
The DAVE 1.x data format

Document Objectives.
This document describes the internal data format used in DAVE. It also shows how to work with
datasets written in the format within your applications. It does not contain information about
attaching your application into the DAVE application suite – this is discussed elsewhere.

1. Description of format

DaVE 1.x uses a simple data structure to store experimental data. The structure was conceived early
on in the development of DAVE and at the time emphasis was placed on ensuring that the
plottable data is well represented. The complete data structure is created and saved on file as an
IDL pointer (heap variable) hence it is commonly referred to as a davePtr (pronounced DAVE
pointer). DAVE 1.x files are saved using IDL's sav binary format.

Essentially several data structures have been defined to store the relevant information within the
DAVE pointer. The complete structure is outlined in the diagram below using the following rules.
● Each rectangular shape contains the definition of an IDL structure.
● Structure member names are in the left column (in blue).
● Their IDL data type and description are in the right column.
● Highlighted structures member names (bold-underlined) are themselves structures or pointers to

structures.

A hierarchical description of the structure now follows.

davePtr
The davePtr points to an IDL structure consisting of two other pointers: dataStrPtr and descriPtr.
The experimental data and all relevant metadata are stored in the dataStrPtr. The descriPtr is used
for labeling or tagging the dataset.

descriPtr
The descriPtr points to a structure as described in the diagram. It is used for labeling or tagging the
davePtr. This tagging can be user-defined and consists of a name, description and value. For
example a user might make several measurements of a particular sample at different temperatures.
The descriPtr may be used to identify these measurements as part of a series. In this case the
(*descriPtr).name and (*descriPtr).units fields for all measurements could be 'Temperature' and 'K'
respectively while the actual temperature for each measurement would be stored in the
corresponding (*descriPtr).qty field. Although the descriPtr is optional, if present some applications
within DAVE do make use of it. For example the Data Browser (visualization module) is able to
combine datasets that belong to the same series to produce a composite dataset.

Last updated: Jan 18, 2005 1 of 7

Last updated: Jan 18, 2005 2 of 7

dataStrPtr
The experimental data is contained within the dataStrPtr. The dataStrPtr points to a structure
consisting of two fields: commonStr and specificPtr. commonStr contains the plottable data and is
the only mandatory component of the davePtr. The specificPtr is optional and is included as a
placeholder for any instrument specific information.

specificPtr
Points to an instrument-dependent structure that can be used to store any relevant information about
that instrument. The definition of the structure is unspecified and hence any information stored here
can only be useful for instrument specific modules.

commonStr
The commonStr is an IDL structure designed to hold plotable data and additional basic attributes
required to display it. A structure member, histPtr, holds the data itself with the remaining fields
storing various useful attributes for displaying the data. The meaning of the attributes are easily
understood as described in the diagram. The treatmentPtr points to a string array of arbitrary length
that describes all the treatment details applied so far to the DAVE pointer. Hence, all program
modules that modify a DAVE pointer should ensure that the treatmentPtr is updated accordingly
with concise human readable textual information about the modification.

histPtr
The actual data is stored in the histPtr, a four member structure as indicated in the diagram. The
dependent variable (eg counts) is stored in the qty field and the associated uncertainty in err. The
first independent variable is stored in the x field. If qty is two dimensional then the second
independent variable is stored in the y field. The dimensions of the fields should obey these rules:

histPtr field name dimension dimension scale

qty 1D or 2D (nx) or (nx,ny)

err 1D or 2D (nx) or (nx,ny)

x 1D nx' where

nx'=nx; if commonStr.xtype='points'

nx'=nx+1; if commonStr.xtype='histogram'

y 1D ny' where

ny'=ny; if commonStr.ytype='points'

ny'=ny+1; if commonStr.ytype='histogram'

2. Working with the davePtr

Once you become familiar with the davePtr structure, it is quite straightforward to directly
manipulate it's contents. Simply remember:
● the syntax for accessing structure members (structure.field).

Last updated: Jan 18, 2005 3 of 7

● a pointer variable has to be dereferenced to access its contents (all pointers within the DAVE
pointer have a Ptr suffix).

● to be careful about inadvertently deleting heap memory within the dataset. For example never
directly assign a local pointer to one in the data structure and then subsequently freeing the local
pointer – this would result in deletion of content from the dataset.

A few simple examples will now be given to illustrate reading/writing from/to a DAVE pointer. In
all examples it will be assume that the DAVE pointer is available as a locale variable called davePtr
– the internal structure will already be properly defined for you. A separate document is available
that deals with attaching an application module to the DAVE suite , obtaining a reference to the
DAVE pointer and reading/writing to a file.

Example 1
Reading the plottable data (counts, errors, independent variable(s)) .

IDL>data = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).qty
IDL>error = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).err
IDL>xval = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).x
IDL>yval = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).y

The local variables data, error, xval and yval should now contain copies of the data, associated
uncertainties, x- and y-axis data. Note that if data is 1D then yval will be scalar (value 0.0) instead
of a vector.

Example 2
Reading the treatment history. This contains an account of the data processing that the dataset has
an undergone.

history = (*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr)

The local variable, history, should contain the treatment history as a string array.

Example 3
Obtaining plot attributes.

IDL>instr_name = (*(*davePtr).dataStrPtr).commonStr.instrument
IDL>xtype = (*(*davePtr).dataStrPtr).commonStr.xtype
IDL>xlabel = (*(*davePtr).dataStrPtr).commonStr.xlabel
IDL>xunits = (*(*davePtr).dataStrPtr).commonStr.xunits

xtype will be 'points' or 'histo*gram', etc

Example 4
Updating data. counts and xdata are local variables containing the new data. Can either make direct
assignments like

IDL>(*(*(*davePtr).dataStrPtr).commonStr.histPtr).qty = counts
IDL>(*(*(*davePtr).dataStrPtr).commonStr.histPtr).x = xdata

Last updated: Jan 18, 2005 4 of 7

or (to emphasize a point) make use of an intermediate local variable for histPtr

IDL>local_histPtr = (*(*davePtr).dataStrPtr).commonStr.histPtr
IDL>(*local_histPtr).qty = counts
IDL>(*local_histPtr).x = xdata

Both methods are equivalent. However, in the second case, the local variable local_histPtr should
not be freed (ie don't use: ptr_free, local_histPtr) since this is the same heap memory that is being
used by the histPtr field within davePtr.

Example 5
Appending information to the treatmentPtr. This should be done whenever a noteworthy
modification is made to the dataset.

IDL>old_rec = (*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr)
IDL>new_rec = ['First additional line – counts scaled by 2',
 'Second line as required, etc',
 '--']
IDL>new_rec = [old_rec,new_rec]
IDL>(*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr) = new_rec

String arrays are used for storing treatment information. The style is arbitrary but the language
should be clear and concise.

While it is straightforward to work with the DAVE pointer, the syntax is very verbose and as such it
is easy to make mistakes. For these reasons, a set of functions have been created for writing to and
reading from a DAVE pointer. Brief references for these functions now follow.

function create_dave_pointer, davePtr, instrument=instrument, qty=qty, qtunits=qtunits, $
 qtlabel=qtlabel, err=err, xvals=xvals, xtype=xtype, xunits=xunits, xlabel=xlabel, yvals=yvals, $
 ytype=ytype, yunits=yunits, ylabel=ylabel, specificstr=specificstr, treatment=treatment, $
 dname=dname, dunits=dunits, dlegend=dlegend, dqty=dqty, derr=derr, ermsg=errmsg

● Used for creating a davePtr and/or modifying its contents
● all keywords except ermsg specify input quantities
● davePtr parameter and qty keyword are required. If undefined on entry, then a new heap memory

with a valid DAVE pointer structure will be created.

function get_dave_pointer_contents, davePtr, instrument=instrument, qty=qty, qtunits=qtunits, $
 qtlabel=qtlabel, err=err, xvals=xvals, xtype=xtype, xunits=xunits, xlabel=xlabel, yvals=yvals, $
 ytype=ytype, yunits=yunits, ylabel=ylabel, specificstr=specificstr, treatment=treatment, $
 dname=dname, dunits=dunits, dlegend=dlegend, dqty=dqty, derr=derr, ermsg=errmsg

● Used for reading the contents of the specified davePtr
● all keywords specify output quantities
● davePtr parameter is required

Last updated: Jan 18, 2005 5 of 7

Both functions return a 1 if successful or 0 otherwise. Meaning of parameter/keywords:

davePtr DAVE pointer. For create_dave_pointer() it can either be an input or output parameter.
For get_dave_pointer_contents() it is an input parameter. davePtr must be a valid DAVE
pointer when it is used as an input parameter.

instrument string variable describing instrument.

qty double or float array containing the data variable

qtunits string variable specifying the units of qty

qtlabel string variable specifying the plot label for qty

err double of float array containing the error associated with qty. It must have the
same dimension and size as qty.

xvals double or float array containing the first independent variable for qty. If not
provided then a simple index array is determined based on the size of qty.

xtype string variable specifying if the first independent variable, xvals, is "POINTS" or
"HISTOGRAM".

xunits string variable specifying the units of xvals.

xlabel string variable specifying the plot label for the first independent variable, xvals.

yvals y-axis equivalent of xvals

ytype y-axis equivalent of xtype

yunits y-axis equivalent of xunits

ylabel y-axis equivalent of xlabel

specificstr structure containing any instrument specific information to be include in the
DAVE pointer. Can contain any variable type in its fields.

treatment string array of any length containing the treatment of the data.

dname string name of the davePtr tag (descriPtr).

dunits string units of the davePtr tag (descriPtr).

dlegend string description of the davePtr tag (descriPtr).

dqty value of the davePtr tag (descriPtr).

derr uncertainty in the value of the davePtr tag (descriPtr).

ermsg output keyword. Contains error message if the function is unsuccessful.

Use of these functions can best be illustrated by revisiting the previous examples.

Example 1
Reading the plottable data and plot attributes.

IDL>status = get_dave_pointer_contents(davePtr $

Last updated: Jan 18, 2005 6 of 7

 ,qty=data, err=errors, xvals=xval $
 ,xtype=xtype, xlabel=xlabel, xunits=xunits, ermesg=ermsg)

If the function fails (status=0) then ermsg should be examined for the error message.

Example 2
Reading the treatment history. This contains an account of the data processing that the dataset has
an undergone.

IDL>status = get_dave_pointer_contents(davePtr $
 ,treatment=history, ermesg=ermsg)

The local variable, history, should contain the treatment history as a string array.

Example 3
Updating data. counts and xdata are local variables containing the new data.

IDL>status = create_dave_pointer(davePtr $
 ,qty=data, xvals=xdata, ermsg=ermsg)

Example 4
Appending information to the treatmentPtr. This should be done whenever a noteworthy
modification is made to the dataset.

IDL>status = get_dave_pointer_contents(davePtr, treatment=cur_hist)
IDL>app_hist = ['First additional line – counts scaled by 2',
 'Second line as required, etc',
 '--']
IDL>status = create_dave_pointer(davePtr, treatment=[cur_hist,app_hist])

Last updated: Jan 18, 2005 7 of 7

