the surface dynamics of the chains due to extreme lateral and vertical confinement.\(^1\)
- How does dense tethering alter the T_g of the thin films?

Fundamental Science

Industry

EXPERIMENTAL SETUP

- Reflectivity scans on high-density PS brushes
- Annealed for two hours at 120 °C

- Bromine
- Polystyrene
- 11-((2-bromo-2-ethyl)propionyloxy undecyl)trichlorosilane (initiator layer)
Interference of these partially reflected x-ray beams creates a reflectometry pattern

Kiessig fringes (maxima) occur because interference of waves can be constructive or destructive, $t = \frac{2\pi}{\Delta q}$
T_G, GLASS TRANSITION TEMPERATURE

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>906.17</td>
</tr>
<tr>
<td>40</td>
<td>903.581</td>
</tr>
<tr>
<td>60</td>
<td>902.427</td>
</tr>
<tr>
<td>64</td>
<td>902.941</td>
</tr>
<tr>
<td>68</td>
<td>902.76</td>
</tr>
<tr>
<td>72</td>
<td>903.169</td>
</tr>
<tr>
<td>76</td>
<td>903.447</td>
</tr>
<tr>
<td>80</td>
<td>903.089</td>
</tr>
<tr>
<td>84</td>
<td>903.652</td>
</tr>
<tr>
<td>88</td>
<td>904.378</td>
</tr>
<tr>
<td>92</td>
<td>904.558</td>
</tr>
<tr>
<td>96</td>
<td>904.846</td>
</tr>
<tr>
<td>100</td>
<td>905.763</td>
</tr>
<tr>
<td>104</td>
<td>906.321</td>
</tr>
<tr>
<td>108</td>
<td>907.587</td>
</tr>
<tr>
<td>112</td>
<td>908.825</td>
</tr>
<tr>
<td>116</td>
<td>909.466</td>
</tr>
<tr>
<td>120</td>
<td>910.913</td>
</tr>
</tbody>
</table>
T_g DECREASES AS FILM THICKNESS DECREASES

- 14 nm (140 Å) – 351 K
- 22 nm (220 Å) – 359 K
- 31 nm (310 Å) – 363 K
- 90 nm (900 Å) – 370 K
- 100 nm (1000 Å) – 373 K

There is indeed a trend for thinner films to have lower T_g values. The reduction in T_g for thinner films implies that these films can be processed at lower temperatures and large amount of energy can be saved.

We need thinner (< 10 nm) PS brush samples to verify if tethering alters the T_g. So far our data suggests there is no difference between tethered and untethered chains.
ACKNOWLEDGMENTS

Special thanks to:

- Bülent Akgün
- Julie Borchers
- Yamali Hernandez