Background and Importance

Neutron reflectometry refers to the act of firing a beam of neutrons at a flat surface while measuring the intensity of the reflected neutrons. The data collected when using a neutron reflectometer gives the user valuable information about the structure of any thin films on the surface being measured. However, it is difficult to confidently state conclusions about the structure of these films with only raw data, as they are recorded in instrument-specific coordinates. These data are virtually useless unless they are converted into simplified, universal coordinates. Converting instrument-specific data into a more usable form is commonly known as data reduction, and is the main basis for the problem at hand.

The current alternative to performing data reduction by hand is to develop a new program for each instrument. The user of such a program is able to perform reduction techniques on data files, which are then ready for analysis. Although these programs produce correct results, the user must learn a new interface for every instrument he or she uses. In addition, it is difficult to change the transformations that must be applied, which currently requires a change in user interface, a shortcoming in the existing method.

The proposed program, Dataflow, allows the user to make unique reduction recipes, regardless of which instrument is used. By only requiring the user to learn one interface, Dataflow makes it easy for the user to learn new reduction routines for many different types of instruments and experiments. In addition, because the program resides in the user’s web browser, a number of advantages are present such as platform and browser independence, version unity, and ease of access.

Caching Intermediate Results

As many data reductions take a large amount of time to compute, it makes sense to cache intermediate results. Therefore, when a user clicks on a wire to view a plot of the data at that point in the reduction, the program can short-circuit and retrieve the desired result if it has already been calculated.

The program that was used to store results was Redis, a key-value datastore that has mechanisms for storing integers, strings, lists, and maps. Because it is not possible to store references in memory, the operable datatype in the reduction chain must be converted to a string, which is known as serialization. As Python, the programming language used for the backend of Dataflow, has modules for serialization, these modules are only useful for built-in datatypes such as lists and dictionaries. Because the Python serialization modules are worthless in regards to most user-defined classes, methods were written that converted Dataflow-specific datatypes to and from strings.

Example Output

![Example Output Diagram](https://via.placeholder.com/150)

On the right, you can see a very small portion of raw data taken from the Advanced Neutron Diffractomer/Refractometer (AND/R) at NIST. Below is a screen shot from Dataflow, which shows the plot of the final step in most offspecular reduction routines: converting to Q-space. The data on the right, along with ten other data files was used to produce the plot below.

Dataflow

Web-based flexible data reduction for neutron reflectometry

Brendan Rowan (SHIP, NCNR) – Poolesville High School
Mentor: Dr. Brian Maranville

Polarized Reduction Template

Offspecular Neutron Reflectometry

Polarized-offspecular neutron data is different from regular offspecular neutron data in that a certain file corresponds to a certain polarization state: λ^\uparrow, λ^\downarrow, or λ^\perp, where the characters represent the states of neutrons at the polarizer and analyzer, respectively.

Above and to the right are the default templates for polarized and non-polarized offspecular neutron data. As shown, these “templates” are flow diagrams that the user can create at will which link together “modules” that handle different types of instrument-specific data and allow the user to create new “templates.”

General Reduction Template

Offspecular Neutron Reflectometry

The detector isn’t calibrated perfectly, so the sensitivity varies from pixel to pixel. However, it is known that this sensitivity can be approximated with a sinusoid and can be corrected for.

During experiments, it is not unusual for something to get misaligned during data collection. Therefore, an offset module is designed for shifting datasets by a certain value along a certain axis.

After constructing a grid that covers the whole span of data, each of the datasets can be combined into one large dataset. Some datasets might overlap, which needs to be handled accordingly.

Example Output

![Example Output Diagram](https://via.placeholder.com/150)

With this information, a SHA-1 hash, which creates a 40 character string of hex digits, can be created at each step in reduction for maximum efficiency.