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HFBS Data Reduction 
 
§ 1 Introduction 
 
This document describes the data reduction operations for data collected on the HFBS instrument 
available to users of the DAVE software package.  The main interface for the data reduction 
application is shown in figure 1.  This particular screen shot was taken on a WINDOWS PC but 
it should look similar on the other supported platforms. 
 

 
 

Figure 1 Screen shot from the HFBS data reduction application. 
 
As can be seen in fig. 1, the data reduction interface is a configurable entity allowing one to 
repeat the same data reduction steps for a large number of data files simultaneously or in 
sequence. 
 
The data reduction steps are listed below.  Those steps always carried out are underlined and all 
other steps are optional.  Those steps requiring further explanation are followed by a section 
number indicating the section in this document where this procedure is described. 
 
• Read in raw .HFBS file(s) 
• Convert from cam bins (channels) to energy channels 
• Normalize to p(E) (2) 
• Subtract background files (summing them if more than one is present) 
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• 
• 
• 
• 

Normalize spectrum to beam monitor (3) 
Normalize spectrum to a vanadium run (4) 
Group detectors 
Write out reduced data to a .DAVE file 

 
 
§ 2 Normalization to p(E) 
 
The velocity profile of the Doppler monochromator is a function of time.  Since the energy 
transfer to the sample is related to the velocity of the monochromator vm,  
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and the velocity of the monochromator varies with time, the amount of time the monochromator 
spends at each energy varies.  In the expression above Eo and vo are the Bragg energy and 
velocity respectively.  This information is encapsulated in a quantity referred to as p(E), the 
probability density describing the amount of time the monochromator samples energy transfer E.  
For a sinusoidal energy profile p(E) is bowl-shaped and is given by the expression, 
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For the last few years the velocity profile of the monochromator is given by a rounded triangle 
function.  This provides a more uniform p(E) than a sinusoid.  The spectra observed in each 
detector are modulated by this function.  Therefore this reduction procedure involves simply 
dividing the data in each detector by this quantity.  This quantity is contained in the raw data file 
and is used in this step. 
 
§ 3 Normalization to beam monitor 
 
After the data have been converted from cam bin to energy and normalized to p(E), the data are 
normalized to the incident beam monitor, a.k.a. the fission chamber.  Since (i) the neutron 
spectrum from the phase space transformation chopper is not uniform, (ii) there are varying 
apparent levels of background in each detector, and (iii) there is a significant loss on the neutron 
energy loss side of the spectrum, this normalization procedure is not straightforward (i.e. simple 
division of the signal by the monitor is not applicable).  The procedure implemented in the HFBS 
data reduction program is described below. 
 
The monitor spectrum is given by M(E) and the spectra in each detector are given by ID(E) where 
D denotes the detector and E is the energy transfer.  One main assumption is that there is an 
energy-independent background BD in each detector D.  Thus the signal in each detector ID(E) is 
related to the desired normalized signal INORM,D(E) through the following relationship:  
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INORM,D(E)  = (ID(E)-BD)/M(E). 

 
The problem is to find an “appropriate” value of BD. 
   

 
 
Figure 2  Schematic of the monitor normalization procedure illustrating how the area is calculated for a QENS 
lineshape as an example.  The shaded area must sum to 0.0 for the optimal value of BD. 
 
The way this is done in the data reduction is through a minimization of the difference in the 
integrated intensity on both sides of the elastic peak.  The primary assumption is that the intrinsic 
lineshape of the measurement is symmetric about the elastic peak position.  This assumption is 
the condition that gets enforced through the constraint of equivalent integrated intensity on both 
sides of the elastic peak position.  In practice an arbitrary limit of 5 µeV is selected as the region 
over which the signal is masked off and the integrated intensity is compared between the “left” 
and “right” sides of the elastic peak.  That is the intensity is integrated from (-∞,5) and from 
(5,∞).  Numerically a mask is calculated where the “left” side results in negative area and the 
“right” side results in positive area as shown in figure 2.  The sum of both sides equals 0.0 for the 
optimal value of BD.  Mathematically the problem is cast as follows: 
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which can be rewritten as  
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where the weighting or “mask” function introduced into the integral is defined as 
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and θ(E) is the unit step function.  The condition we impose on SD is that it be a minimum 
absolute value for an optimal value of BD.  This is easier to do and, in fact, can be performed 
analytically if we choose to minimize SD

2.  This optimality condition is stated as follows: 
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not involve a factor of BD.  The first term in the optimality condition above need only be 
considered. 
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which can be solved for BD, 

 

( ) ( )
( )

( )
( )∫

∫
∞

∞−

∞

∞−=

EM
EwdE

E~M
E~IE~wE~d

B

D

D . 

 
This is the result for which we were looking and the integrals are implemented numerically in the 
data reduction procedure.  This can be shown to be a minimum under certain relevant 

circumstances through explicit calculation of 2
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Note that the term involving 2
D

D
2

D B
SS2

∂
∂  vanishes since the second partial with respect to BD is 

zero.  For a flat (i.e. uniform) monitor spectrum the second derivative is zero so really the value 
of BD is at an inflection point of the function SD

2.  However on HFBS the monitor spectrum is 
asymmetric in energy so that the condition for a minimum is satisfied. 
 
§ 4 Normalization to vanadium run 
 
The purpose of normalizing spectra to a vanadium run is that it provides a means to equalize the 
sample-independent differences in the detectors such as signal levels.  Vanadium is to a good 
approximation an isotropic scatterer.  However be aware that vanadium has a significant 
absorption cross-section and since the beam goes through the sample twice on HFBS this can 
result in non-negligible angle-dependent attenuation factors.  The procedure in the HFBS data 
reduction does not include calculation nor correction for such attenuation factors. 
 
In this procedure the vanadium spectra are converted to energy transfer, normalized to p(E), and 
normalized to monitor.  A Gaussian function is then fit to the spectra between –5 µeV and +5 
µeV in each detector resulting in a 16 element array of integrated intensities, A.  If we denote the 
integrated intensity from the vanadium spectrum in detector D by AD and the intensity in the 
same detector of the signal file that we wish to correct as ID then the “vanadium-normalized” 
intensity can be expressed as 
 

( )AA
II

D

D
NORMV,D = , 

 
where the expression in brackets denotes the average of all of the integrated intensities.  In 
practice only detectors 4 to 16 are included in this average since the first three detectors have 
such a high count rate in comparison. 
 


