

AApppplliiccaattiioonn DDeevveellooppmmeenntt iinn
IIDDLL II

R.M. Dimeo
NIST Center for Neutron Research

Contents

Chapter 1 Introduction ... 4
Chapter 2 Data types and variables .. 6

Scalars ... 6
Arrays ... 11
Pointers... 15
System variables .. 18

Chapter 3 Functions and procedures.. 20
Mathematics ... 20
Syntax... 21
Convolution .. 29
Synthesizing data ... 34

Chapter 4 Accelerating your IDL code .. 38
Simple first examples .. 38
Matrix multiplication ... 40
Eliminating a double loop ... 42
Functions built for speed .. 43
Rebinning data .. 44
Convolution redux .. 52

Chapter 5-Data visualization ... 57
Simple plots.. 57
Surface and image plots ... 65
Animating data .. 67
Example showing convergence of Fourier Series .. 69

Chapter 6-Data Analysis... 72
Fitting a straight line with LINFIT .. 72
Using CURVEFIT ... 73
Using MPCURVEFIT .. 74
Analyzing neutron scattering data with MPCURVEFIT... 76
Visualizing the intermediate fitting steps .. 80
A diversion: Monte-Carlo estimation of parameter uncertainties .. 83

Chapter 7-User Interface basics ... 85
Event-driven programming .. 85
A UI with user input .. 89
Interacting with a plot window... 93
Distributing your application with the IDL Virtual Machine .. 98

Chapter 8-Writing a GUI application ...100
Design specifications and functional requirements ..100
Implementation plan ..101
GUI Layout ..101
Event handler, data, and auxiliary procedures ...103

Chapter 9-Writing a multi-module GUI application..122
Design specifications and functional requirements ..122
Implementation plan ..122
Suppressing multiple instances of an application...124

Chapter 10-Plugging your application into DAVE...125
What is DAVE? ..125
Adding your IDL application to DAVE ...125
More details of the DAVE pointer ...129
Working with the davePtr ..133

 1

 2

Acknowledgments

A number of sources made contributions to this manual. In particular John Copley
provided source code and some text in the discussion of data rebinning. Richard
Azuah provided most of the text in Chapter 10 on how to add modules to DAVE and
the discussion of the DAVE internal data format. Richard Azuah, Larry Kneller, and
John Copley all provided valuable feedback on various topics discussed throughout
this manual.

This work is based upon activities supported by the National Science Foundation under
Agreement no. DMR-0086210.

 3

Chapter 1 Introduction

This course manual grew out of a set of notes and programs that I wrote for teaching
a course on introductory application development in IDL for neutron scattering
scientists at the NIST Center for Neutron Research (NCNR). Because this manual is
based on a set of notes it should not be considered a formal text for learning IDL.
There are a number of excellent texts on this subject (such as IDL Programming
Techniques by David Fanning, Practical IDL Programming by Liam Gumley and others
listed below). Rather it is a reference and brief summary of material discussed in the
NCNR’s introductory course.

The course is targeted to scientists interested in using IDL for the purpose of
manipulating, reducing, visualizing, and analyzing neutron scattering data. Different
readers will have different end goals. Some will want to write their own data
manipulation programs for their own research. Research scientists who need to get
scientific results out quickly fall into this first category. Others will want to write
applications complete with a graphical-user-interface for use by non-experts.
Instrument scientists who wish to spend as little time as is necessary helping novice
users through the data reduction and analysis phase of their experiments fall into this
second category. Still other developers will want to find some intermediate ground in
which the end-user of an application can script their own high-level commands while
offering the simplicity of a graphical user interface. This programming language
offers all of these capabilities. In this course we will focus on the first two points
discussed above, though the last point is addressed to some extent in the second
course, Application Development in IDL II.

This course will serve as an introduction to programming in IDL from writing scripts of
simple commands in an interactive batch mode to creating end-user applications with
a graphical user-interface (GUI). Participants in this course will learn the
fundamentals of IDL programming, how to use IDL to analyze data, how to write an
application with a GUI, how to distribute an application using the free IDL Virtual
Machine, how to write a relatively sophisticated data visualization application with
interactive features, and how to add a standalone GUI application into the DAVE (Data
Analysis and Visualization Environment) software system. Neither object graphics nor
object-oriented programming are covered in this course. Object-oriented
programming in IDL is the topic of the next course.

Although IDL is an appropriate platform for developing applications as stated above,
there are a substantial number of routines written by software developers that you
might find extremely useful in your own applications. Some such routines will be
discussed here. Some of these third party programs will be needed for this course. In
addition to these third-party programs you can download the programs for this course
from a link at the following web address:

 4

http://www.ncnr.nist.gov/staff/dimeo/IDLAppI.html

Most of what I learned (and continue to learn) about IDL comes from the great
resources available, including a huge IDL programming community. The list below
contains a few that you might find useful.

Many excellent texts exist on IDL programming:

¾ IDL Programming Techniques, David Fanning
¾ Application Development in IDL, Ronn Kling
¾ Practical IDL Programming, Liam Gumley
¾ Power Graphics with IDL, Ronn Kling

 Furthermore there are numerous on-line resources available:

¾ www.dfanning.com

David Fanning's site has lots of very nice widget (GUI) programs that are written
in a very clear and pedagogical manner. Great for learning GUI programming!

¾ fermi.jhuapl.edu/s1r/idl/s1rlib/local_idl.html
The Johns Hopkins Applied Physics Lab has lots of plotting and printing tools as
well as some general utilities. The categories of IDL code found here are too
numerous to mention.

¾ cow.physics.wisc.edu/~craigm/idl/idl.html
Craig Markwardt's site contains many math routines, including arguably the best
curve fitting routines for IDL. His MPFIT routine and its supporting procedures
are the basis for PAN (the curve fitting utility in DAVE).

¾ www.kilvarock.com

Ronn Kling has written some nice widget and object graphics books listed
above. His web site contains freeware and code you can buy written in IDL.

¾ comp.lang.idl-pvwave

The IDL newsgroup is a very friendly bulleting board with many useful tips and
a searchable archive. If you have a question, it will likely get a response same
day. I check for the latest postings frequently.

¾ www.metvis.com.au/idl/
This has a terrific and fairly complete list of IDL resources available on the
web.

Finally I also have a number of IDL programs available for download from my web site:
www.ncnr.nist.gov/staff/dimeo/idl_programs.html.

 5

Chapter 2 Data types and variables

In this first chapter we discuss (very briefly) some of the commonly used data types in
IDL.

Scalars

There are many data types available for use in IDL and we will discuss here how to use
some of the most common. We will perform most of our work in this chapter at the
IDL command line so the output should look familiar. First let’s see how IDL views the
following variables (note that the ampersand symbol & allows multiple statements on
one line):

IDL> t = 6LL & u = 0B & v = 1L & w = 1 & x = 0.0 & y = 1D & z = 'A'
IDL> help,t
T LONG64 = 6
IDL> help,u
U BYTE = 0
IDL> help,v
V LONG = 1
IDL> help,w
W INT = 1
IDL> help,x
X FLOAT = 0.000000
IDL> help,y
Y DOUBLE = 1.0000000
IDL> help,z
Z STRING = 'A'

 As a word of explanation, the procedure named HELP is called with a comma

prior to the variable name about which the user is inquiring. Procedures can
be called with the following syntax:

IDL> foo, arg1,arg2,arg3

Where foo is the name of the procedure and arg1, arg2, and arg3 can be
input or output parameters. Of course there is no limit to the number of
parameters that can be passed in to or out of a procedure. Procedures and
functions are discussed in more detail in Chapter 3.

If a variable has not been defined then help tells us it is undefined. For instance
consider the following example.

IDL> help,xx
XX UNDEFINED = <Undefined>

 6

Since we had assigned any value to the variable name xx it is undefined. If we try to
print this variable then we will get an error.

IDL> print,xx
% PRINT: Variable is undefined: XX.
% Execution halted at: $MAIN$

In addition to the common data types listed above, structures, pointer variables, and
objects are also supported in IDL. We will not be discussing object variables in this
course.

Structure variables, which are a convenient way to a group members of different data
types, come in two types: named and anonymous. The main difference between the
two types is that you cannot modify the contents (“tags”) of a named structure after
it has been created (except by resetting your IDL session). As an example of an
anonymous structure, consider the following:

IDL> steven = {age:25,weight:165.0,height:152.0}

In this structure, whose variable name is steven, there are three tags. The tag
names, age, weight, and height, are of type integer, float, and float. The names can
be obtained via the tag_names function and the number of tags can be obtained via
the n_tags function.

IDL> print,tag_names(steven),n_tags(steven)
AGE WEIGHT HEIGHT
 3

TAG_NAMES and N_TAGS are functions and the syntax, discussed more fully in
chapter 3, is shown below:

IDL> ret = foo(arg1,arg2,arg3)

Here foo is the name of the function and arg1, arg2, and arg3 can be input or output
parameters. As in procedures there is no limit to the number of parameters that can be passed
in to or out of a function.

The natural way to retrieve the values of each of the structure tags is using the
following convention in which the tag name is appended with a period after the
structure variable name:

IDL> print,steven.age,steven.weight,steven.height
 25 165.000 152.000

Alternatively you can use the lesser-used method involving the tag subscripts known
as field subscripting. Note that this only works with parentheses (not square
brackets)!

IDL> print,steven.(0),steven.(1),steven.(2)

 7

 25 165.000 152.000

You can set the structure keyword of tag_names function to return the name of the
structure. Since this structure is anonymous, no specific name is returned when help
is invoked as shown below:

IDL> help,steven
STEVEN STRUCT = -> <Anonymous> Array[1]

Note that this tells us that it is an anonymous structure array with a single member.
We will not go into the details here but an array with one member is not the same
thing as a scalar. Suffice it to say at this point, creation of a structure in the manner
shown above actually creates a structure array.

An example of a named structure is given by the following:

IDL> str = {neutron_scatterer,name:'William Gates',salary:865114,height:1.78}

In this named structure, the variable name str is assigned to a structure with three
fields: name, salary, and height. Since this is a named structure, help yields the
following:

IDL> help,str
STR STRUCT = -> NEUTRON_SCATTERER Array[1]

Note that we have all of the same structure syntax as with the anonymous structure in
the previous example. Therefore we can extract information from the structure as
follows:

IDL> print,str.salary
 865114

which is equivalent to

IDL> print,str.(1)
 865114

With named structures we can run into problems by attempting to redefine the size
and variable type of the individual fields. For instance, let's say that we want to
change our definition after we have already defined it previously. For instance in the
following statement we modify the salary to be a floating point scalar:

IDL> str = $

{neutron_scatterer,name:'William Gates',salary:865124.5,height:1.78}

Now if we examine the variable type of str.salary using help we find

IDL> help,str.salary
<Expression> LONG = 865124

 8

which indicates that the type cannot be changed.

We can attempt the same with the anonymous structure by changing the height field,
previously a floating point number, to an integer,

IDL> steven = {age:25,weight:165.0,height:152}

which yields the following variable type for str.height using help

IDL> help,steven.height
<Expression> INT = 152

Therefore it is possible to change the variable type of a field in an anonymous
structure (if we are not changing the size) but even this is forbidden in a named
structure.

It is forbidden in either case to change the size of the variable in any of the fields.
For instance, if we attempt to resize the height field of the anonymous structure
steven as follows then we get an error message telling us that we are not allowed to
resize the field.

IDL> steven.height = findgen(5)
% Expression must be a scalar in this context: <INT Array[5]>.
% Execution halted at: $MAIN$

Note that findgen is a function that returns an array. Arrays are discussed in the next
section.

Another difference between anonymous and named structures is that you cannot
redefine the number nor identity of fields in a named structure. This is permitted in
anonymous structures as the following example shows. Here we will redefine the
structure by removing the age field.

IDL> steven = {weight:165.0,height:152}
IDL> help,steven
STEVEN STRUCT = -> <Anonymous> Array[1]

This is acceptable because now the structure is composed of two fields. However we
get an error when we try to do this with a named structure. We try to redefine the
structure without the salary or height fields.

IDL> str = {neutron_scatterer,name:'William Gates'}
% Wrong number of tags defined for structure: NEUTRON_SCATTERER.
% Execution halted at: $MAIN$

One programming technique that can be quite useful when it is necessary to create a
number of similar structures is automatic structure definition. We will make use of

 9

this in the chapter on GUI programming, especially as it pertains to plotting data in
windows so we will discuss automatic structure definition briefly here.

In an automatic structure definition we can create a named structure with each of the
fields filled with known variable types. As an example let's define a structure for a
used car using the automatic structure definition. We want four fields in the
structure: year (integer), model (string), make (string), and mileage (double). The
procedure below provides the definition.

 pro used_car__define
 void = { used_car, $
 year:0, $
 model:'', $
 make:'', $
 mileage:0D }
 end

Type this code into a new editor window and save it as used_car__define.pro.

There are a number of points to note about this procedure. First the name of the
procedure includes the name used_car but there is a double-underscore after it and
before define. This syntax is required for any automatic structure definition. The
other thing to notice is that we have used place-holders on the right hand side of each
colon which tells IDL the variable type that is to be associated with each of the fields.
Finally we use the name "void" in the definition because the variable name within the
definition statement is not used, thus it is not important.

We can create a structure now using this automatic structure definition. At the IDL
command line type the following sequence of commands:

IDL> car1 = {used_car}
IDL> car1.year = 1996
IDL> car1.make = 'Honda'
IDL> car1.model = 'Accord'
IDL> car1.mileage = 135122.5

The first statement associates an instance of the named structure with the variable
name car1. The remaining statements identify particular values with each of the
fields. If we had not filled in these values as shown above then the values would be
identical to those place-holders given to the fields in the definition procedure,
used_car__define.

We can use some of the built-in IDL functions to extract the contents of the structure
we just created as follows.

IDL> for i = 0,n_tags(car1)-1 do print,car1.(i)
1996
Accord
Honda

 10

135122.50

We can easily create a new instance of a used_car structure with new values in the
fields and print out the contents as follows.

IDL> car2 = {used_car,2002,'Toyota','Camry',45000.}
IDL> for i = 0,n_tags(car2)-1 do print,car2.(i)
2002
Toyota
Camry
45000.000

Note that when we define a structure this way, we simply need to fill in the values
without writing in their names. Note that entering the values of the fields in the
proper order is very important.

We will find in later chapters that GUI programming requires working knowledge of
structure variables.

Arrays

Neutron scattering data can be represented conveniently as an array of numbers. If
the data is collected in an histogram on the data acquisition system then one can
store this in memory (in an IDL program) as an array of long integers. To start let's
consider methods to create arrays.

A floating point array of length 10 can be created using the FLTARR function.

IDL> x = fltarr(10)
IDL> help,x
X FLOAT = Array[10]

This creates an array with 10 zeros in it. The individual elements in the array are
extracted using subscripting with zero indexing and square brackets. For instance,
the 5th element in the array is printed using the following command:

IDL> print,x[4]
 0.000000

Note that we use the index 4 to subscript the 5th element. If we wanted to subscript
the 1st element then we would do so as follows:

IDL> print,x[0]
 0.000000

A simple 5-element integer array can be constructed using comma-separated values
within brackets.

 11

IDL> arr = [5,4,7,6,9]
IDL> help,arr
ARR INT = Array[5]

There are many array functions in IDL but we will not demonstrate all of them.
However we can discuss a few as the need arises. For instance, we can determine the
number of elements in an array using a built-in function named N_ELEMENTS as follows.

IDL> print,n_elements(arr)
 5

The asterisk (*) symbol can be used to reference all elements in the array such as

IDL> print,arr[*]
 5 4 7 6 9

which gives identical output as

IDL> print,arr
 5 4 7 6 9

Furthermore a portion of the array elements can be extracted using colon
subscripting. The following example illustrates how you can extract the 2nd through
the 4th elements.

IDL> print,arr[1:3]
 4 7 6

We can add elements to the array if we wish. For instance if we wanted to prepend
the numbers [1,2,3] to the array then we can simply execute the following command.

IDL> arr = [1,2,3,arr]
IDL> print,arr
 1 2 3 5 4 7 6 9

Appending values can be done just as easily.

In IDL you can create an array with up to 8 dimensions. The arrays are stored in
column-major form (i.e. columns stored first) and the first array dimension varies
fastest. As a simple example we can create a (2-dimensional) 3×2 array of integers
using nested brackets.

IDL> a = [[1,2,2],[5,4,3]]
IDL> help,a
A INT = Array[3, 2]
IDL> print,a
 1 2 2
 5 4 3

 12

Ranges of elements can be extracted from an n-dimensional array (n>1) using a
combination of colons, commas, and/or asterisks. As in illustration we show how to
extract all of the elements in the second column.

IDL> print,a[1,*]
 2
 4

Similarly we can extract any individual elements using comma-separated subscripts in
square brackets. For instance, the value in the 3rd column and second row is obtained
via

IDL> print,a[2,1]
 3

As in the case of pre-pending and appending array elements, we can do similarly with
multidimensional arrays. As an example we can append the row [6,7,8] to the array,
a.

IDL> z = [[a],[6,7,8]]
IDL> print,z
 1 2 2
 5 4 3
 6 7 8

There are a number of useful built-in array generating functions. The function
FINDGEN is a convenient function that creates an array of floating point numbers
whose elements are made up of the floating point values of the subscripts. For
instance, we can print 5 numbers in sequence beginning at 5 as follows:

IDL> print,5+findgen(5)
 5.00000 6.00000 7.00000 8.00000 9.00000

Similarly we can create a double-precision array using the DINDGEN function.

IDL> print,5+dindgen(5)
5.0000000 6.0000000 7.0000000 8.0000000 9.0000000

FINDGEN can be used to create a multidimensional array too. Since the arrays are
stored in column-major format, the elements are stored sequentially. Therefore the
elements in a multidimensional array created with findgen are sequential with
column. That is, for (col,row) notation, the (0,0) element is 0.0, the (1,0) element is
1.0, the (1,2) element is (2.0), etc. As a concrete example we can create a 3×2 array
using findgen.

IDL> z = findgen(3,2)
IDL> print,z
 0.000000 1.00000 2.00000
 3.00000 4.00000 5.00000

 13

We can also create an array of structures using a function called REPLICATE. Replicate
can be used to create a one-dimensional array of any variable type. For instance we
can create an array of length 100 of the number 3.14 as follows.

IDL> pi_array = replicate(3.14,100)

In this function, the first argument is the number to be replicated and the second
argument is the number of times to replicate it.

In order to demonstrate how to create an array of structures, let's consider 5 makes
and models of used cars and define them as structures. Naturally we will use the
automatic structure definition described in the last section. Individual arrays can be
created by using comma-separated values within square brackets. We therefore can
create an array of 5 makes as follows.

IDL> makes = ['Honda','Toyota','Ford','Dodge','Mazda']
IDL> models = ['Civic','Corolla','Mustang','Daytona','RX8']
IDL> nstructures = 5
IDL> car_struct_array = replicate({used_car},nstructures)

The last statement creates 5 structures in the array variable car_struct_array. We
can now populate the make and model fields of each of the elements of the structure
array as follows.

IDL> for i = 0,nstructures-1 do car_struct_array[i].make = makes[i]

Note that the location of the subscript on car_struct_array is before the reference to
make, not after the reference to make. Also, we have introduced the for-do control
statement here. The syntax for this statement should be self-explanatory for those
with some basic programming experience. In particular the syntax is

for i = initial,final do something

where initial is the initial value for the incremental counter and final is the final value
for the counter. Something represents any single command (function call, procedure
call, or assignment. In general, a for-do loop can include a block of commands
executed in sequence at each increment of the counter and the increment of the
counter can be an integer (not necessarily 1). This requires begin and end statements
as well as the increment as shown below.

for i = initial,final,increment do begin
 something1

something2
endfor

 14

Each element of struct_array can be accessed using the subscript notation as
described earlier. For instance, we can access the first structure and print the used-
car model as follows.

IDL> for i = 0,nstructures-1 do $
 for j = 0,n_tags(car_struct_array[i])-1 do print, car_struct_array[i].(j)

In the example above we used both array subscripting for the structure array and field
subscripting for the individual fields. Note also the use of nested for-do control
statements.

Pointers

A pointer is a reference to a variable and it is global in scope. Though not a true
pointer in the sense of other programming languages such as C, an IDL pointer
provides similar functionality.

If a pointer is just a reference to a variable, why bother using it and not the original
reference? One reason is related to the size of a pointer reference. Since it is simply
a reference, it is lightweight in the sense that it occupies only 4 bytes of memory. If
you have large data structures for instance that must be passed into and out of
procedures and/or functions then it is possible that performance might degrade.
However you can create a pointer reference to that large data structure and pass it
among the relevant procedures and functions. This is a good way to improve
performance.

When writing GUI programs we will see that a standard way to pass information
around from one module (subroutine) to another is to pass a pointer reference to a
structure.

We can create two types of pointers: a null pointer and a pointer to a variable (even
if the variable is undefined). A null pointer is created via the PTR_NEW function.

IDL> px = ptr_new()
IDL> help,px
PX POINTER = <NullPointer>

The null pointer can be useful when the variable (or its contents) to which it points is
unknown at runtime. A pointer to a variable is created in one of two ways. The first
way is to use PTR_NEW directly on the variable. For instance,

IDL> py = ptr_new(findgen(5))

will create a pointer to a floating point array of length 5 as created with findgen.
The contents of py can be queried with help,

 15

IDL> help,py
PY POINTER = <PtrHeapVar6>

which tells us that py is a pointer variable. We can extract the contents of the
pointer, known as pointer de-referencing, by using an asterisk in front of the pointer,

IDL> print,*py
 0.000000 1.00000 2.00000 3.00000 4.00000

It is possible to extract an individual element from the variable to which the pointer
is referencing. For instance, say we wish to extract the third element in the array
that is pointed to by py. Then we can access this value using the following de-
referencing syntax:

IDL> print,(*py)[2]
 2.00000

Pointers are also known as heap variables in IDL. When you are finished using the
variables to which the pointer refers you should free up the memory.

The second way to create a pointer to a variable is to create a pointer to an
undefined variable and then de-reference the desired data into it. This is done in the
following way. First, create a pointer reference to an undefined variable using the
/allocate_heap argument in the ptr_new function. (We will see in the next chapter
that this syntax is used to set a keyword in IDL).

IDL> py = ptr_new(/allocate_heap)

Next create the "data" that we wish the pointer to reference.

IDL> y = findgen(5)

Finally de-reference the new variable y into the pointer using the asterisk syntax.

IDL> *py = y

Now you can use py in exactly the same way (i.e. accessing the data) as has already
been discussed. As usual, when finished with the pointer variable, use ptr_free to
free up the memory.

IDL> ptr_free,py

It should be mentioned also that if you use the /allocate_heap argument to ptr_new
but never de-reference any data into that pointer, you still need to free up the
memory with ptr_free. However if you create a null pointer at runtime but no
defined variable is ever put into the pointer then there is no need to free any
memory.

 16

Now let's consider an example that is slightly more complicated in terms of de-
referencing. Consider the used car structure defined in the previous section on scalar
variables.

IDL> pstruct = ptr_new(car1)

A simple way to extract the fields from the pointer is to de-reference the pointer in
the following way.

IDL> this_car = *pstruct
IDL> print,this_car.year

Alternatively we can remove the middle step of de-referencing the pointer into
this_car and get out the year value directly.

IDL> print,(*pstruct).year

Finally, don't forget to free up the memory.

IDL> ptr_free,pstruct

Now we can get still more complicated and create a pointer to the used car structure
array contained in the variable car_struct_array. We create the pointer as before
and de-reference the make of the 4th structure as follows.

IDL> pastruct = ptr_new(car_struct_array)
IDL> print,(*pastruct)[3].make

As usual, free up the memory using ptr_free.

IDL> print,(*pastruct)[3].make
Dodge

We now consider one final complicated example involving pointers and structures.
Let's create a data structure that has a number of fields including x,y, and pz where x
is a floating point array of length 5, y is an integer, and pz is a pointer to a 256×256
byte array.
IDL> data_struct = {x:findgen(5),y:15,pz:ptr_new(bindgen(256,256))}
IDL> pdata = ptr_new(data_struct)

In the first statement we used the function called BINDGEN which creates a 256×256
byte array filling in the values in sequence much like FINDGEN and DINDGEN. We can
extract x and y in the usual way.

IDL> print,(*pdata).x
IDL> print,(*pdata).y

 17

Note however the order of parentheses and asterisks to de-reference the variable
referenced by pz.

IDL> help,*(*pdata).pz
<PtrHeapVar56> BYTE = Array[256, 256]

Finally we can extract the value of the variable in pz, say the 126th column and 57th
row, as follows.

IDL> help,(*(*pdata).pz)[125,56]
<Expression> BYTE = 125

Lastly, we can free the memory in pdata in one of two ways. The first (and arguably
the simplest) is to use heap_free, which is a recursive function that descends all the
way down to the bottom of the structure hierarchy, and frees pointers on its way back
up.

IDL> heap_free, pdata

Alternatively you can explicitly free the memory referenced by pz first and then free
the memory from pdata as follows.

IDL> ptr_free,(*pdata).pz
IDL> ptr_free, pdata

Hopefully it is apparent now that growing structures with embedded pointers,
structures, and other variables can quickly lead to complicated data structures
requiring some care in extracting information. Nevertheless you should gain a
working knowledge of pointer de-referencing for programming GUIs.

System variables

IDL has a number of variables that are defined at the system level and are available in
a global sense. That is they are available to all program modules on all operating
levels. System variables are used to set the options for plotting, to set various
internal modes, to return error status, etc. Note that it is also possible for a user to
define a new system variable using the procedure DEFSYSV.

Some of these system variables are constants such as the number for π. Such
variables are accessed using the ! symbol (the exclamation point is also referred to as
"bang"). For instance, π is represented in IDL as !pi ("bang pi").

IDL> print,!pi
 3.14159

There is a double-precision version of π and is obtained via

 18

IDL> print,!dpi
 3.1415927

Other system variables of interest include the conversion factors !dtor and !radeg
which are the conversion factors from degrees to radians and radians to degrees.

IDL> print,!dtor,!radeg
 0.0174533 57.2958

There are numerous system variables and we will introduce them throughout this
course on an as-needed basis.

 19

Chapter 3 Functions and procedures

Programs in IDL amount to a collection of functions and procedures. Functions are
program elements that accept parameters and/or keywords and return some value.
The return value can be any valid data type as discussed in the last chapter. You
have already been using some of the built-in functions (N_ELEMENTS, TAG_NAMES and
N_TAGS) and procedures (HELP) of IDL so you have seen the syntax for their use. For
completeness, however, we will discuss the general syntax of IDL functions and
procedures. In addition, we will write our own example functions and procedures.
Note that the example presented in the last chapter, used_car__define, was written
as a procedure.

Mathematics

Mathematical functions such as multiplication, division, addition, subtraction, and
exponentiation have the following syntax:

y = a * b
y = a / b
y = a + b
y = a - b
y = a ^ b

IDL has numerous built-in mathematical functions and we will not discuss all of them.
We will discuss those that are most common and those that arise in neutron scattering
data treatment. The on-line help can be consulted for a complete coverage of all
built-in functions and procedures.

Examples of some simple mathematical operations in IDL are shown below:

IDL> print,(2^6)^(1/6)+1
 2
IDL> print,(4.0*(5.0+6.0-8.0)^3)/2.
 54.0000
IDL> print,(cos(!pi/4))^2
 0.500000

Binary mathematical operations, i.e. those that operate on two quantities at a time
such as addition, work on both scalar quantities and arrays provided that the arrays
have identical dimensions. For simplicity we can demonstrate that the binary
operations are array operations for the case of addition. In particular we consider
two examples: one in which we add a scalar value to every element in an array and
one in which we add one array to another array. The following example illustrates
the first case:

 20

IDL> x = [1.0,3.0,-10.0]
IDL> print,x+5.0
 6.00000 8.00000 -5.00000

The second case is given by the following (using the array, x, in the previous
example):

IDL> y = [2.0,4.0,8.0]
IDL> print,x+y
 3.00000 7.00000 -2.00000

Logical operations can also be performed on scalars and arrays. Some of these
operations include EQ, GT, LT, GE, LE for "equals", "greater than" , "less than",
"greater than or equal to", and "less than or equal to", respectively. These logical
operators return, in general, a byte array of the same size as the first argument
composed of ones and zeros indicating which elements satisfy (or violate) the
condition. For example we can find which elements in x (given in the last example)
are positive as follows.

IDL> print,x gt 0
 1 1 0

The first two elements are true (a byte value of 1) because 1.0 and 3.0 are greater
than zero and the last element is false (a byte value of 0). This byte array can be
used as a mask so that only those elements satisfying the condition are returned and
all other elements are zero. This can be done as follows:

IDL> print,mask*x
 1.00000 3.00000 0.000000

This can also be done using >, the greater than symbol as follows:

IDL> print,x > 0.0
 1.00000 3.00000 0.000000

The > symbol is one of a number of symbols that can be used to return values of the
same type as the array rather than logical values. The symbols that can be used in
this manner are >,<, and =.

Syntax

The syntax for calling an IDL function is:

 ret_val = func(p1,p2,p3,…k1=k1,k2=k2,…)

where ret_val is the return value of the function, pi are parameters and the kj are
keywords. If parameters or keywords are passed in as variables, they are said to be
passed in by reference. Thus their scope is not simply limited to the function itself.

 21

The syntax for calling an IDL procedure is:

 proc p1,p2,p3,…k1=k1,k2=k2,…

where pi are parameters and the kj are keywords. If parameters or keywords are
passed in as variables, they are said to be passed in by reference. As in functions,
their scope is not limited to the procedure.

Let's first consider a simple example of a function with one input parameter and one
input keyword. Type this function into a new editor, save it, and compile it.

Example:

Write a simple function that scales a number by a factor with an interface with
a single parameter (the number) and a single keyword (the scale factor).

 function scale_it,number,factor = factor
 if n_elements(factor) eq 0 then factor = 1.0
 result = number*factor
 return,result
 end

We can test the this function by executing the following statements at the IDL
command line.

IDL> print,scale_it(10.0)
 10.0000

Since no scale factor was passed in (via the factor keyword), the code uses a default
factor value of 1.0. The second line in the function makes this assignment. In this
function we use the function N_ELEMENTS to determine if the function was called with
the FACTOR keyword assigned. We can call the function with the factor keyword
assigned as follows.

IDL> print,scale_it(20.0,factor = 2.0)
 40.0000

Let’s consider another example of a function that has a number of optional input
keyword parameters.

 22

Example:

Write a function that creates a regularly-spaced vector of values between user-
defined limits and whose number is defined by the user.

function makepts, npts = nnpts, $
 xlo = xxlo, $
 xhi = xxhi
; This function computes a vector,x, of equally-spaced values between
; xlo and xhi.
; Test for presence of the input keywords and fill them in
; with defaults if not present.
if n_elements(nnpts) eq 0 then nnpts = 10
if n_elements(xxlo) eq 0 then xxlo = 0.0
if n_elements(xxhi) eq 0 then xxhi = 1.0
dx = (xxhi-xxlo)/(nnpts-1.0)
return,xxlo+dx*findgen(nnpts)
end

We can test this function by compiling it and running it from the IDL command line as
follows.

IDL> .compile makepts
IDL> x = makepts(npts = 10,xlo = -5.0,xhi = 5.0)
IDL> print,x
 -5.00000 -3.88889 -2.77778 -1.66667 -0.555555
0.555556 1.66667 2.77778 3.88889 5.00000

During the course of this training we will need access to some "data" for both
visualization and analysis. The remainder of this chapter is devoted to creating some
fake scattering data using functional implementations of Gaussians, Lorentzians, and
random numbers to generate noise.

In the previous example we saw how to incorporate keywords that can be assigned
some value. IDL also allows users to use a special mechanism in which Boolean
keywords can be "set" using a forward slash (/) character. For instance, we have
already used the HELP procedure to determine the nature of some variables that we
defined. There are numerous keywords associated with HELP. One such keyword is
MEMORY which, when set, provides information on the current graphics device that is
set for your local computer system. On my PC this procedure with the keyword set
yields the following output:

IDL> help,/device
Available Graphics Devices: CGM HP METAFILE NULL PCL PRINTER PS WIN Z
Current graphics device: WIN
 Screen Resolution: 1152x864
 Simultaneously displayable colors: 16777216
 Number of allowed color values: 16777216
 System colors reserved by Windows: 0
 IDL Color Table Entries: 256

 23

 NOTE: this is a TrueColor device
 NOT using Decomposed color
 Graphics Function: 3 (copy)
 Current Font: System, Current TrueType Font: <default>
 Default Backing Store: None.

The following syntax is equivalent:

IDL> help,/device
IDL> help,device = 1

The next function that we will need for our work is a Gaussian distribution. The
requirements for the function are as follows:

1. Independent variable, x, is an optional input/output parameter. If x is
undefined but used as an argument in the function then the function will
create some sensible default values for x which will be passed out.

2. The functional parameters, integrated AREA, CENTER, and full-width at half-
maximum (FWHM) will be specified as optional input/output keywords.

3. A Boolean keyword named PLOTIT will be available so that, when set, a plot
of the Gaussian distribution will appear in a new window.

4. Additional keywords can be passed into the plot procedure via keyword
inheritance. Keyword inheritance is explained in more detail below.

Keyword inheritance is a mechanism by which keywords can be passed into a function
(procedure) where those keywords are not defined in that function (procedure) but
are passed into another routine contained therein. This is particularly useful in cases
where you wish to write a "wrapper" routine. A wrapper routine is a variation of an
existing routine (either provided by RSI or it is a user-written routine) where only a
small part of the functionality is changed.

In the next example we construct a function that returns a Gaussian distribution
based on a number of inputs. The independent variable, x, at which the function is to
be evaluated is an optional input parameter. The distribution parameters such as the
integrated area, center, and full-width at half-maximum are passed in as optional
keywords. A plotit keyword is also available to be set by the user in which case a
new window with the distribution will be plotted using the IDL procedure named plot.

The plot command has many keywords available for use and we would like to make
those all available to the user of our GAUSSIAN function. The way that we do this is
using keyword inheritance. In particular we add the _EXTRA = extra statement in the
first line of the definition statement. Thus one can call the GAUSSIAN function with
keywords that are not defined explicitly for it but rather are passed into the plot
procedure call. The function definition is defined as stated in the next example.

 24

Example:

Implement a Gaussian function which returns the distribution evaluated at one
or more points defined by an optional input parameter,x, and allow optional
keywords for the integrated area, center, and full-width at half-maximum.
Finally allow the possibility to plot the function in a new window by setting a
keyword.

function gaussian, x, $
 area = area, $
 center = center, $
 fwhm = fwhm, $
 plotit = plotit, $
 _Extra = extra

; Test for the presence of the input parameter x.
if (n_params() eq 0) or (n_elements(x) eq 0) then $
 x = makepts(xlo = -10.0,xhi = 10.0,npts = 100)
; Test for the presence of the keywords
if n_elements(area) eq 0 then area = 1.0
if n_elements(center) eq 0 then center = 0.0
if n_elements(fwhm) eq 0 then fwhm = 1.0

; Convert the full-width at half-maximum to the
; standard deviation of the Gaussian distribution
sig = fwhm/sqrt(8.0*alog(2.0))
yg = (area/sqrt(2.0*!dpi*sig^2))*exp(-0.5*((x-center)/sig)^2)

; If the keyword PLOTIT has been set then plot the function
; in a new window.
if keyword_set(plotit) then begin
 window,/free,xsize = 300,ysize = 300
 plot,x,yg,psym = -4,xtitle = 'x',ytitle = 'y(x)', $
 title = 'Gaussian Distribution',_Extra = extra
endif
return,yg
end

The mathematical definition for the Gaussian is

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

σ
−

−
σπ

=
2

o
Gauss

xx
2
1exp

2
Axy , (3.1)

where A is the integrated area of the distribution, xo is the center, and σ is related to
the full-width at half maximum of the distribution via)2ln(8/FWHM=σ .

Let's try this function out at the command line.

IDL> x = makepts(xlo = -5.0,xhi = 5.0,npts = 5)

 25

IDL> print,gaussian(x)
7.4108380e-031 2.7997398e-008 0.93943728 2.7997398e-008 7.4108380e-031

Now we can plot the function with a similar call as that just specified.

IDL> x = makepts(xlo = -5.0,xhi = 5.0,npts = 50)
IDL> yg = gaussian(x,/plotit,psym = 0,thick = 2.0,xtitle = 'x', $
 ytitle = 'y(x)',title = 'Gaussian Distribution')

You should see a plot of the Gaussian function appear on your display similar to that
shown in Figure 1. In the Gaussian function call we set the plotit keyword to invoke
the plot procedure. Furthermore we set the PSYM keyword to zero to tell the plot
procedure to plot with a line but no symbols. Other keywords passed in such as
thick, XTITLE, YTITLE, and TITLE specify the line thickness and the axis titles. Thus
the PSYM, THICK, XTITLE, YTITLE, and TITLE keywords are sent to the plot
procedure via the keyword inheritance mechanism. We will discuss the plot
procedure in more detail in chapter 5.

Figure 1 Gaussian distribution using the default values (area = 1.0, center = 0.0,
fwhm = 1.0).

The code for a Cauchy distribution (also known as a Lorentzian lineshape) is presented
below. It is similar in implementation as the Gaussian. The mathematical definition
for this distribution is

()
() 22

o
Lorentz xx

1Axy
Γ+−π

Γ
= , (3.2)

 26

where A is the integrated area of the distribution, xo is the center, and Γ is related to
the full-width at half maximum of the distribution via Γ = FWHM/2.

The implementation of this function is listed below.

Example:

Implement a Lorentzian distribution function with a functional interface similar
to that used in GAUSSIAN but with a definition consistent with equation 3.2.

function lorentzian, x, $
 area = area, $
 center = center, $
 fwhm = fwhm, $
 plotit = plotit, $
 _Extra = extra

; Test for the presence of the input parameter x.
if (n_params() eq 0) or (n_elements(x) eq 0) then $
 x = makepts(xlo = -10.0,xhi = 10.0,npts = 100)
; Test for the presence of the keywords
if n_elements(area) eq 0 then area = 1.0
if n_elements(center) eq 0 then center = 0.0
if n_elements(fwhm) eq 0 then fwhm = 1.0

gam = 0.5*fwhm
yl = (area*gam/!pi)/((x-center)^2+gam^2)

; If the keyword PLOTIT has been set then plot the function
; in a new window.
if keyword_set(plotit) then begin
 window,/free,xsize = 300,ysize = 300
 plot,x,yl,psym = -4,xtitle = 'x',ytitle = 'y(x)', $
 title = 'Lorentzian Distribution',_Extra = extra
endif
return,yl
end

As in the example with GAUSSIAN you can test the implementation of this function
using the following command:

IDL> yl = lorentzian(x,/plotit,psym = 0,thick = 2.0,xtitle = 'x', $
 ytitle = 'y(x)',title = 'Lorentzian Distribution')

In this course we will need to have access to some neutron scattering data. We could
just load some in from a raw data file but it is more illustrative to generate some fake
data by using the functions we have written so far and add some Poisson noise to
simulate "real" data.

IDL has a number of built-in random number generators which we will use in our
measurement simulation. The function RANDOMN allows calculation of BINOMIAL, GAMMA,
NORMAL, and POISSON random deviates. Samples from each distribution can be drawn

 27

by setting the appropriate keywords to RANDOMN. To see an example of uniform
deviates between 0 and 1, we can consider the following code:

IDL> x = randomn(s,100,/uniform)
IDL> plot,x

The parameter s is an output parameter that is the seed for the random number
generator. Users of this function should use an undefined variable for s at first but
then use the same variable for subsequent calls to the random number generator.

A plot showing data that varies between 0 and 1 should appear on your screen. If we
wish to see how close this distribution is to uniform, we can use the IDL function
HISTOGRAM as follows:

IDL> blo = -1.0 & bhi = 2.0 & nbins = 20
IDL> b = makepts(xlo = blo,xhi = bhi,npts = nbins)
IDL> xh = histogram(x,min = blo,max = bhi,nbins = nbins)
IDL> plot,b+0.5*db,xh/total(xh),psym = 10

The result of the histogram is shown in Figure 2.

Figure 2 Histogram of the uniform random number generator in IDL for 100 samples.

It is useful to perform the same histogram for 10000 uniform random deviates and see
how well the uniform distribution is approximated. The result of this is shown in
Figure 3. It is clear that the histogram with more samples is a better approximation
to the uniform distsribution.

 28

Figure 3 Same as figure 2 except for 10000 uniform random deviates.

Convolution

In a neutron scattering measurement the resolution of the instrument can distort the
intrinsic lineshape given by the physical process under investigation. Such distortion
is due to the non-ideal properties of the monochromator and/or analyzer materials,
guide systems, and intrinsic timing errors in the data acquisition system. This
distortion often manifests itself as a blurring process and, in many cases, the blurring
can be quantified by a convolution integral,

() () ()
() () 'd',QR',QS

,QR,QS,QS

int

intmeas

ωω−ωω=

ω⊗ω=ω

∫
 (3.3)

where R(Q,ω) is the instrumental resolution function of the instrument used in the
measurement process. The conditions under which the instrumental resolution can be
factored into the measurement process in this manner are somewhat restricted. The
main requirement is that the measurement system is linear shift-invariant. This
means that the width (for instance) of the resolution function does not change with
energy transfer, ω. This is not valid for measurements on a triple-axis spectrometer
nor is it valid for inelastic measurements on direct (or indirect) geometry time-of-
flight spectrometers. Nevertheless the convolution integral as specified in equation
3.3 can be appropriate for the analysis of quasielastic neutron scattering data on
time-of-flight and backscattering spectrometers for instance.

 29

As written in equation 3.3, it should be apparent how one can discretize the integral
and formulate an approximation of the integral as a sum. IDL has a built-in function
named CONVOL.PRO that purports to do this. However we will see that the function is
not strictly a correct approximation to a convolution integral as originally written and
requires a bit of modification. First we will review the result of a convolution integral
in a simple case. For the rectangle function shown in Figure 4, the result of a self-
convolution (i.e. a convolution of the function with itself) is a triangle function.

Figure 4 The thick solid line is the result of the self-convolution of the rectangle
function.

Now if we consider the convolution of a narrow symmetric function with an
asymmetric function as is shown in Figure 5 then the result is a blurred version of the
asymmetric function.

In IDL convolution can be performed in a couple of ways. The first method is to use
the Fast Fourier Transform (FFT) technique. In this method the FFT is calculated for
the functions involved in the convolution integral and the result transformed via an
inverse FFT. For large arrays this can be an expedient way to do the convolution.

 30

Figure 5 Result (thick solid line) of the convolution of an asymmetric function (thin
solid line) with a narrow symmetric function (thin dashed line). The result is a
blurred version of the asymmetric function.

The FFT has the following syntax as listed in the on-line documentation

Result = FFT(Array [, Direction] [, DIMENSION=vector] [, /DOUBLE]
[, /INVERSE] [, /OVERWRITE])

where DIRECTION is an optional input parameter (positive number for inverse FFT and
negative number for forward FFT), dimension is the dimension in the array for which
to calculate the transform, DOUBLE forces calculation using double-precision
arithmetic, INVERSE is the same as setting the DIRECTION equal to a positive number,
and OVERWRITE results in the transform taking the place of the original array. Given
two arrays defined over the same domain (composed of equally-spaced values),
ARRAY1 and ARRAY2, the convolution integral can be approximated using the following
sequence of commands:

dx = x[1] - x[0]
nx = n_elements(x)
n21 = nx/2+1
result = shift(fft(fft(array1,1)*fft(array2,1),-1),n21)*dx

In the last line above we used the SHIFT function which wraps an array by some
specified amount. In the example the array is shifted by n21. This is necessary to
compensate the FFT which returns a shifted result.

The second convolution method uses a variant on the CONVOL routine. The on-line
documentation for CONVOL lists the following syntax.

 31

Result = CONVOL(Array, Kernel [, Scale_Factor] [, /CENTER]
[, /EDGE_WRAP] [, /EDGE_TRUNCATE])

We have omitted two additional keywords in the interest of brevity: MISSING and NAN.
The array is the original array to be convolved, kernel is the "resolution" function,
scale factor is the number by which to multiply the result of the convolution, and the
remainder are keywords that control how the convolution is performed. The kernel is
expected to have fewer elements than the array. The default value for scale_factor
is 1.0. Ignoring the CENTER keyword or setting it to zero will cause the kernel to be
centered over each point in the array during the computation. Setting the EDGE_WRAP
keyword will cause the elements at the edge of the array to be calculated by
wrapping the subscripts of the array at the edge. Setting the EDGE_TRUNCATE keyword
will cause the elements at the edge of the array to be calculated by repeating the
subscripts of the array at the edge.

Given two arrays defined over the same domain (composed of equally-spaced values),
ARRAY1 and ARRAY2, the convolution integral should be approximated using the
following sequence of commands involving CONVOL:

dx = x[1] - x[0]
nx = n_elements(x)
nlo = 3 & nhi = nx-nlo-1
result = convol(array1, array2[nlo:nhi],/edge_truncate)*dx

The result of using the CONVOL routine as described in the code snippet above is shown
in Figure 6.

Figure 6 Result of using CONVOL routine as-is.

 32

There is clearly a problem with how the kernel is treated in this function. In order to
get the correct answer it is necessary to reverse the kernel using the REVERSE
function. Therefore the correct result is given by

result = convol(array1, reverse(array2[nlo:nhi]),/edge_truncate)*dx

The correct approximation to the convolution integral as described by the code above
is displayed in Figure 5. As a final example in this chapter, we present the complete
code used in constructing Figure 5. Note the use of the HEAVISIDE function where we
have made use of the logical operations GT, LT, and EQ.

Example:

An example illustrating the correct use of the CONVOL function is presented
here. Two new functions are presented here: HEAVISIDE which is an
implementation of the unit step function and RECT which is an implementation
of a rectangle function.

; *********************************
function heaviside,x
y = (x gt 0)*1D + ((x lt 0))*0D + 0.5D*(x eq 0)
return,y
end
; *********************************
function rect,x,b,h
; b: base (width) of the rectangle
; h: height of the rectangle
r = h*(heaviside(x+0.5*b)-heaviside(x-0.5*b))
return,r
end
; *********************************
pro convolution_example
nx = 400
x = makepts(xlo = -5.0,xhi = 5.0,npts = nx)
dx = x[1] - x[0]
base = 2.0 & height = 1.0
kernel = rect(x+0.5,1.0,2.0)+rect(x-0.5,1.0,1.0)
array = gaussian(x,area = 1.0,center = 0.0,fwhm = 0.35)
nlo = 3 & nhi = nx-nlo-1
plot,x,array,yrange = [0.0,3.0],/ysty,linestyle = 2, $
 title = '!3Convolution Example 2',xrange = [-3.0,3.0],/xsty
oplot,x,kernel,linestyle = 0
ycon1 = convol(array,reverse(kernel[nlo:nhi]),/edge_truncate)*dx
oplot,x,ycon1,thick = 4.0,color = black
end

It should be noted that, for the purposes of these discussions, the data ranges are
assumed to be on an equally-spaced grid. We will revisit the convolution operation in
the next chapter to circumvent this limitation.

 33

Synthesizing data

At this point we have created all of the functions necessary to create our "synthetic"
neutron scattering data. The following example illustrates how we can create an
elastic peak plus an excitation with a Lorentzian lineshape. The instrumental
resolution will be assumed to be linear shift-invariant and approximated well by a
Gaussian lineshape. The measured lineshape is described by the following expression,

() () ()
() ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

Γ+ω−ωπ
Γ

+ωδ⊗ω=Γω
22

o
meas

1R;S , (3.4)

where R(ω) is the instrumental resolution function, δ(ω) is the elastic scattering, and
the Lorentzian represents an inelastic excitation centered at ωο with a full-width at
half-maximum of 2Γ. If the resolution function is a Gaussian then we can re-write
equation 3.4 as

() () ()
() ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ+ω−ωπ
Γ

⊗σω+σω=σΓω
22

o
meas

1;G;G,;S , (3.5a)

where

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

σ
ω

−
σπ

=σω
2

2
1exp

2
1;G . (3.5b)

The convolution of the Gaussian and Lorentzian cannot be expressed in an analytic
way so it must be calculated numerically. (There is a parametric way of representing
the convolution of a Gaussian with a Lorentzian and it is known as a Voigt function,
available in IDL).

In order to simulate a neutron scattering measurement we need to add some noise to
the "data". In a neutron scattering measurement one detects an event (the detection
of a neutron) in a finite interval (a channel). The statistics of this process are
Poissonian. We can use the random number generator function RANDOMN to generate
random deviates drawn from a Poisson distribution. For instance, if we wish to draw
100 samples from a Poisson distribution whose mean value is 3 then we can issue the
following command:

IDL> rand_poisson = randomn(s,100,poisson = 3)

As we did with the uniform deviates we can histogram the Poisson deviates and see
how well the histogram approximates the theoretical Poisson distribution. This is
illustrated in Figure 7 for 100000 samples.

 34

Figure 7 Histogram of the Poisson random number generator for 100000 samples with
a mean value of 3. Solid thick line is the theoretical Poisson distribution for a mean
value of 3.

The routine that generates data consistent with equations 3.4 and 3.5(a-b) is shown in
the next example. In this example we have a couple of options available via
keywords. The procedure can be called as follows:

IDL> make_fake_data,x,y,yerr,/draw,/write

The first three parameters, x, y, and yerr are output parameters and contain the
simulated data. Setting the DRAW keyword results in the appearance of a plot of the
simulated data. Setting the WRITE keyword results in writing a three column text file
containing x, y, and yerr. The parameters and keywords are optional so that you can
also call the procedure as follows

IDL> make_fake_data, /draw

to see a plot of the simulated data appear on the screen.

Example:

Write a procedure that returns simulated neutron scattering data in three
output parameters, allows the user to plot the data to the screen with an
optional input keyword, and allows the user to save the data in three column
ascii format.

pro make_fake_data,x,y,yerr,draw = draw,write = write
!except = 0 ; suppress mathematical underflow messages

 35

npts = 200

; Create the grid of values for the independent variable
x = makepts(xlo = -10.0, xhi = 10.0, npts = npts)

; Create a resolution function: a Gaussian with FWHM of 1.0
res = gaussian(x,area = 1.0,cen = 0.0,wid = 1.0)

; Create the elastic component: a Gaussian with area 600.0
y1 = 600.0*res
y2 = lorentzian(x,area = 300,cen = 5.0,wid = 1.0)

; Convolve the Lorentzian with the resolution function
dx = x[1]-x[0]
nlo = 3 & nhi = npts-nlo-1
y2con = convol(y2,reverse(res[nlo:nhi]),/edge_truncate)*dx

y = fltarr(npts)
yerr = fltarr(npts)
for i = 0,npts-1 do begin
 y[i] = randomn(s,1,poisson = y1[i]+y2con[i]+20.0)
endfor

yerr = sqrt(y)
if keyword_set(draw) then begin
 plot,x,y,psym = 4, xtitle = '!4x!3', $
 ytitle = '!3S(!4x!3)', $
 title = 'Measured Intensity'
 oplot,x,y,psym = 4
 dx = x[1]-x[0]
 errplot,x,y-yerr,y+yerr,width = 0.0
endif

if keyword_set(write) then begin
 cd,current = dir
 filename = dir+path_sep()+'fake_data.txt'
 openw,lun,filename,/get_lun
 for i = 0,npts-1 do begin
 printf,lun,x[i],y[i],yerr[i],format = '(3f15.6)'
 endfor
 free_lun,lun,/force
endif

end

Calling this procedure as follows

IDL> make_fake_data, /draw

results in a plot like that shown in Figure 8.

 36

Figure 8 Synthetic neutron data created using MAKE_FAKE_DATA.PRO.

The only major part of the code shown in MAKE_FAKE_DATA.PRO that we have not
discussed yet is that related to file output. We will examine this code briefly.

In IDL, as in other languages such as FORTRAN, you must open a file and associate a
logical unit number with the opened file. This is done in the 3rd statement shown in
the code snippet below. The PRINTF statement is used to print the variables to the
file using the logical unit number as a critical part of the statement. The format
statements are similar to those used in FORTRAN. When finished, the file is closed by
freeing the logical unit number via FREE_LUN.

 cd,current = dir
 filename = dir+path_sep()+'fake_data.txt'
 openw,lun,filename,/get_lun
 for i = 0,npts-1 do begin
 printf,lun,x[i],y[i],yerr[i],format = '(3f15.6)'
 endfor
 free_lun,lun,/force

It is also worth noting the use of the CD procedure with the output keyword CURRENT.
In the code snippet above the variable dir is the working IDL directory.

 37

Chapter 4 Accelerating your IDL code

IDL has a large number of built-in array functions that allow run-time execution times
similar to compiled C or FORTRAN. In this chapter we will discuss how you can use
these functions to speed up your code.

Simple first examples

The novice IDL programmer often uses what he/she knows from other languages. For
instance many of the programming constructs of FORTRAN are present in IDL. One
particular example is a FOR loop. However the FOR loop should be used sparingly in
IDL code since it will tend to slow code execution. Let’s consider an example in IDL
in which array operations can be used to accelerate code that you might ordinarily
think of writing using loops.

Example:

Create an equally spaced vector of 500000 values between –10.0 and +10.0.
The code to perform this calculation using loops first and then using a built-in
IDL floating point generator function called FINDGEN is shown below.

pro create_vector_speed_test
num = 500000
; Calculate the vector using loops
nx = num
; Create the x-vector
xlo = -10.0
xhi = 10.0
dx = (xhi-xlo)/(nx-1.0)

tstart = systime(/seconds)
x = fltarr(nx)
for i = 0L,nx-1 do begin
 x[i] = xlo+dx*i
endfor
telapsed = systime(/seconds)-tstart
print,'Elapsed time:',telapsed

; Now calculate the vector using MAKEPTS which takes advantage of the
; array functionality.
tstart = systime(/seconds)
x = makepts(xlo = xlo,xhi = xhi,npts = nx)
telapsed = systime(/seconds)-tstart
print,'Elapsed time:',telapsed
end

On my modest desktop PC the first method took 250 ms and the second method
took 16 ms.

 38

Perhaps one of the more difficult things to do with IDL is rewrite a double FOR-loop
using array operations. Let’s take a look at an example in which we wish to calculate
the sum of all of the elements of a two-dimensional array.

Example:

Create a two dimensional floating point array (using FINDGEN) and calculate the
sum of all of the elements.

pro total_example
; Create an array of floating point numbers and calculate the sum
; of one of the dimensions.
n = 3000
array = findgen(n,n)
; Loop method
tstart = systime(/seconds)
sum = 0D
for i = 0L,n-1 do begin
 for j = 0L,n-1 do begin
 sum = sum + array[i,j]
 endfor
endfor
print,sum
t_elapsed_loop = systime(/seconds)-tstart
print,'Elapsed time (loop):',t_elapsed_loop

; Method using TOTAL function
tstart = systime(/seconds)
sum = total(array)
print,sum
t_elapsed_total = systime(/seconds)-tstart
print,'Elapsed time (TOTAL function):',t_elapsed_total
print,t_elapsed_loop/t_elapsed_total
end

On my desktop PC the loop calculation executed in 6.24 seconds and the TOTAL
calculation executed in 4.7 ms, a time savings of more than 130.

Exercise:

Simulate 5000 tosses of an unbiased coin using the random number generator
RANDOMU, the WHERE function, and TOTAL. Then plot that the accumulated results (i.e.
number of heads with respect to the total number of tosses) illustrating that they
approach ½ as the number of coin tosses increases.

 39

Matrix multiplication

Matrix multiplication can also be performed in a manner that eliminates the need for
a loop. Before we see how that is done, let’s first see how to perform matrix
multiplication in IDL.

Matrices are written in column-major format meaning that the ith column and jth row
of a matrix m are accessed using the notation m[i,j]. This may be a bit different from
what you are used to so make a special note of this order. Let’s say we want to
multiply two matrices that are written as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

42
16

m,
24
31

m 21 .

We should get the answer . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1228
1312

mm 21

In IDL notation we enter these two matrices as follows:

IDL> m1 = [[1.,3.],[4.,2.]]
IDL> m2 = [[6.,1.],[2.,4.]]

You can see the contents of these matrices via,

IDL> print,m1
 1.00000 3.00000
 4.00000 2.00000
IDL> print,m2
 6.00000 1.00000
 2.00000 4.00000

Now recall that matrix multiplication is performed where the row of the first matrix
gets multiplied by the column of the second matrix. In IDL this operation is
performed using the double-hash symbol ##. Therefore you can get the result of the
proper matrix multiplication as follows:

IDL> print,m1##m2
 12.0000 13.0000
 28.0000 12.0000

Of course a matrix multiplication can be written as a double for loop so we have just
saved a great deal of time by using the ## symbol to replace the matrix
multiplication.

There is a second matrix multiplication operator given by the single hash symbol #.
Application of this symbol is performed where the column of the first matrix gets
multiplied by the row of the second matrix. You can recover the correct answer for
the proper matrix multiplication using the # symbol as follows:

 40

IDL> print,m2#m1
 12.0000 13.0000
 28.0000 12.0000

Another useful feature of the matrix multiplication operators is that it they can be
used to build up arrays containing copies of vectors. For instance, say we wanted 5
rows of the vector given by x = [0.0,3.0,10.0]. In IDL we execute the following
simple command:

IDL> xcopy = (1+fltarr(5))##x
IDL> print,xcopy
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000

The quantity that is pre-multiplied by x is just a vector of ones. Alternatively we can
get the same result using the single-hash operator # as follows:

IDL> print,x#(1+fltarr(5))
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000
 0.000000 3.00000 10.0000

⇒ In a nutshell, A#B = B##A

We can use the IDL function REBIN to perform the same tasks as those for which we
just used matrix multiplication. For instance we can create the variable xcopy as
follows:

IDL> xcopy = rebin(x,n_elements(x),5,/sample)

which gives the same output as the previous definition of xcopy. We will actually use
this when we revisit the convolution operation at the end of this chapter. It turns out
that REBIN can be used for many different things (not just rebinning data) and
replicating vectors like shown above is one of the most useful. We will not go into all
of the details but rather refer you to David Fanning's website where the merits of
REBIN and REFORM are discussed: http://www.dfanning.com/tips/rebin_magic.html.

 41

Eliminating a double loop

Let’s consider a concrete example where we can eliminate another double FOR-loop
using matrix multiplication.

Example:
Create an array D whose elements dij equal the difference between the
elements, xi-xj, of a vector x.

pro speed_calc
num = 1600
; Calculate the difference array using loops
nx = num
; Create the x-vector
xlo = 0.0
xhi = 1.0
dx = (xhi-xlo)/(nx-1.0)
tstart = systime(/seconds) ; start the timer
x = fltarr(nx)
for i = 0,nx-1 do begin
 x[i] = xlo+dx*i
endfor
; Create the difference array
diff = fltarr(nx,nx)
for i = 0,nx-1 do begin
 for j = 0,nx-1 do begin
 diff[i,j] = x[i] - x[j]
 endfor
endfor
t_loop = systime(/seconds)-tstart ; calculate elapsed time
print,'Time elapsed (loop method):',t_loop

; Ok, now do it the optimized IDL way
tstart = systime(/seconds) ; start the timer
x = xlo+dx*findgen(nx)
ux = 1+bytarr(nx)
diff_array = ux#x-x#ux
t_no_loops = systime(/seconds)-tstart ; calculate elapsed time
print,'Time elapsed (no loops):',t_no_loops
print,'Speed factor improvement: ',t_loop/t_no_loops
end

On my desktop PC the first method took 1828 ms and the second method took
110 ms.

 42

Functions built for speed

There are a few other functions that are built-in to IDL that can save a considerable
amount of computational time. The MIN function calculates the minimum value of an
array, the maximum value of an array (yes both!) as well as specify the index location
for the minimum element as the following example shows.

Example:

Calculate the minimum value and maximum value of a large two-dimensional
array using loops and also using the MIN function.

pro min_example
; Find the minimum and maximum value of an array
n = 5000
array = abs(0.5*n^2-findgen(n,n))

; Calculate using loops and if statement
tstart = systime(/seconds)
minval = 1e32
maxval = 1e-32
for i = 0L,n-1 do begin
 for j = 0L,n-1 do begin
 if array[i,j] lt minval then begin
 minval = array[i,j]
 endif
 if array[i,j] gt maxval then begin
 maxval = array[i,j]

 endif
 endfor
endfor
print,minval,maxval
t_elapsed_loop = systime(/seconds)-tstart
print,'Elapsed time (LOOP):',t_elapsed_loop

; Calculate using min
tstart = systime(/seconds)
array_min = min(array,max = array_max)
print,array_min,array_max
t_elapsed_min = systime(/seconds) - tstart
print,'Elapsed time (MIN): ',t_elapsed_min

print,t_elapsed_loop/t_elapsed_min
end

On my desktop PC the first method took 26.3 s and the second method took 180
ms, a savings in computation time of nearly 140.

The WHERE function is another routine that can be extremely useful and efficient when
searching an array for elements that satisfy some criteria. For instance, say you want

 43

to know the elements in an array that are within some range. As an example,
consider the simple example of an array that varies between -10.0 and 10.0 created
using the uniform random number generator as follows:

IDL> x = -10.0+20.0*randomn(s,100,/uniform)
IDL> plot,indgen(100),x,psym = 0
IDL> indices = where(x le 5.0 and x ge 1.0,count)
IDL> oplot,indices,x[indices],psym = -4,symsize = 2,thick = 2.0

The WHERE function determine in which indices the criteria is satisfied (x le 5.0 and
x ge 1.0). Note further that the number of elements is passed out as an output
parameter named COUNT.

Rebinning data

A data operation that is frequently used in neutron scattering data reduction and
analysis is rebinning. There are a couple of ways in which this can be done: with
loops and without loops. It should come as no surprise at this point that the most
efficient way to rebin data is using array operations rather than loops. In this section
we will discuss data rebinning and a speedy implementation of it in IDL.

In a neutron scattering experiment data can be collected in one of two modes:
histogram and point. In a measurement on a triple-axis spectrometer the data is
collected in point mode which is a simple way of stating that the data is sampled
from a scattering function. If the data are noisy then the experimentalist may wish to
"bin channels" together in order to decrease the point-to-point fluctuations of the
data. Time-of-flight measurements record neutron events in non-zero width time
channels and these data are usually displayed in a histogram. Often the time bins
into which the data are histogrammed are equal width. However subsequent
conversions to physical units such as energy, angle, or wavevector transfer yield
unequal resulting bins. Since the subsequent transformation of the data results in a
histogram of unequal bins, it is often desirable to rebin the data into equal width
bins.

Rebinning can be a useful step in visualizing data as long as the consequences of
rebinning are kept in mind. For instance, binning data into bins that are too large can
result in loss of important features in the data. Likewise it is usually not a good idea
to rebin data into more channels than were in the original data set.

We will consider the rebinning operation for point and histogram data separately. It
is most natural to think of rebinning in terms of non-zero width bins, thus let us
examine histogram data case first.

 44

Rebinning histogram data

We are given an input histogram with n channels numbered 0…n-1. Channel
boundaries are X(i), i=0…n. Heights are Z(i), i=0…n-1; corresponding errors are dZ(i),
i=0…n-1. We are also given a set of boundaries for n' output channels, X'(j), j=0…n'.

The left and right hand sides of input channel i and its width are L(i), R(i) and W(i)
respectively:

L(i) X(i),
R(i) X(i 1), i 0...n 1
W(i) R(i) L(i)

= ⎫
⎪= + = −⎬
⎪= − ⎭

Similarly the left and right hand sides of output channel j and its width are L'(j), R'(j)
and W'(j) respectively:

 .
L (j) X (j),
R (j) X (j 1), j 0...n 1
W (j) R (j) L (j)

′ ′= ⎫
⎪′ ′ ′= + = −⎬
⎪′ ′ ′= − ⎭

The integrated counts and associated errors for input channel i are T(i) and dT(i)
respectively:

T(i)=W(i) Z(i),

dT(i)=W(i) dZ(i).
⋅
⋅

The integrated counts for output channel j, T'(j), may be written as follows:

i
T (j) T(i) f (i, j)′ = ⋅∑

where f(i,j) is the fraction of input channel i that contributes to output channel j.
Similarly the error on T'(j) is written as

 []2

i

dT (j) dT(i) f (i, j)′ = ⋅∑

since the contents of different input channels are independent. Hence the output
histogram heights and their errors are as follows:

Z '(j) T '(j) / W '(j),

dZ '(j) dT '(j) / W '(j).
=
=

The fractions f(i,j) may be written as ratios ∆(i,j)/W(i), with
 { }(i, j) max 0,min[R(i),R '(j)] max[L(i),L '(j)] .∆ = −

Figure 9 illustrates this for histogram type data.

 45

Figure 9 Illustration of how data is rebinned when input and output data are of the
histogram type.

Rebinning point data

We are given an input dataset comprising n points [X(i), Z(i), dZ(i)], i=0…n-1. We are
also given a set of boundaries for n' output channels, X'(j), j=0…n'.

The left and right hand sides of output channel j and its width are L'(j), R'(j) and W'(j)
respectively:

 .
L (j) X (j),
R (j) X (j 1), j 0...n 1
W (j) R (j) L (j)

′ ′= ⎫
⎪′ ′ ′= + = −⎬
⎪′ ′ ′= − ⎭

The integrated counts for output channel j, T'(j), may be written as follows:

i
T (j) Z(i) f (i, j)′ = ⋅∑

 46

where

 1
2

f (i, j) 0 if X(i) X (j) or X(i) X (j 1),
 if X(i) X (j) or X(i) X (j 1),

1 if X(i) X (j) and X(i) X (j 1).

′ ′= < > +
′ ′= = =

′ ′= > <

+

+

Similarly the error on T'(j) is written as

 []2

i

dT (j) dZ(i) f (i, j)′ = ⋅∑

since the input data are independent. Hence the output histogram heights and their
errors are as follows:

Z '(j) T '(j) / W '(j),

dZ '(j) dT '(j) / W '(j).
=
=

Figure 10 illustrates this for the point data case.

 47

Figure 10 Illustration of how data is rebinned when it is point-type.

IDL Algorithms that rebin histogram and point data have been written in a manner
that use no loops in order to run quickly. As a comparison in speed, the same
algorithms have been written using loops. The execution times for each case are
considered in the demonstration that follows.

The routine named DREBIN_HISTO.PRO is a procedure that uses the rebinning algorithm
applied to histogram type data. The code that follows has numerous comments
throughout and makes heavy use of array operations.

 48

;***
pro drebin_histo,x_in,z_in,dz_in,x_out,z_out,dz_out
;***
; This procedure rebins 1-dimensional data. The data to
; be rebinned are described by the arrays x_in, which is
; dimensioned n_in+1, and by z_in and dz_in, both of which
; are dimensioned [n_in,ng], where n_in is the number of
; channels and ng is the number of groups, i.e. sets of
; data. The grid onto which the data are to be rebinned is
; defined by the array x_out and the results are placed in
; z_out and dz_out; x_out is dimensioned n_out+1 and z_out
; and dz_out are dimensioned [n_out,ng] where n_out is the
; number of output channels. It is up to the user of this
; procedure to ensure that the input arrays are properly
; dimensioned.
;
compile_opt strictarr
;
; Generate number, left limit, right limit and width
; in x of input channels.
n_in=n_elements(x_in)-1
l_in=x_in[0:n_in-1]
r_in=x_in[1:n_in]
w_in=r_in-l_in
;
; Generate number, left limit, right limit and width
; in x of output channels.
n_out=n_elements(x_out)-1
l_out=x_out[0:n_out-1]
r_out=x_out[1:n_out]
w_out=r_out-l_out
;
; Determine the number of sets of input data.
ng=n_elements(z_in)/n_in
;
; Create unit vectors for later use.
uvec_nout=intarr(n_out)+1
uvec_nin=intarr(n_in)+1
uvec_ng=intarr(ng)+1
;
; Calculate integrated counts and associated errors for
; input channels.
t_in=z_in*(w_in#uvec_ng)
dt_in=dz_in*(w_in#uvec_ng)
;
; The array element (*f_limPtr)[i,j] gives the fraction
; of input channel j that contributes to output channel i.
r_limPtr=ptr_new((r_out#uvec_nin) < (uvec_nout#r_in),/no_copy)
l_limPtr=ptr_new((l_out#uvec_nin) > (uvec_nout#l_in),/no_copy)
d_limPtr=ptr_new((*r_limPtr-*l_limPtr) > 0,/no_copy)
f_limPtr=ptr_new(*d_limPtr/(uvec_nout#w_in),/no_copy)
;
; Do the actual rebinning.
; Integrated counts and associated errors are computed
; for all output channels.
t_out=(*f_limPtr)#t_in

 49

dt_out=sqrt((*f_limPtr)#dt_in^2)
;
; Hence count rate and associated error for output channels.
z_out=t_out/(w_out#uvec_ng)
dz_out=dt_out/(w_out#uvec_ng)
;
; Free some pointers.
ptr_free,r_limPtr
ptr_free,l_limPtr
ptr_free,d_limPtr
ptr_free,f_limPtr
;
end

The routine named DREBIN_PTS.PRO is a procedure that rebins point type data and the
result is histogram type data.

;***
pro drebin_pts,x_in,z_in,dz_in,x_out,z_out,dz_out
;***
; This procedure rebins 1-dimensional ***POINTS*** data.
; The data are described by the arrays x_in, which is
; dimensioned n_in, and by z_in and dz_in, both of which
; are dimensioned [n_in,ng], where n_in is the number of
; channels and ng is the number of groups, i.e. sets of
; data. The grid onto which the data are to be rebinned
; is defined by the array x_out and the results are placed
; in z_out and dz_out; x_out is dimensioned n_out+1 and z_out
; and dz_out are dimensioned [n_out,ng] where n_out is the
; number of output channels. It is up to the user of this
; procedure to ensure that the input arrays are properly dimensioned.
;
compile_opt strictarr
;
; Generate number of input channels.
n_in=n_elements(x_in)
;
; Generate number, left limit, right limit and width in x of output
; channels.
n_out=n_elements(x_out)-1
l_out=x_out[0:n_out-1]
r_out=x_out[1:n_out]
w_out=r_out-l_out
;
; Determine the number of sets of input data.
ng=n_elements(z_in)/n_in
;
; Create unit vectors for later use.
uvec_nout=intarr(n_out)+1
uvec_nin=intarr(n_in)+1
uvec_ng=intarr(ng)+1
;
; The array element (*f_limPtr)[i,j] is 1 if input value j
; contributes to output channel i, otherwise 0, except that
; if input value j lines up with the boundary
; between output channels i and i+1,

 50

; (*f_limPtr)[i,j]=0.5 and (*f_limPtr)[i+1,j]=0.5.
lPtr=ptr_new(l_out#uvec_nin,/no_copy)
rPtr=ptr_new(r_out#uvec_nin,/no_copy)
xPtr=ptr_new(uvec_nout#x_in,/no_copy)
;
l1_Ptr=ptr_new(*lPtr lt *xPtr,/no_copy)
r1_Ptr=ptr_new(*xPtr lt *rPtr,/no_copy)
f1_Ptr=ptr_new(*l1_Ptr and *r1_Ptr,/no_copy)
;
l2_Ptr=ptr_new(*lPtr eq *xPtr,/no_copy)
r2_Ptr=ptr_new(*xPtr eq *rPtr,/no_copy)
f2_Ptr=ptr_new(*l2_Ptr + *r2_Ptr,/no_copy)
;
ff_Ptr=ptr_new(*f1_Ptr + 0.5 * *f2_Ptr,/no_copy)
;
; Free some pointers.
ptr_free,lPtr
ptr_free,rPtr
ptr_free,xPtr
;
ptr_free,l1_Ptr
ptr_free,r1_Ptr
ptr_free,f1_Ptr
;
ptr_free,l2_Ptr
ptr_free,r2_Ptr
ptr_free,f2_Ptr
;
; Do the actual rebinning.
; Integrated counts and associated errors are computed for all output
; channels.
t_out=(*ff_Ptr)#z_in
dt_out=sqrt((*ff_Ptr)#dz_in^2)
;
; Hence count rate and associated error for output channels.
z_out=t_out/(w_out#uvec_ng)
dz_out=dt_out/(w_out#uvec_ng)
;
; Free the remaining pointer.
ptr_free,ff_Ptr
;
end

The same rebinning algorithm can be used without array operations and implemented
using loops. This is listed in the following code box.

pro loop_rebin,x_in,z_in,dz_in,x_out,z_out,dz_out
zsize = size(z_in)
if (zsize[0] eq 2) then begin
 ng = zsize[2]
endif else begin
 ng = 1
endelse
;
nx_in = n_elements(x_in)
nx_out = n_elements(x_out)

 51

nb_in=nx_in-1
nb_out=nx_out-1
;
z_out = fltarr(nb_out,ng)
dz_out = fltarr(nb_out,ng)
;
for k = 0L,ng-1 do begin
 for i = 0L,nb_out-1 do begin
 c=x_out[i]
 d=x_out[i+1]
 for j = 0L,nb_in-1 do begin
 a=x_in[j]
 b=x_in[j+1]
 if (d gt a and c lt b) then begin
 znorm=z_in[j,k]/(d-c)
 if (d ge b and c lt a) then begin
 z_out[i,k] = z_out[i,k] + znorm*(b-a)
 endif
 if (d ge b and c ge a) then begin
 z_out[i,k] = z_out[i,k] + znorm*(b-c)
 endif
 if (d lt b and c lt a) then begin
 z_out[i,k] = z_out[i,k] + znorm*(d-a)
 endif
 if (d lt b and c ge a) then begin
 z_out[i,k] = z_out[i,k] + znorm*(d-c)
 endif
 endif
 endfor
 endfor
endfor
end

In order to test the speed of the array operations as compared with looping, some
two-dimensional data with a size of 452 x 7500 was rebinned. The loop algorithm
took 299 seconds and the DREBIN algorithm took 3.14 seconds...a savings of nearly
two orders of magnitude! The advantage of using an array-based rebinning algorithm
is clear.

Convolution redux
In the previous chapter we discussed the convolution operation and the various
methods that one can use to estimate the convolution integral. One particular case
that we did not consider was the case where the data ranges for the input array and
resolution function do not overlap nor are they on an equally-spaced grid. In the
cases presented in the previous chapter, the algorithms to calculate the convolution
product each assumed that the data was equally spaced and the ranges overlapped.
In this section we will illustrate how one can use array operations to calculate the
convolution integral. It should be noted that the technique presented here is not
nearly as fast as the FFT or CONVOL techniques for data that is equally-spaced.
However this is the only method you can use when this condition is not satisfied.

 52

In order to compute an approximation to the integral in equation (3.3) when the bin
sizes vary we consider a representation of the continous integral function

() () ()

() ()x~xyx~Rx~d

xyxRxI

−=

⊗=

∫
∞

∞−

 (4.1)

by the following discrete approximation

()

∑

∑

−

−

∆=

∆=

j
jijj

j
jijji

yR

)x(y)x(RxI
. (4.2)

In 4.2 the transformation from R(xj) to Rj should be obvious. Rj is the data point
located at xj. However evaluating y(xi-j) to get yi-j might not be obvious. In fact y
might not be even evaluated at xi-j (or included in the "data"). But if we can
calculate xi-j then we should be able to use interpolation to find y(xi-j). In the
section title Eliminating a double loop we saw how to create a matrix of differences
using matrix multiplication if xi and xj are sampled from the same vector, x. Please
take another look at that example to refresh your memory if necessary. In the
present case the two independent variables are not necessarily sampled in the same
way. Therefore we will label them as xr and x. It is possible to expand a vector, x,
that is nx in length to one that is nx by nr in dimension by executing the following
command:

IDL> xmat = x#(1+bytarr(nr))

Alternatively we can use the built-in IDL REBIN function as follows to get the same
result:

IDL> xmat = rebin(x,nx,nr,/sample)

If we wish to create an nx by nr representation of xr then we can execute either of the
following equivalent commands:

IDL> xmat = (1+bytarr(nx))#xr

or

IDL> xmat = rebin(transpose(xr),nx,nr,/sample)

After the difference matrix, , has been calculated then we interpolate the values
onto the new grid. This is done with the IDL INTERPOL function. Finally the TOTAL
function and DERIV function are used to obtain the final approximation to the

 53

convolution integral. The source code implementation of this is shown in the box
below.

function irreg_convol,xr,r,x,y
nxres = n_elements(xr) & nx = n_elements(x)
xmat = rebin(x,nx,nxres,/sample)-rebin(transpose(xr),nx,nxres,/sample)
mat = interpol(y,x,temporary(xmat))
return,total((rebin(transpose(r*deriv(xr)),nx,nxres,/sample))* $
 ((temporary(mat))),2)
end

We can see how this works with the following example, irreg_convol_example.pro.

pro irreg_convol_example
; Create an irregular grid of values for the independent
; variable for the "resolution function"
xrlo = -3.0 & xrhi = 1.0 & nr = 50
xres = xrlo+(xrhi-xrlo)*randomu(s,nr)
; Sort the values since adding the random component
; might shift the order of the points.
xres = xres[sort(xres)]

; Create the irregular grid of values for the independent
; variable for the "intrinsic function"
nx = 100 & xlo = -3.0 & xhi = 15.0
x = xlo+(xhi-xlo)*randomu(s,nx)
; Sort these ones for the same reason that we
; sorted the resolution points.
x = x[sort(x)]

cen = 2.0 & cenr = 0.0
fwhm = 2.0 & fwhmr = 1.0
area = 2.0 & arear = 1.0

; Create the resolution function
res = gaussian(xr,area = arear,cen = cenr,fwhm = fwhmr)
; Create the intrinsic function
y = gaussian(x,area = area,cen = cen,fwhm = fwhm)

; Use the irreg_convol function to perform the
; convolution approximation.
con = irreg_convol(xr,res,x,y)

plot,x,con,psym = 4,xrange = [-5,7],/xstyle

; Calculate and plot the theoretical convolution result
xth = makepts(xlo = -5.0,xhi = 5.0,npts = 200)
yth = gaussian(xth, area = area*arear,center = cen+cenr, $
 fwhm = sqrt(fwhm^2+fwhmr^2))
oplot,xth,yth,psym = 0,thick = 2.0
print,'Calculated integrated intensity: ',int_tabulated(x,con)
print,'Area (theory): ',area*arear
end

 54

The graphical output from this program is shown in Figure 11 and the textual output
is
Calculated integrated intensity: 1.9951632
Area (theory): 2.00000

It is clear that this is a fairly good approximation in terms of the integrated area and
you can see that the differences with the theoretical curve are minor in Figure 11.

Figure 11 Plot of the numerical convolution shown with the diamond symbols and the
theoretical convolution shown as a solid line. Plot created using
irreg_convol_example.pro.

 55

Exercise: Write a procedure that writes out (i.e. saves to a file) synthetic 2-
dimensional scattering data that has the following functional form:

() () () () ()() ()⎥⎦
⎤

⎢
⎣

⎡
Γ+ωπ

Γ
−+ωδ⊗ω=ω 22oomeas

1r;QA1r;QAR,QS (3.6)

where () ([3Qrj1
3
1r;QA oo +≡)], the Lorentzian has the same FWHM as in the

make_fake_data program from the last chapter, the resolution function is Gaussian
with FWHM = 1, and r = 1.1 (radius of quasi-elastic hopping). This expression (3.6) is
the functional form for a quasi-elastic neutron scattering lineshape for a molecular
rotor which hops between three equivalent sites on a circle. Note that IDL has the
cylindrical Bessel functions built in. The Bessel function in Ao is a spherical Bessel
function. The relationship between the cylindrical and spherical Bessel functions is
given by the following IDL function:

 function sph_bessel,x,n
 return,(sqrt(0.5*!dpi/x))*beselj(x,n+0.5,/double)
 end

Select an ω range with 150 points that spans -10 to 10 and a Q range with 25 points
that spans 0.1 to 3.5.

This data file will be essential when we write our final application.

 56

Chapter 5-Data visualization

In neutron scattering, as with many other fields, one often wants to view the
scattering data in some meaningful way. Depending on the nature of the
measurement and the needs of the experimentalist, it is often desirable to view the
data in many different ways. For instance, some like to view quasielastic neutron
scattering data on a logarithmic intensity scale in order to gain an appreciation for
the "wings" of the quasielastic component and compare these wings to the extents of
the elastic component. A strictly inelastic excitation or a Bragg peak is often viewed
on a linear scale. Additionally experimentalists often like to look at overplots of
multiple data sets. Moreover when the data is parametrized in terms of two
independent variables it is often convenient to view the data as a surface or in an
image representation. In this chapter we will discuss how to view data in these
different ways.

There are two graphics systems with which you can display plots: direct graphics and
object graphics. In this course we will be dealing exclusively with the direct graphics
system.

Simple plots

In the last chapter we used the PLOT procedure on a number of occasions without
providing details on its syntax or capabilities. In this section we discuss how to use
this procedure with successively more complicated requirements.

The main challenge with the PLOT command is that there are a great many optional
keywords associated with it. However IDL does a pretty good job at formatting data
so that its default appearance is nice. We will not investigate all of the optional
keywords to PLOT. The reader is referred to the on-line documentation for a
complete description. To begin let's consider a plot of the zeroth order cylindrical
Bessel function, j0(10x). This is a function built-in to IDL called BESELJ.

IDL> x = makepts(xlo = 0.0,xhi = 1.0,npts = 100)
IDL> plot,x,beselj(10.0*x,0),psym = 0,thick = 2.0

This result is shown in the plot in Figure 12. The PSYM keyword states which symbol is
to be used for plotting. PSYM = 0 tells IDL to use a line for plotting. The THICK = 2.0
keyword tells IDL to make the line thicker than the default (1.0).

 57

Figure 12 Plot of the zeroth order cylindrical Bessel function.

We can add a title, a label for the x-axis, a label for the y-axis using the keywords
title, xtitle, and ytitle respectively as follows:

IDL> plot,x,beselj(10.0*x,0),psym = 0,thick = 2.0, $
 xtitle = 'x',ytitle = 'j!d0!n(10x)', $
 title = 'Cylindrical Bessel Functions'

In this command we have used some text formatting characters in the ytitle keyword.
The formatting character !d tells IDL to make the subsequent characters subscripts.
The formatting character !n tells IDL to make the subsequent characters normal font
level. Therefore in the ytitle keyword, 0 should be a subscript and everything else
should be a the normal level. Note that !e (not used here) tells IDL to make the
subsequent characters superscripts. The result of issuing the PLOT command above
with all of those keywords is shown in Figure 13 below.

We can overplot different data sets using different line styles to differentiate
between the data. As an example, we can type the following OPLOT commands to
overplot on the existing plot.

IDL> oplot,x,beselj(10.0*x,1),linestyle = 1,thick = 2.0
IDL> oplot,x,beselj(10.0*x,2),linestyle = 2,thick = 2.0
IDL> oplot,x,beselj(10.0*x,3),linestyle = 3,thick = 2.0

The result is shown in Figure 14. The linestyle keyword yields the following results for
different values: 0-solid, 1-dotted, 2-dashed, 3-dash dot, 4-dash dot dot, and 5-long
dashes.

 58

Figure 13 Result of the issuing the PLOT command with the axis annotation keywords
set.

Figure 14 Same as in Figure 13 except three OPLOT commands are issued to overplot
three more data sets.

We can also create an inset within an existing figure. This requires a little bit more
effort regarding the keywords. For example, let's say we wish to show a magnified
view of a particular range in an inset for Figure 14. We first need to make sure that
there is some space available within the axes that does not overlap any of the data

 59

that is displayed. We can expand the region above the data shown in Figure 14 using
the YRANGE and YSTYLE keywords as follows.

IDL> plot,x,beselj(10.0*x,0),psym = 0,thick = 2.0, $
 xtitle = 'x',ytitle = 'j!d0!n(10x)', $
 title = 'Cylindrical Bessel Function with Inset', $
 yrange = [-0.5,2.0],/ystyle

The YRANGE keyword tells the PLOT command to plot only over the range from -0.5 up
to 2.0. Setting the YSTYLE keyword forces the PLOT command to use the range
specified in YRANGE. For completeness we repeat the next three OPLOT commands.

IDL> oplot,x,beselj(10.0*x,1),linestyle = 1,thick = 2.0
IDL> oplot,x,beselj(10.0*x,2),linestyle = 2,thick = 2.0
IDL> oplot,x,beselj(10.0*x,3),linestyle = 3,thick = 2.0

Next we must determine where the inset will go. There is a POSITION keyword in PLOT
that specifies where in the plot window the plot will be drawn. This keyword is
specified in normalized units in the following way: position = [xo,yo,x1,y1] where
(xo,yo) define the coordinates for the lower left hand corner and (x1,y1) defines the
upper right hand corner. We specify the position for this plot as follows:

IDL> pos = [0.5,0.5,0.9,0.9]

Finally we issue the PLOT command for the inset with the NOERASE and POSITION
keywords set:

IDL> plot,x,beselj(10.0*x,0),psym = 0,/noerase,position = pos, $
 xrange = [0.5,0.75],/xstyle,thick = 4.0, $
 xtitle = 'x',ytitle = 'j!d0!n(10x)'

Setting the NOERASE keyword tells IDL not to erase anything that is already displayed
on the current graphics device (the window in this case). The result is shown in
Figure 15.

 60

Figure 15 Same as Figure 14 except with an inset.

It is possible to display data using symbols as well as lines. In IDL the symbols are
specified by the PSYM keyword and are defined as follows: 1-plus, 2-asterisk, 3-
period, 4-diamond, 5-triangle, 6-square, 7-x, 8-user defined. The following example
illustrates how we can plot a series of shifted sinusoids over one period using different
symbols. When displaying plots that have different symbols and/or linestyles, it is
useful to display a plot legend. Unfortunately there is no RSI-supplied routine that
creates a plot legend in the direct graphics system. However there is a procedure
called MYLEGEND.PRO which was written by a third party and is in the suite of programs
included in this course distribution. For the sake of clarity, these commands have
been formulated as a procedure.

 61

Example:

Create a plot of shifted sinusoids using different symbols. This plot should also
include a legend using the procedure MYLEGEND.PRO.

pro plot_example

x = makepts(xlo = 0.0,xhi = 3.0*!pi,npts = 100)
phase = makepts(xlo = 0.0,xhi = 1.0*!pi,npts = 8)

; Legend parameters
xpos = 0.5 & ypos = 0.9
charsize = 1.5
; Plot the shifted sinusoids
plot,x,sin(x+phase[0]),psym = 1, $
 xtitle = 'x',ytitle = 'y(x)', $
 title = 'Shifted sinusoids', $
 xrange = [min(x),max(x)],/xstyle, $
 yrange = [-1.0,3.0],/ystyle
 legend_text = strtrim(string(1),2)+'!est!n data set'

; Add the legend text for this curve
 mylegend, xpos,ypos, $
 legend_text, $
 psym = 1, $
 charsize = charsize

for i = 1,n_elements(phase)-2 do begin
 oplot,x,sin(x+phase[i]),psym = i+1
 legend_text = strtrim(string(i),2)+'!eth!n data set'
; Add the legend text for this curve
 mylegend, xpos,ypos-0.05*i, $
 legend_text, $
 psym = i+1, $
 charsize = charsize
endfor
end

The result of the code above is shown in Figure 16.

 62

Figure 16 Example showing the various symbols available for plotting.

It is also possible to create user-defined symbols using the built-in IDL procedure
called USERSYM. An example of how one can use this procedure to create a filled
circle symbol is illustrated below.

IDL> x = makepts(xlo = 0.0,xhi = 3.0*!pi,npts = 100)
IDL> ntheta = 20
IDL> theta = makepts(xlo = 0.0,xhi = 2.0*!pi,npts = ntheta)
IDL> xc = cos(theta) & yc = sin(theta)
IDL> usersym,xc,yc,/fill
IDL> plot,x,sin(x),psym = 8, $
 xtitle = 'x',ytitle = 'y(x)', $
 title = 'Sinusoid with filled circle symbol'

The USERSYM procedure creates a symbol that is accessed by setting PSYM = 8 in the
PLOT call. The result of issuing the commands above is shown in Figure 17.

As a final example, we will show to create multiple plots on a single page. This can
be done using the NOERASE keyword as described previously or, if the layout is grid-
like, it is simpler to use a system variable called !P.MULTI. For example, if we wish to
have a 2 × 2 grid of plots in one window then we would do so as follows.

IDL> x = makepts(xlo = 0.0,xhi = 3.0*!pi,npts = 100)
IDL> phase = makepts(xlo = 0.0,xhi = 1.0*!pi,npts = 8)
IDL> !p.multi = [0,2,2]
IDL> for i = 0,3 do $
IDL> plot,x,sin(x+phase[i]),psym = i+4, $
IDL> xtitle = 'x',ytitle = 'y(x)', $
IDL> title = 'Shifted sinusoid', $
IDL> xrange = [min(x),max(x)],/xstyle

 63

IDL> !p.multi = 0

Note that we issue the final !P.MULTI=0 command so that subsequent plots will not be
arranged in a grid. Rather it will return to the default behavior of placing a single
plot on the window. The result is shown in Figure 18.

Figure 17 Illustration of how to implement a user-defined plotting symbol.

Figure 18 Illustration of multiple plots in a window using the !P.MULTI system
variable.

 64

The syntax for the !P.MULTI system variable is as follows:

¾ !P.MULTI[0] = number of plots remaining on the page
¾ !P.MULTI[1] = number of plot columns per page
¾ !P.MULTI[2] = number of plot rows per page
¾ !P.MULTI[3] = number of plots stacked in the z-dimension

Surface and image plots

Data that is a function of two independent variables can be visualized using contour,
image, and/or surface plots. Many excellent texts exist that show how to display data
in any of these forms so we will not go into great detail how to do these things.
Instead we will show you how to create a false-color image plot of some data using a
routine called PLOTIMAGE (developed by a third party) and briefly show you how to
create a surface plot with a texture map.

PLOTIMAGE is a flexible image display routine that allows the user to plot an image
representation of data with meaningful data axes surrounding the image. Note that
this is not possible with the TV and TVSCL routines built in to IDL (without
modification). The only requirements are (1) that the quantity to be displayed must
be two-dimensional, (2) it must be regularly gridded, and (3) it must by scaled as a
byte array from 0B to 255B.

As an example we can use the PLOTIMAGE procedure to display a two-dimensional
function defined over the x-range of [-10,10] and over the y-range of [0,5]. The code
below, plotimage_example.pro is the name of the example. The IMGXRANGE and
IMGYRANGE keywords allow the user to specify the range over which the image is
defined. In particular IMGXRANGE[0] specifies the lower boundary on the lowest bin
and IMGXRANGE[1] specifies the upper boundary on the highest bin. We want to
display this data so that each pixel is bin-centered. To do this we subtract off half a
binwidth from lower range bound and add half a binwidth to the upper range bound.

pro plotimage_example
; Set up the colors for this example
device,decomposed = 0
loadct,15,/silent
; Specify the ranges of the function
xlo = -10.0 & xhi = 10.0 & nx = 101
ylo = 0.0 & yhi = 5.0 & ny = 51
x = makepts(xlo = xlo,xhi = xhi,npts = nx)
y = makepts(xlo = ylo,xhi = yhi,npts = ny)
; Create the function to be displayed
z = sin(x#y)+0.1*randomn(s,nx,ny)
; Convert the function into a byte-scaled image
image = bytscl(z)
; PLOTIMAGE requires that we specify the range
; over which to plot the data. In order to ensure
; a "bin-centered" plot for each pixel we subtract
; off half a bin from the lower bound and add

 65

; half a bin to the upper bound.
dx = x[1] - x[0]
dy = y[1] - y[0]
imgxrange = [xlo-0.5*dx,xhi+0.5*dx]
imgyrange = [ylo-0.5*dy,yhi+0.5*dy]

; Open the window
window,0
erase,255B ; erase the window with white
plotimage,image,imgxrange = imgxrange, $
 imgyrange = imgyrange,/noerase,color = 0

end

Figure 19 Output from the plotimage_example.pro program illustrating the use of the
PLOTIMAGE procedure.

We can modify this program slightly to allow us to view a surface representation of
this function as follows.

pro shade_surf_example
; Set up the colors for this example
device,decomposed = 0
loadct,15,/silent
; Specify the ranges of the function
xlo = -10.0 & xhi = 10.0 & nx = 100
ylo = 0.0 & yhi = 5.0 & ny = 50
x = makepts(xlo = xlo,xhi = xhi,npts = nx)
y = makepts(xlo = ylo,xhi = yhi,npts = ny)
; Create the function to be displayed
z = sin(x#y)+0.1*randomn(s,nx,ny)
shade_surf,z,x,y,shades = bytscl(z),ax = 75.
end

 66

In this example we used SHADE_SURF which has the following syntax:

SHADE_SURF, Z [, X, Y] [, AX=degrees] [, AZ=degrees] [, IMAGE=variable]
[, MAX_VALUE=value] [, MIN_VALUE=value] [, PIXELS=pixels] [, /SAVE]
[, SHADES=array] [, /XLOG] [, /YLOG]

In the example above we specified z, x, and y. Also we used the shades keyword to
"drape" the image represenation of the surface on the surface itself. You can also
change the orientation of the surface by specifying the AX and/or AZ keywords which
represent the axial and azimuthal orientation, respectively.

Figure 20 Output from the shade_surf_example.pro program illustrating the use of
the SHADE_SURF procedure.

Animating data

Often it is illustrative to display a sequence of data as a function of some parameter
such as time, concentration, etc. In these cases it is useful to animate the data
sequence. This is possible in IDL by repeated updating of the plot window. However
it is not as straightforward as just re-issuing a new plot command for each new frame.
We must invoke the notion of a pixmap. A pixmap is a display device that exists in
memory that is not rendered on the screen directly but is copied to the screen from
memory using a technique called double-buffering.

This technique of double buffering is best illustrated with an example. Consider the
code listed below.

 67

IDL> x = makepts(xlo = -5.0,xhi = 5.0,npts = 100)
IDL> gauss = gaussian(x)
IDL> window,0,xsize = 400,ysize = 400 ; create visible window
IDL> window,/free,/pixmap,xsize = 400,ysize = 400 ; create the pixmap
IDL> winpix = !d.window
IDL> wset,winpix ; first plot it in the pixmap
IDL> plot,x,gauss,thick = 2.0
IDL> wset,0 ; now copy it from the pixmap to the visible window
IDL> device,copy = [0,0,400,400,0,0,winpix]
IDL> wdelete,winpix ; free the memory associated with the pixmap

In this example we create a visible window (0) and a pixmap (winpix). The plot
is first rendered in the pixmap and then copied using the device procedure
with the copy keyword set to an array composed of 7 elements. The first two
elements are the x and y coordinates in pixels of the lower left corner of the
source window. The third and fourth elements are the dimensions (in pixels) of
the source window, the fifth and sixth elements are the coordinates (in pixels)
of the lower left corner of the destination window, and the seventh element is
the window identifier of the source window. Let's consider a slightly more
complicated example that illustrates how this can be used for animating
sequences of images.

Example:

Create an animated sequence of a Gaussian distribution translating and
broadening with each successive frame. Compare the output to that of simply
replotting the new frame on the same window to using double-buffering.

pro animate_example

nx = 200 & nframes = 50
x = makepts(xlo = -10.0,xhi = 10.0,npts = nx)
center = makepts(xlo = -10.0,xhi = 10.0,npts = nframes)
fwhm = makepts(xlo = 1.0,xhi = 9.0,npts = nframes)
gauss_mat = fltarr(nx,nframes)
for i = 0,nframes-1 do $
 gauss_mat[*,i] = gaussian(x,center = center[i],fwhm = fwhm[i])

; First do it the "intuitive" way
winvis = 0
window,winvis,xsize = 400,ysize = 400
for i = 0,nframes-1 do begin
 plot,x,gauss_mat[*,i],thick = 2.0,yrange = [0.0,2.0],/ystyle
endfor

; Now do it using double-buffering
window,/free,/pixmap,xsize = 400,ysize = 400
winpix = !d.window

for i = 0,nframes-1 do begin
 wset,winpix
 plot,x,gauss_mat[*,i],thick = 2.0,yrange = [0.0,2.0],/ystyle
 wset,winvis

 68

 device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]
endfor
; Note that we must delete the memory associated with the pixmap
wdelete,winpix

end

The first method in the example simply re-plots each successive frame of the curve's
evolution in the same window. This results in an undesirable "flicker" as the data is
displayed in the window. The second method, which uses double-buffering, results in
a much smoother animated sequence. It should also be pointed out that the system
variable !D.WINDOW has been used to get the window identifier for the pixmap. The
WINDOW procedure to create the pixmap was called with the FREE keyword to get any
available window identifier (i.e. corresponding to one that is not currently in use).

Example showing convergence of Fourier Series

As a final example of animating data we will illustrate the convergence of a Fourier
Series approximation to a function as the number of terms in the sum increases. In
particular, we consider a square wave function with the following Fourier Series
representation:

()()
⎭
⎬
⎫

⎩
⎨
⎧

+
+

π
+ ∑

∞

=0n 1n2
x1n2sin41

2
1

. (5.1)

We will see that our knowledge of array operations will be useful in creating the
summand and the quantity to be plotted without using loops. Of course we will
require the main animation loop but we will not use any loops to create the elements
in the animated sequence.

As described in the previous section we will create a visible window and a pixmap and
then use the double-buffering to create the smooth animated sequence. After
creating the windows, the "boxcar" function is created and then the summand is
created based on the extents of x and the total number of terms in the series
expansion. In the example presented here we choose 500 points in x and 100 terms in
the expansion. Our strategy is to create the 2 dimensional summand array (500 × 100)
using array operations and then, within the animation loop, use the TOTAL function to
sum over the second dimension up to the term for display. For instance in the 40th
iteration in the loop, we would want to sum the array over the second dimension up
to the 39th term. This is done using the TOTAL function whose first argument is the 2
dimensional array and second argument is the dimension over which to sum (2). Once
this has been calculated then the result is displayed in the pixmap and copied to the
visible window using the double-buffering technique. Finally, after the animated
sequence is finished, the integrated absolute value of the difference between the
approximation and the actual function is plotted as a function of each successive

 69

term. This provides a simple visualization of the convergence of the Fourier Series.
The code for this example is listed in the following box.

fourierProgram.pro
;
; Demonstration of the Fourier series approximation to
; a rectangle function as the number of terms in the
; series expansion increases.
; *********************************
pro fourierProgram
; Use the DEVICE procedure with the GET_SCREEN_SIZE
; keyword to determine the size (in pixels) of the
; screen. Then make the window size 1/3 of this in
; both dimensions.
device,get_screen_size = screen_size
winxsize = 400 & winysize = 400
xsize = fix(screen_size[0]/3.0)
ysize = fix(screen_size[1]/3.0)

nx = 500
x = makepts(xlo = -0.5, xhi = 1.5*!pi, npts = nx)
y = heaviside(x)-heaviside(x-!pi) ; the function

nterms = 100 ; # of terms in the FS expansion
; Create the pixmap
window,/free,/pixmap,xsize = winxsize, ysize = winysize
winpix = !d.window
; Create the visible window
window,0,xsize = winxsize,ysize = winysize
winvis = !d.window

; Set up the display to tile one window with
; two plots: the function+approximation and the
; difference plot.
!p.multi = [0,1,2]
t = fltarr(nterms); integrated difference
yterms = fltarr(nx,nterms); summand
ux = 1+bytarr(nx)
integer = indgen(nterms)
yterms = sin(x#(2.0*integer+1))/(ux#(2.0*integer+1))
for i = 0,nterms-1 do begin
 if i lt 2 then begin
 ysum = yterms[*,0]
 endif else begin
 ysum = total(yterms[*,0:i-1],2)
 endelse
 ; Display the window
 wset,winpix
 plot,x,y,yrange = [-0.5,2.0],ystyle = 1,thick = 2.0, $
 title = strtrim(string(i+1),2)+'!3: Terms'
 oplot,x,0.5*(1.0+(4.0/!pi)*ysum),thick = 1.0
 plot,x,y-0.5*(1.0+(4.0/!pi)*ysum),yrange = [-0.25,0.25], $
 ystyle = 1,xtitle = 'x',ytitle = 'Difference'
 wset,winvis
 device,copy = [0,0,winxsize,winysize,0,0,winPix]
 empty
 ; Integrate the difference
 t[i] = int_tabulated(x,abs(y-0.5*(1.0+(4.0/!pi)*ysum)))
endfor
wdelete,winpix

!p.multi = 0

 70

window,1,xsize = winxsize,ysize = winysize
plot,t,xtitle = 'x',ytitle = 'Difference'
end

 71

Chapter 6-Data Analysis

IDL contains many built-in data analysis features. Among these are curve fitting
functions. However over time, other IDL programmers have developed a number of
routines that extend the analysis capabilities of IDL. In this chapter we discuss a few
of IDL's analysis routines, a set of robust fitting routines called MPFIT developed by a
third party, and apply them to a realistic neutron scattering problem. Along the way
we will have a brief diversion to see how you can view the intermediate fitting steps
using animation techniques presented in Chapter 5-Data visualization, and also discuss
a simple Monte-Carlo method for estimating uncertainty in your fit parameters.

Fitting a straight line with LINFIT

In this first section we consider one of the simplest types of data analysis problems:
fitting a straight line to data. IDL has a routine called LINFIT that has the following
syntax:

Result = LINFIT(X, Y [, CHISQ=variable] [, COVAR=variable] [, /DOUBLE]
[, MEASURE_ERRORS=vector] [, PROB=variable] [, SIGMA=variable]
[, YFIT=variable])

The data are defined by the vectors x (the independent variable) and y (the
dependent variable). If the measurement uncertainties are known then they can be
specified by setting the keyword MEASURE_ERRORS. The goodness-of-fit as represented
by the CHISQ and PROB output keywords. The uncertainty on the fit parameters can be
accessed in the output keyword SIGMA.

pro fit_linear_data
; Create some fake linear data
offset = 1500.0 & slope = -0.25
npts = 100
x = makepts(xlo = -20.0,xhi = 30.0,npts = npts)
yline = offset+slope*x
; "Color" the data with Poisson noise
y = fltarr(npts)
for i = 0,npts-1 do y[i] = randomn(s,1,poisson = yline[i])
dy = sqrt(y)
plot,x,y,psym = 4
errplot,x,y-dy,y+dy,width = 0.0
; Fit it using the IDL LINFIT routine
fit_result = linfit(x, y, measure_errors = dy, yfit = yfit, sigma = sigma)
oplot,x,yfit,psym = 0,thick = 2.0
print,"Fit results"
print,"-----------"
print,'Offset: '+strtrim(string(fit_result[0]),2)+' +/-
'+strtrim(string(sigma[0]),2)

 72

print,'Slope: '+strtrim(string(fit_result[1]),2)+' +/-
'+strtrim(string(sigma[1]),2)
end

Figure 21 Fit of a straight line to synthesized linear data using IDL's LINFIT routine.

The text output from the program that resulted when I ran the program
fit_linear_data was the following:

IDL> fit_linear_data
Fit results

Offset: 1504.51 +/- 4.10388
Slope: -0.541843 +/- 0.266056

Using CURVEFIT

We can use IDL’s general-purpose curve fitting routine appropriately named CURVEFIT
to fit the synthetic data to a line. This uses a gradient expansion of the fit function
to first-order in the fit parameters to convert a non-linear least-squares problem into
a linear least-squares problem. The syntax for CURVEFIT is as follows:

Result = CURVEFIT(X, Y, Weights, A [, Sigma] [, CHISQ=variable] [, /DOUBLE]
[, FITA=vector] [, FUNCTION_NAME=string] [, ITER=variable] [, ITMAX=value]
[, /NODERIVATIVE] [, STATUS={0 | 1 | 2}] [, TOL=value] [, YERROR=variable])

We will only concern ourselves with the CURVEFIT arguments that are necessary to fit
the straight line to the data. The first two parameters, x and y, are the independent
and dependent data vectors respectively. The weights, used in the calculation of χ2,

 73

are usually chosen as 1/σ2 where σ is a vector containing the measurement errors for
the data. This is appropriate for “normal” measurement errors.

pro linear_function,x,p,yfit
; The model function that defines the
; line.
offset = p[0] & slope = p[1]
yfit = offset+slope*x
end

pro curvefit_linear_data
; Create some fake linear data
offset = 1500.0 & slope = -0.25
npts = 100
x = makepts(xlo = -20.0,xhi = 30.0,npts = npts)
yline = offset+slope*x
; "Color" the data with Poisson noise
y = fltarr(npts)
for i = 0,npts-1 do y[i] = randomn(s,1,poisson = yline[i])
dy = sqrt(y)
plot,x,y,psym = 4
errplot,x,y-dy,y+dy,width = 0.0
; Provide initial guess for the fit parameters
p = [100.0,1.0]
; Fit it using the CURVEFIT
yfit = curvefit(x,y,1d/dy^2,p,sigma,/noderivative, $
 function_name = 'linear_function')

fit_result = p

oplot,x,yfit,psym = 0,thick = 2.0
print,"Fit results"
print,"-----------"
print,'Offset: '+strtrim(string(fit_result[0]),2)+ $
 ' +/- '+strtrim(string(sigma[0]),2)
print,'Slope: '+strtrim(string(fit_result[1]),2)+ $
 ' +/- '+strtrim(string(sigma[1]),2)
end

Using MPCURVEFIT

One of the problems with IDL's CURVEFIT function is that it is impossible to use it to fit
a function (or set of functions) that have been convolved with a resolution function.
The robust fitting routines written by Craig Markwardt at NASA called MPFIT provide a
mechanism for fitting data using a resolution function. These routines are an
implementation of a variant on the Levenberg-Marquardt least-squares approach with
a few modifications. It is an IDL adaptation of the MINPACK-1 software. In this
section we will repeat the analysis of the previous section (i.e. fitting a straight line
to synthesized linear data) to show how to use MPCURVEFIT, one of the routines from
MPFIT. We will take a closer look at how to incorporate the instrumental resolution
function into the fitting process using MPCURVEFIT in the next section.

 74

The code below contains two procedures. The first procedure is the actual fit
function named linear_function and accepts two input parameters, x and p, and
returns a single output parameter, yfit. yfit is the model function evaluated at the
points x with parameters p (=[offset,slope]). The second procedure,
mpcurvefit_linear_data, is the "driver" program that creates the synthetic data and
performs the fit.

The complete documentation for MPCURVEFIT can be seen in the header of that file
but we will cover only the few keywords and parameters that are useful for the
example. In our example the following syntax is used:

yfit = mpcurvefit(x,y,1d/dy^2,p,sigma,/noderivative, $
 function_name = 'linear_function',/quiet)

In this function the return value yfit is the model function evaluated at x, the
independent variable, with the final parameters specified in the output parameter, p.
The data (independent and dependent variables) are the first two input parameters,
and the weights for the data is the third input parameter. The weights are used to
calculate the χ2 value for the fit and, for "normal" errors, they are defined as 1/σ2
where the σ are the measurement uncertainties of the data points. The noderivative
keyword is set which removes the usual requirement of least-squares routines to
provide the analytic derivatives of the model function taken with respect to the
parameters. The model function linear_function is specified with the function_name
keyword. Finally, the quiet keyword is set to suppress intermediate reporting in the
output log. If quiet is not set then at each decrease of χ2, the parameters are
printed to the output log. This information can be useful when diagnosing problems
with fitting data.

pro linear_function,x,p,yfit
; The model function that defines the
; line.
offset = p[0] & slope = p[1]
yfit = offset+slope*x
end

pro mpcurvefit_linear_data
; Create some fake linear data
offset = 1500.0 & slope = -0.25
npts = 100
x = makepts(xlo = -20.0,xhi = 30.0,npts = npts)
yline = offset+slope*x
; "Color" the data with Poisson noise
y = fltarr(npts)
for i = 0,npts-1 do y[i] = randomn(s,1,poisson = yline[i])
dy = sqrt(y)
plot,x,y,psym = 4
errplot,x,y-dy,y+dy,width = 0.0
; Provide initial guess for the fit parameters
p = [100.0,1.0]

 75

; Fit it using the MPCURVEFIT
yfit = mpcurvefit(x,y,1d/dy^2,p,sigma,/noderivative, $
 function_name = 'linear_function',/quiet)
fit_result = p

oplot,x,yfit,psym = 0,thick = 2.0
print,"Fit results"
print,"-----------"
print,'Offset: '+strtrim(string(fit_result[0]),2)+ $
 ' +/- '+strtrim(string(sigma[0]),2)
print,'Slope: '+strtrim(string(fit_result[1]),2)+ $
 ' +/- '+strtrim(string(sigma[1]),2)
end

When I ran the program I obtained the following text output:

IDL> mpcurvefit_linear_data
Fit results

Offset: 1497.0937 +/- 4.09255
Slope: -0.37265026 +/- 0.265282

This was accompanied by the graphical output shown in Figure 22. It is clear that the
fit to the data is very good.

Figure 22 Result of using MPCURVEFIT to fit a straight line to synthetic linear data.
Note that the results slightly differ from those found using LINFIT in the previous
example due to differences in the synthetic data.

Analyzing neutron scattering data with MPCURVEFIT

 76

In this section we will illustrate how to fit data using the MPCURVEFIT function which
includes using convolution of the resolution function with the intrinsic function(s).
The synthetic data that we will analyze is that from chapter 3. Recall that in that
section we created a Gaussian resolution function and convolved this with an intrinsic
function composed of a delta function plus a Lorentzian function. The procedure to
create that data provided us with an option to write the “data” out to a file. For this
exercise we will read this data in and fit the model function to it (with the
instrumental resolution function convolved with the intrinsic function).

The analysis procedure is found in a program called analyze_fake_data.pro listed
below.

; *** ;
pro scattering_function,x,p,yfit,_Extra = extra
bg = p[0] & area_el = p[1] & cen_el = p[2]
area_iel = p[3] & cen_iel = p[4] & fwhm_iel = p[5]
y_iel = lorentzian(x,area = area_iel,cen = cen_iel,fwhm = fwhm_iel)
nlo = 3 & nhi = n_elements(x) - nlo - 1
dx = x[1] - x[0]
con = convol(*extra.res_ptr,reverse(y_iel[nlo:nhi]),/edge_truncate) * dx
yfit = bg+gaussian(x,area = area_el,cen = cen_el,fwhm = 1.0)+con
end
; *** ;
pro analyze_fake_data
; First read in the data
dir = 'C:\RSI\dimeo_programs\idl_training\documentation\programs\'
filename = dir+'fake_data.txt'
count = 0L
dum1 = (dum2 = (dum3 = 0.0))
openr,lun,filename,/get_lun
while not eof(lun) do begin
 readf,lun,dum1,dum2,dum3
 if count eq 0L then begin
 x = dum1 & y = dum2 & dy = dum3
 endif else begin
 x = [x,dum1] & y = [y,dum2] & dy = [dy,dum3]
 endelse
 count++
endwhile
free_lun,lun,/force

; Now plot the data with the error bars
plot,x,y,psym = 4
errplot,x,y-dy,y+dy,width = 0.0

; We will assume that we know that the resolution
; function is a Gaussian with a FWHM of 1.0 and is
; defined over the same interval as the data.
res = gaussian(x,area = 1.0,center = 0.0, fwhm = 1.0)
; Create a pointer to the resolution function because we
; will not want to pass around the vector and keep making
; copies of it. A single reference to a heap variable
; is all that's necessary.
res_ptr = ptr_new(res)

 77

; Pick some initial guesses for the fit
bg = 10.0 & area_el = 500.0 & cen_el = 0.0
area_iel = 100.0 & cen_iel = 5.0 & fwhm_iel = 1.0
p = [bg,area_el,cen_el,area_iel,cen_iel,fwhm_iel]
; Impose constraints on each of the positive-definite
; parameters that they be greater than zero.
parinfo = replicate({limited:[0,0],limits:[0D,0D]},n_elements(p))
parinfo[0].limited[0] = 1
parinfo[0].limits[0] = 0.D
parinfo[1].limited[0] = 1
parinfo[1].limits[0] = 0.D
parinfo[3].limited[0] = 1
parinfo[3].limits[0] = 0.D
parinfo[5].limited[0] = 1
parinfo[5].limits[0] = 0.D

functargs = {res_ptr:res_ptr }
yfit = mpcurvefit(x,y,1d/dy^2,p, sigma, parinfo = parinfo, $
 function_name = 'scattering_function', $
 /noderivative,functargs = functargs)
oplot,x,yfit,psym = 0,thick = 2.0
for i = 0,n_elements(p)-1 do $
 print,strtrim(string(p[i]),2)+' +/- '+strtrim(string(sigma[i]),2)
ptr_free,res_ptr
end

The first procedure in this file is called scattering_function which is the model
which will be fit to the data. This fit function is similar in syntax to linear_function,
discussed in the the previous section except that it also accepts keywords. The
function MPCURVEFIT provides the capability to pass in exogenous information into the
fitting function via a keyword named FUNCTARGS. In our case we pass in a pointer
reference to the resolution function. Why not pass in the resolution function as an
array rather than a pointer to it? The Levenberg-Marquardt algorithm requires
numerous evaluations of the fit function meaning that the information will be passed
between routines very often. If the information is large then this will tend to slow
down the fitting process. We can gain a bit of performance by passing a pointer
reference rather than the full array. The other difference between
scattering_function and linear_function is that the CONVOL routine is used to take
into account the effects of instrumental resolution.

The first task in analyze_fake_data is to read in the data saved in the file called
fake_data.txt. The data is organized into three columns: x, y, dy, so we simply need
to open up the file, read in three values on each line until we reach the end of the
file. This is the subject of the first 15 lines or so of the analyze_fake_data
procedure. This data is then plotted. Next the resolution function, assumed to be a
Gaussian centered at 0.0 with a full-width-at-half-maximum of 1.0, is generated and a
pointer reference to it is created. Then initial guesses for the parameters are
specified and stored in the parameter p. Then an array of structures is created that
enable us to impose a lower limit on certain parameters in the fit. For instance, we
know that the area of each of the functions must be greater than 0 so a lower limit of

 78

zero is imposed on those parameters. Likewise a lower limit of 0 is imposed on the
full-width-at-half-maximum for the Lorentzian is imposed. Next, the structure of
exogenous function information is created called FUNCTARGS and the pointer to the
resolution function is put into it. Then the MPCURVEFIT function is called with the
following syntax:

yfit = mpcurvefit(x,y,1d/dy^2,p, sigma, parinfo = parinfo, $
 function_name = 'scattering_function', $
 /noderivative,functargs = functargs)

Here the constraint information embodied in parinfo is passed in as an input
keyword, as is functargs. The noderivative keyword is also set because we have not
supplied the analytic derivatives of the fit function. Otherwise the syntax does not
differ from that of CURVEFIT very much. Then the resulting fit is plotted on top of the
original data and the parameter estimates and their uncertainties are printed to the
output log. Finally the pointers are freed to avoid memory leaks.

The parameter estimates from the analysis are displayed in the following table along
with the actual values used in the synthesis. The estimated values are very close to
the actual values.

Parameter name Fit value/uncertainty Actual value
Background 19.141001 +/- 0.439675

20.0

Elastic peak area 588.62901 +/- 8.03496

600.0

Elastic peak center -0.00288 +/- 0.00626

0.0

Inelastic peak area 304.65080 +/- 8.57177 300.0
Inelastic peak center 5.0082212 +/- 0.0215845 5.0
Inelastic peak width 1.0527218 +/- 0.0603475

1.0

The graphical output is shown in the figure below. It is clear that the fit is excellent.

 79

Figure 23 Result of analyzing the synthesized neutron scattering data using
MPCURVEFIT, taking into account the instrumental resolution. Solid line is the
resulting fit to the data.

Visualizing the intermediate fitting steps

It can be instructive to view the intermediate steps in the least-squares fit process in
order to see if the fit is converging and how fast it converges. Unfortunately this is
not possible with the built-in IDL curve-fitting routines. Here we will modify the
example from the previous section so that you can see a (sort-of) animated view of
the progress of the algorithm.

The mechanism by which we can see the intermediate steps is through the ITERPROC
procedure and the ITERARGS argument in MPCURVEFIT. ITERPROC can contain any type
of update code that you wish. You can plot the χ2 value as a function of iteration if
you want to see a value that describes the goodness-of-fit. In our case we will plot
the current fit on top of the data at each iteration.

The ITERPROC procedure must be declared with a number of arguments and keywords
as shown in my_iterproc below. Exogenous arguments necessary for the update
routine are passed into ITERPROC via the ITERARGS structure. This is done through
keyword inheritance (the _Extra keyword mechanism). The required arguments for
the procedure are fnc (the function to be minimized), p (the current parameter set),
iter (the current iteration), and fnorm (the current value of χ2).

In our existing code as presented in the last section we add the following procedure
named my_iterproc. This procedure should be located just before the
analyze_fake_data source code. The fields that comprise ITERARGS in our

 80

implementation here include x,y,dy (the data), res_ptr (the pointer to the resolution
function), winpix and winvis (used to plot the intermediate steps). The code that
actually plots the data and fit to the pixmap and copies this to the window should be
familiar to you at this point.

pro my_iterproc, fnc,p,iter,fnorm, $
 dof = dof, $
 quiet = quiet, $
 parinfo = parinfo, $
 _Extra = extra
; Routine for performing a custom update procedure
scattering_function,extra.x,p,yfit, $
 _Extra = {res_ptr:extra.res_ptr}
wset,extra.winpix
plot,extra.x,extra.y,psym = 4
errplot,extra.x,extra.y-extra.dy,extra.y+extra.dy,width = 0.0
oplot,extra.x,yfit,psym = 0,thick = 2.0
wset,extra.winvis
device,copy = [0,0,!d.x_size,!d.y_size,0,0,extra.winpix]

end

The code from the previous section is repeated here with the new additions
emphasized in boldface.

; *** ;
pro scattering_function,x,p,yfit,_Extra = extra
bg = p[0] & area_el = p[1] & cen_el = p[2]
area_iel = p[3] & cen_iel = p[4] & fwhm_iel = p[5]
y_iel = lorentzian(x,area = area_iel,cen = cen_iel,fwhm = fwhm_iel)
nlo = 3 & nhi = n_elements(x) - nlo + 1
dx = x[1] - x[0]
con = convol(*extra.res_ptr,reverse(y_iel[nlo:nhi]),/edge_truncate) * dx
yfit = bg+gaussian(x,area = area_el,cen = cen_el,fwhm = 1.0)+con
end
; *** ;
pro my_iterproc, fnc,p,iter,fnorm, $
 dof = dof, $
 quiet = quiet, $
 parinfo = parinfo, $
 _Extra = extra
; Routine for performing a custom update procedure
scattering_function,extra.x,p,yfit, $
 _Extra = {res_ptr:extra.res_ptr}
wset,extra.winpix
plot,extra.x,extra.y,psym = 4
errplot,extra.x,extra.y-extra.dy,extra.y+extra.dy,width = 0.0
oplot,extra.x,yfit,psym = 0,thick = 2.0
wset,extra.winvis
device,copy = [0,0,!d.x_size,!d.y_size,0,0,extra.winpix]

end
; *** ;
pro analyze_fake_data
; First read in the data

 81

dir = 'C:\idl_training\ornl\documentation\programs\'
filename = dir+'fake_data.txt'
count = 0L
dum1 = (dum2 = (dum3 = 0.0))
openr,lun,filename,/get_lun
while not eof(lun) do begin
 readf,lun,dum1,dum2,dum3
 if count eq 0L then begin
 x = dum1 & y = dum2 & dy = dum3
 endif else begin
 x = [x,dum1] & y = [y,dum2] & dy = [dy,dum3]
 endelse
 count++
endwhile
free_lun,lun,/force

; Now plot the data with the error bars
winvis = 0
window,0,xsize = 400,ysize = 400
window,/free,/pixmap,xsize = 400,ysize = 400
winpix = !d.window
wset,winpix
plot,x,y,psym = 4
errplot,x,y-dy,y+dy,width = 0.0
wset,winvis
device,copy = [0,0,!d.x_size,!d.y_size,0,0,winpix]

; We will assume that we know that the resolution
; function is a Gaussian with a FWHM of 1.0 and is
; defined over the same interval as the data.
res = gaussian(x,area = 1.0,center = 0.0, fwhm = 1.0)
; Create a pointer to the resolution function because we
; will not want to pass around the vector and keep making
; copies of it. A single reference to a heap variable
; is all that's necessary.
res_ptr = ptr_new(res)

; Pick some initial guesses for the fit
bg = 10.0 & area_el = 500.0 & cen_el = 0.0
area_iel = 100.0 & cen_iel = 5.0 & fwhm_iel = 1.0
p = [bg,area_el,cen_el,area_iel,cen_iel,fwhm_iel]
; Impose constraints on each of the positive-definite
; parameters that they be greater than zero.
parinfo = replicate({limited:[0,0],limits:[0D,0D]},n_elements(p))
parinfo[0].limited[0] = 1
parinfo[0].limits[0] = 0.D
parinfo[1].limited[0] = 1
parinfo[1].limits[0] = 0.D
parinfo[3].limited[0] = 1
parinfo[3].limits[0] = 0.D
parinfo[5].limited[0] = 1
parinfo[5].limits[0] = 0.D

iterargs = {x:x,y:y,dy:dy,winpix:winpix,winvis:winvis,res_ptr:res_ptr}
p = double(p)
functargs = {res_ptr:res_ptr}
yfit = mpcurvefit(x,y,1d/dy^2,p, sigma, parinfo = parinfo, $

 82

 function_name = 'scattering_function', $
 /noderivative,functargs = functargs , $
 iterargs = iterargs,iterproc = 'my_iterproc')

wdelete,winpix

oplot,x,yfit,psym = 0,thick = 2.0
for i = 0,n_elements(p)-1 do $
 print,strtrim(string(p[i]),2)+' +/- '+strtrim(string(sigma[i]),2)

ptr_free,res_ptr
end

Since we want to have smooth updates of the plot window then we create a pixmap
window to which we plot the data and copy the pixmap onto the visible window. The
additional code includes the creation, use, and final deletion of the pixmap window.
The only new additions to the call to the MPCURVEFIT function are the inclusion of the
ITERARGS and ITERPROC keywords.

A diversion: Monte-Carlo estimation of parameter uncertainties

The uncertainties in the parameters that are returned by MPCURVEFIT are based on the
curvature of the χ2 surface. Implicit in this analysis is that the χ2 surface is parabolic
near the minimum. However this is only strictly true if the model function has a
linear dependence on the parameters. Nevertheless this approximation is useful for
many situations where the model function has a non-linear dependence on the
parameters but the χ2 surface is sufficiently parabolic near the minimum to warrant
the approximation.

In fact you may come across analysis problems in your work that merit going beyond
this approximation. The good news is that you can get reliable estimates on the
uncertainties by a Monte-Carlo method. In this technique you generate a large
number of synthetic data sets that are based on the original data and their error bars.
In particular, if data point yi has an error bar σi then you use a random number
generator to create a new synthetic data point iii ryy σ+=~ where r is a random
number drawn from a normal distribution of unit standard deviation. After you create
a large number of synthetic data sets you apply the same fitting algorithm to each
data set and record the parameters determined from the fit. Finally you compute the
standard deviation of each of the recorded parameters over the entire set of Monte-
Carlo estimates. In the case of a linear dependence on the parameters the results
from this method should converge with those of the least-squares technique.

In order to see how this works, add the following code to your program named
analyze_fake_data.pro just before the line freeing res_ptr:

; First create the synthetic data
nmc = 300
nx = n_elements(x)

 83

data = rebin(y,nx,nmc,/sample) + $
 (rebin(dy,nx,nmc,/sample)) * randomn(s,nx,nmc)
nparams = n_elements(p)
mc_params = fltarr(nparams,nmc)
; Now loop through NMC times and gather the statistics
for i = 0,nmc-1 do begin
 yfit = mpcurvefit(x,data[*,i],1d/dy^2,p, sigma, $
 parinfo = parinfo, $
 function_name = 'scattering_function', $
 /noderivative,functargs = functargs,/quiet)
 mc_params[*,i] = p
endfor
; Calculate the statistics on the Monte-Carlo estimates
sigma_p = fltarr(nparams)
for i = 0,nparams-1 do begin
 sigma_p[i] = sqrt((moment(mc_params[i,*]))[1])
endfor
print
print
for i = 0,nparams-1 do $
 print,strtrim(string(sigma[i]),2)+ $
 ' , '+strtrim(string(sigma_p[i]),2)

The last line prints the results comparing the uncertainties returned from MPCURVEFIT
and those from the Monte-Carlo analysis. When I ran the program I got the following
output:

0.43948982 , 0.441838
8.0348532 , 7.71067
0.0063221015 , 0.00693790
8.5615994 , 9.07471
0.021549678 , 0.0215111
0.060263775 , 0.0691997

The parameter uncertainties found using the two methods in general are quite close.
In fact the relative uncertainties (uncertainty normalized to the parameter estimate)
are virtually indistinguishable. We can conclude from this that the parabolic estimate
for χ2 is very good in this analysis.

 84

Chapter 7-User Interface basics

Up until this point we have written procedural programs. As a user of these
procedures you are expected to know how to “run” these programs. If you develop
software for a group of individuals such as users at a neutron scattering center then
one of the requirements is that your software must be user-friendly. More often than
not this means that you need to develop a user-interface (UI) which “wraps” the
overall functionality (or purpose) of the program. In IDL UI controls are called
widgets. Widgets include buttons, check-boxes, sliders, interactive plot windows,
text fields, droplists, menus, and many more. We cannot cover all widget types in IDL
but we will cover enough to (1) get you started writing your own widget programs and
(2) give you enough exposure to widget programming so that you can easily
incorporate those widget types not covered in this manual in your own programs. In
this chapter we will describe widget programming through a series of example
programs. Each successive widget example will be more complicated and new
features will be introduced.

Event-driven programming

Event-driven programs (EDP) are substantially different from procedural programs
because EDP are in a state of waiting for information from the user. This information
is transmitted to the program via the widgets (or controls). There are two essential
components in a widget program: (1) the widget creation module which can be a
procedure or function, and (2) the event handler. The widget creation module is
where all of the widgets are created and rendered to the computer screen. In
addition, the event loop is started in the widget creation module. When you run a
widget program where input is expected from the user, the program is in a state of
waiting for this input: this wait state is the event loop. The event handler can be
either a procedure or a function. Its purpose is to execute the appropriate code for a
given event. For example, if the user presses the QUIT button in an application then
the corresponding event handler code would destroy the top-level base. The minimal
requirements for a widget program are that it have both a widget creation module
and an event handler. Most of our widget applications will have a single main event
handler that dispatch the events to secondary event procedures or functions. This is
better programming practice than lumping a huge set of commands in one event
handler. This is done in the interest of modularity and clarity of code.

In the widget creation module the widgets for the application are defined. Functions
define the widgets and the function’s return values are long integers known as widget
identifiers (or ids for short). A widget id is extremely important because it is the
handle needed to modify a widget, query a widget, or seek information about a
widget. Usually the means by which you affect a widget is using WIDGET_CONTROL or

 85

WIDGET_INFO. One of the requirements for mastering widget programming is to have
working knowledge of accessing widget ids from various event handlers. We will see
one way of how to do this in the examples presented in this chapter.

The first widget typically defined in any application is the top-level base which is
created using the WIDGET_BASE function. This base widget holds all of the other
widgets that you wish to expose to the users. The syntax for creating a base widget is
as follows:

tlb = widget_base(/col,title = 'First Widget')

In this function two keywords are specified but neither of them are necessary. The
first keyword is column which has been abbreviated to col in this example. The other
keyword is title that will appear in the native WINDOWS frame for the widget.
Consult the on-line help for the WIDGET_BASE function for a complete set of keywords
and parameters. It is worth mentioning that one parameter that WIDGET_BASE accepts
is a parent widget. By definition, the first widget (the top-level base), does not have
a parent. The widget hierarchy is best described in terms of a parent-child-sibling
model. The top-level base is the parent for all of the widgets that it contains. A
button widget whose parent is the top-level base is a child of the top-level base. If
there are two buttons, each of which have the top-level base as their parent, then
they are siblings of each other. Sometimes it is useful to use the parent-child-sibling
relationship in accessing and controlling widgets.

After the widgets have been defined they only exist in memory…they have not been
displayed yet. The procedure named WIDGET_CONTROL is used to realize the top-level
base on the screen. When the top-level base is realized on the screen then all of its
children (and their children, and their children’s children, etc.) are realized too.
The way to do this is with the command,

widget_control,tlb,/realize

The last required ingredient for a widget creation module is to register the top-level
base with the local windows manager and start the event loop. This is done with the
XMANAGER procedure. (Actually you don’t need to put in the XMANAGER procedure if you
do not wish for the program to respond to events…it would not be a very useful
program then would it?) The syntax for XMANAGER is the following

xmanager,’widget_program’, tlb,event_handler = ‘widget_handler’, $

cleanup = ‘widget_cleanup’,/no_block

In the call to xmanager we have specified a number of keywords and set others. There
are more keywords available to you in XMANAGER but we will only specify those that we
will use often in our programs here. Please consult the on-line help for additional
information.

 86

The first argument is the name of the procedure that is being registered with the
event loop. In the example given above this is called widget_program. The
assumption is that we have written a program whose widget definition module is
named widget_program. The second argument is the widget id of the top-level base
defined in the widget creation module. In this example this widget id is tlb. These
first two parameters are required. The remaining keywords are optional. Remember
that order of keywords is not important. The first keyword specified is the
event_handler. In our example above we name this widget_handler which is a
procedure. The user must supply a procedure named widget_handler. Whenever any
event gets generated by one of the widgets in the widget creation module then it will
be dispatched to the event handler for further processing as defined by the
programmer. If we had not specified the name of the event handler with this
keyword then IDL will automatically expect that the user supplies a routine whose
name is composed of the widget creation module name with _event appended to it.
In the case above the user would have to supply a procedure named
widget_program_event. The next keyword specified is cleanup. This is a user-
supplied procedure that is executed just after the top-level base is destroyed. The
purpose of this is for memory management. Often we pass information from program
module to another and this can include heap variables or pixmaps. If we pass heap
variable around or create pixmaps then this is the procedure that we use to free up
that memory. There is no default expectation (if no cleanup routine is specified in
the XMANAGER procedure) for the cleanup. The final keyword set in our example is the
NO_BLOCK keyword. Setting this keyword allows the user to execute commands at the
IDL command line while the UI is running. The default behavior is to block the
command line. It is also good practice to invoke non-blocking behavior if you wish to
have multiple applications running simultaneously. Otherwise the the blocking widget
program will not relinquish control until it is destroyed and you will not be able to
access other widget programs running concurrently.

As a first example of an event-driven program we’ll create a base with a QUIT button
on it. The source code for the example is listed in the box below. The only event
type possible in this program will be button events and receipt of one of those events
will cause the widget to be destroyed and the program will end. This program
satisfies the minimal requirements for a widget program in that it contains two
components: a widget creation module (widget_ex_1) and an event handler
(widget_ex_1_event). Note that we have not specified a cleanup routine here
because there is no information (i.e. heap variables) being passed from one module to
another that require freeing up in the interest of proper memory management.

; ***************************** ;
pro widget_ex_1_event,event
; This is the main event handler.
; Since there is only a single widget
; except for the base, there is only one
; event type that can occur and transfer program
; control to this handler. So no matter
; what we will know that this is a

 87

; QUIT button event. Therefore we simply
; destroy the widget hierarchy.
widget_control,event.top,/destroy
end
; ***************************** ;
pro widget_ex_1
; This is a first widget example
;
; Create the top-level base
tlb = widget_base(/col,title = 'First Widget')
; Create a QUIT button on the top-level base
quit = widget_button(tlb,value = 'QUIT',xsize = 200)
; Render the widgets on the screen
widget_control,tlb,/realize
; Start up the XMANAGER which manages the
; widget events
xmanager,'widget_ex_1',tlb, $
 event_handler = 'widget_ex_1_event',/no_block

end

Figure 24 Screen output for our first widget application.

The widget creation module has four statements in it. The first statement defines the
top-level base which we name tlb. As in the example presented we use the
WIDGET_BASE function to create the top-level base. Note that we specify the TITLE
keyword so that ‘First Widget’ appears in the title portion of the base (see Figure 24).

The second statement defines the QUIT button using the WIDGET_BUTTON function. In
this function we specify the parent via the first parameter passed into the function,
tlb. Next the VALUE keyword is set to ‘QUIT’ which is the name to be displayed on
the button. We also set the XSIZE keyword to 200 which forces the button to be 200
pixel units wide.

The third statement, WIDGET_CONTROL,TLB,/REALIZE, tells IDL to display the tlb (and
its child, the button) on the screen. The final statement is the call to XMANAGER which
specifies the event handler as widget_ex_1_event and also makes it a non-blocking
widget.

When you run this program and press the QUIT button, the widget disappears from the
screen. But you might be wondering what information is sent to the event handler.
In fact an event structure is passed to the event handler everytime you press a widget
button (or, in general, interact with any widget). In the example widget_ex_1 the
widget button press causes a named event structure to be sent to the event handler.

 88

The event handler is a procedure here that has a single input parameter: event. All
event handlers are expected to be able to receive a single event structure. In this
case the name of the event structure is WIDGET_BUTTON and it has four fields. The
first three fields are named ID, TOP, and HANDLER. The last field is called SELECT.
The first three fields are required fields for all widgets but there will usually be more
fields. ID is the identifier (long integer) of the widget that generated the event. TOP
is the widget id of the base at the top of the widget hierarchy that includes ID.
HANDLER is the widget id associated with the event handler. In our example ID is
quit, TOP is tlb, and HANDLER is tlb. The SELECT field has a value of 1 indicating that
the button was pressed. We can make a few additions to the program to see these.
Run the program after adding three lines shown below in boldface.

; ***************************** ;
pro widget_ex_1_event,event
; This is the main event handler.
; Since there is only a single widget
; except for the base, there is only one
; event type that can occur and transfer program
; control to this handler. So no matter
; what we will know that this is a
; QUIT button event. Therefore we simply
; destroy the widget hierarchy.
print,tag_names(event,/structure_name)
print,tag_names(event)
widget_control,event.id,get_value = widget_value
print,'Widget_value: ',widget_value
widget_control,event.top,/destroy
end

When I ran this program and pressed the QUIT button I got the following text output:

IDL> widget_ex_1
WIDGET_BUTTON
ID TOP HANDLER SELECT
Widget_value: QUIT

The name of the event structure is WIDGET_BUTTON, there are four fields in the
event structure (ID, TOP, HANDLER, and SELECT) and the value of the widget that
generated the event is ‘QUIT’. The importance of being able to identify different
widgets in the hierarchy in the event handler will become important in the
subsequent examples.

A UI with user input

The example in the previous section illustrated the fundamentals in creating a simple
UI. In this section we present a more complicated UI which accepts user input from
one widget and uses that information to update another widget.

In the example from the last section it was not necessary to distinguish between the
types of events in the event handler because there was only one type of event. This

 89

event was generated by pressing the QUIT widget button. Applications that you write
will likely have more than a single widget on the top-level base so it is necessary to
have a mechanism to distinguish between different widgets. There are a number of
ways to do this but we will select one in particular. This is not because it is better
than any other way but it is usually good practice to stick with one method. In this
case we specify a user-name for each widget which is accomplished by setting the
UNAME keyword in the widget to an appropriate string. With this implemented then we
can determine the id of any widget by using the WIDGET_INFO function with the
FIND_BY_UNAME keyword:

id = widget_info(event.top,find_by_uname = ‘some_widget_uname’)

If there is no such widget in the hierarchy (rooted at event.top) whose uname is
‘some_widget_uname’ then the return value will be 0L (long 0). Note in the example
above we used the top field of the event structure as the root of our search because
it corresponds to the widget id of the top-level base.

The event handler for a program in which the UNAMEs are specified for each widget
can be written with the CASE statement to distinguish between the widgets that
generated the events. In the example shown below, since the sequence of commands
to be executed in the event handler are not too lengthy, we will keep all commands
in the event handler.

; ***************************** ;
pro widget_ex_2_event,event
; This is the main event handler. We
; parse the event by the user-name of
; the widget that generated it.
uname = widget_info(event.id,/uname)
case uname of
'QUIT': widget_control,event.top,/destroy
'INPUT_TEXT': $
 begin
 ; We first need to get the widget identifier
 ; for the output text field
 out_label_id = widget_info(event.top, $
 find_by_uname = 'OUTPUT_TEXT')
 ; Get the current text value from the input
 ; text widget
 widget_control,event.id,get_value = val
 ; Set the current text value from the input
 ; text widget in the output text widget
 widget_control,out_label_id,set_value = val
 end
else:
endcase
end
; ***************************** ;
pro widget_ex_2
; This is the second widget example
;

 90

; Create the top-level base
tlb = widget_base(/col,title = 'Second Widget')
; Create a label
input_label_id = widget_label(tlb,value = 'Input')
; Create an editable input text widget.
; Moreover set the ALL_EVENTS keyword so that
; any change in the text field generates an
; event.
input_text_id = widget_text(tlb,value = '',/editable, $
 uname = 'INPUT_TEXT',xsize = 50,/all_events)
; Create the output label
out_label_id = widget_label(tlb,value = 'Output')
; Create an uneditable output text widget
output_text_id = widget_text(tlb,value = '', $
 uname = 'OUTPUT_TEXT',xsize = 50)

; Create a QUIT button on the top-level base
quit = widget_button(tlb,value = 'QUIT',uname = 'QUIT')

; Render the widgets on the screen
widget_control,tlb,/realize
; Start up the XMANAGER which manages the
; widget events
xmanager,'widget_ex_2',tlb, $
 event_handler = 'widget_ex_2_event',/no_block

end

Figure 25 Screen output for the second widget program.

When you run the program you will be allowed to type in the first editable field. IDL
tells you that it is editable because it is white (in contrast to the second text field
which is not editable and is the same color as the base). When you type in the first
field labeled Input your typing will be mirrored in the second text box. This behavior
is intentional. Typing information in the first text box creates events and the event
structure, named WIDGET_TEXT_CH, has six fields. The first three fields are ID, TOP,
and HANDLER (as usual) and the remaining three fields are TYPE, OFFSET, and CH.
The TYPE field specifies which type of text event is created: for typing events this is
0. OFFSET specifies where the text is being inserted into the existing value. The
final field specifies which character is being typed (the byte representation of the
character).

 91

The widget creation module is still short in this application. We define a top-level
base, define five widgets, and start up the event loop with XMANAGER. The five
widgets are composed of two label widgets, two text widgets, and a QUIT button.
Note the order in which the widgets are created. Since the top-level base is a column
base the order specified where each widget appears vertically. The two label widgets
do not generate events and their only purpose is cosmetic. Their first parameter
argument is the parent (i.e. tlb) and the keyword parameter is the value which is the
string to be displayed as the label. The two widget labels are for each of the two text
widgets.

The first text widget is the input text widget. The first parameter is the top-level
base. The value is initialized to a null string. The EDITABLE keyword is set so that the
user can modify the contents of the text box. The user name is specified with the
UNAME keyword (‘INPUT_TEXT’ in this case). The horizontal width in characters is
specified using the XSIZE keyword. Finally we set the ALL_EVENTS keyword so that any
change in the contents of the text widget will generate an event.

input_text_id = widget_text(tlb,value = '',/editable, $
 uname = 'INPUT_TEXT',xsize = 50,/all_events)

The second text widget is the output text widget and is called as follows.

output_text_id = widget_text(tlb,value = '', $
 uname = 'OUTPUT_TEXT',xsize = 50)

This is called exactly the same way as the input text widget except the EDITABLE
keyword is not set and the UNAME is set to ‘OUTPUT_TEXT’.

The QUIT button is specified as in the example from the last section except we also
specify the UNAME as ‘QUIT’ so that we can parse this widget event in the event
handler.

The last two statements in the widget creation module should now be familiar to you.
The first realizes the top-level base and its children to the screen and the second
registers the top-level base with the local windows manager and starts the event
loop.

There is a big difference in the event handler in this example compared to that in the
example of the previous section. In the event handler, widget_ex_2_event, the
uname of the widget that created the event is determined via WIDGET_INFO

uname = widget_info(event.id,/uname)

The parameter in the WIDGET_INFO function is event.id which is the widget id of the
widget that generated the event. This function returns the UNAME because the UNAME
keyword was set. Then we use a CASE statement to sort all possible widget ids via
their unames. In this application ony two widgets can create events: the button

 92

widget and the input text box. We have already examined the code for the QUIT
button in the previous example so we will not discuss it further. Events generated
from the input text widget result in the following three commands (comments
omitted):

 out_label_id = widget_info(event.top, $
 find_by_uname = 'OUTPUT_TEXT')
 widget_control,event.id,get_value = val
 widget_control,out_label_id,set_value = val

First the id of the output text widget is found from using its user-name and the
FIND_BY_UNAME keyword to the function WIDGET_INFO. Then we must get the current
value of the input text widget. Since the id of the widget that got us to this point in
the event handler, it is event.id. We use WIDGET_CONTROL to extract the value from
event.id. Finally we use WIDGET_CONTROL to set the new value of the output widget to
the value from event.id.

Exercise: Modify widget_ex_2.pro so that when the user presses the QUIT button, the
application pauses for 2 seconds prior to the disappearance of the UI. Hint: you will
want use the WAIT procedure.

Interacting with a plot window

One of the more interesting things that you might want to do in a widget application
is enable the user to interact with a graphical image using the mouse. In general this
is pretty simple to do and falls naturally in the realm of event-driven programming.
The difference between this type of event-driven program and the simple ones
presented thus far is that the events that provide the interaction with the plot
window are mouse motion events and mouse button events.

We will specify the application first. The application that we write here will include
a UI composed of a quit button, a randomizer button that, when pressed, will create
a set of 50 random numbers drawn from a normal distribution, and a plot window that
displays the current set of random numbers. The user will be able to move the cursor
over the data using the mouse and the nearest data values will be displayed in the
title of the plot. In addition, a thicker symbol will be displayed at the nearest data
position in the plot. This is not a particularly complicated nor ambitious example but
it will introduce you to the fundamental aspects of interacting with graphics using the
mouse.

Because this program has a higher level of complexity than the previous ones we will
be doing things a bit differently. First whenever there is interaction with a plot
window it is standard practice to use a pixmap window so that plot window updates
are smooth and not choppy. We will need to define the pixmap in the widget creation
module and destroy it in a cleanup routine. Next we will need to have some

 93

mechanism to pass the information around between modules. We will define a
structure in the widget creation module (composed of the pixmap, a window
reference, and the data), create a pointer to this structure, and put the pointer
reference into the user-value (UVALUE) of the top-level base. We have already seen
that the programmer can put whatever string he/she wants into the UNAME of a
widget. The programmer is not limited to putting just strings into the UVALUE. In fact
any quantity can be put into a widget’s UVALUE. We put a pointer reference to a
structure into the UVALUE of the top-level base because all event handlers have access
to the widget at the top of the hierarchy: the top-level base. Thus all event handlers
have access to the information contained in this structure. The code for the program
is shown in the box below.

There are seven modules (procedures) in this application: widget_ex_3, wex3_event,
wex3_rand_events, wex3_win_events, wex3_plot_refresh, wex3_plot_rand, and
wex3_cleanup. The purpose of each is listed below:

• widget_ex_3: widget creation module
• wex3_event: main event handler
• wex3_rand_events: creates a new set of random numbers
• wex3_win_events: processes window events such as cursor position
• wex3_plot_refresh: copies pixmap contents to the visible window
• wex3_plot_rand: plots the series of random numbers
• wex3_cleanup: deletes the pixmap and frees the pointer

We will look at each of these procedures in detail.

; ***************************** ;
pro wex3_cleanup,tlb
widget_control,tlb,get_uvalue = pstate
wdelete,(*pstate).winpix
ptr_free,pstate
end
; ***************************** ;
pro wex3_plot_rand,event
widget_control,event.top,get_uvalue = pstate
plot,(*pstate).data,psym = -4, $
 title = (*pstate).plot_title
end
; ***************************** ;
pro wex3_plot_refresh,event
widget_control,event.top,get_uvalue = pstate
wset,(*pstate).winpix
wex3_plot_rand,event
wset,(*pstate).winvis
device,copy = [0,0,!d.x_size,!d.y_size,0,0, $
 (*pstate).winpix]
end
; ***************************** ;
pro wex3_win_events,event
widget_control,event.top,get_uvalue = pstate

 94

coords = convert_coord(event.x,event.y, $
 /device,/to_data)
x = 49 < (round(coords[0]) > 0)
y = ((*pstate).data)[x]
; Update the title to include the latest position
; of the mouse (nearest to the data)
(*pstate).plot_title = $
 strtrim(string(x,format = '(I3)'),2)+ $
 ','+strtrim(string(y,format = '(f15.5)'),2)
wex3_plot_refresh,event
; Plot a thick symbol at the current closest
; data point.
plots,x,y,psym = 4,thick = 4.0,/data
end
; ***************************** ;
pro wex3_rand_events,event
widget_control,event.top,get_uvalue = pstate
(*pstate).data = randomn(s,50)
wex3_plot_refresh,event
end
; ***************************** ;
pro wex3_event,event
uname = widget_info(event.id,/uname)
case uname of
'QUIT': widget_control,event.top,/destroy
'WIN': wex3_win_events,event
'RAND': wex3_rand_events,event
else:
endcase
end
; ***************************** ;
pro widget_ex_3
tlb = widget_base(/row,title = '')
col_base = widget_base(tlb,/col)
void = widget_button(col_base,value = 'Randomize', $
 uname = 'RAND')
void = widget_button(col_base,value = 'Quit', $
 uname = 'QUIT')
win = widget_draw(tlb,xsize = 300,ysize = 300, $
 /motion_events,uname = 'WIN')

widget_control,tlb,/realize
widget_control,win,get_value = winvis
window,/free,/pixmap,xsize = 300,ysize = 300
winpix = !d.window
data = randomn(s,50)

state = { winvis:winvis, $
 winpix:winpix, $
 plot_title:'', $
 data:data }
pstate = ptr_new(state)
widget_control,tlb,set_uvalue = pstate

xmanager,'widget_ex_3',tlb,/no_block, $
 event_handler = 'wex3_event', $
 cleanup = 'wex3_cleanup'

 95

; Create a pseudo-event so that we can use
; the plot refresh event handler to plot
; the data in the window
pevent = {event,id:win,top:tlb,handler:0L}
wex3_plot_refresh,pevent
end

In the widget creation module we create the top-level base and make it a row base by
specifying the ROW keyword. Next we create a column base using WIDGET_BASE,
specifying its parent as the top-level base, and setting the COL keyword. We put two
widget buttons in the column base by specifying their parent as the top-level base.
The values for these are ‘Randomize’ and ‘Quit’ and the UNAMES are ‘RAND’ and
‘QUIT’ respectively. Next we use the WIDGET_DRAW function to create a plot window.
Its parent is the top-level base. Since the top-level base is a row base then the plot
window is plotted to the right of the column base. The keywords set in the
WIDGET_DRAW function are XSIZE and YSIZE (set to 300 pixels for each dimension),
MOTION_EVENTS and UNAME (set to ‘WIN’). The MOTION_EVENTS keyword tells IDL to
generate an event whenever the cursor moves over the draw widget. The user-name
is specified so that we can distinguish between events that are initiated from it and
the other two widgets. The top-level base (and all of its children) is realized next.
After the widgets are realized then we need to get the window index which we can
obtain with the draw widget id and the WIDGET_CONTROL procedure.

widget_control,win,get_value = winvis

In the command above, the widget id is win and the resulting window index is winvis.
We will need this index so that we can plot data into it. Next we create a pixmap
window of the same size as the draw widget. We already saw how to do this in
Chapter 5-Data visualization. After this we assign the pixmap window to the winpix
variable. Next we create the normally distributed random data and assign the 50-
element vector to the data variable.

The next statement creates the state structure which contains winvis, winpix, data,
and a variable called plot_title (just an empty string…we’ll see its purpose later).
Then a pointer is created, pstate, into which the state structure is assigned. Next we
set the UVALUE of the top-level base to pstate.

The call to XMANAGER is no different from what we’ve seen so far except we now
specify a cleanup routine. The final command to issue in this module is to draw the
data in the draw widget. To make things easier we will call the procedure
wex3_plot_refresh. This procedure requires an event structure passed in to it. Since
one is not available in the widget creation module we must create one. We create a
named pseudo-event structure that has the required fields: id, top, and handler. For
simplicity we use the draw widget identifier as id, tlb for the top field, and 0L for the
handler. (It really doesn’t matter what we use for the handler field so 0L is as good

 96

as any other widget identifier) Next we call the procedure wex3_plot_refresh with
the new pseudo-event structure as the argument.

From this point on all program control goes to the event handler whenever any events
are generated. The main event handler, wex3_event, is very simple…simpler even
than the example from the last section. This event handler is similar to the one in
the previous example in that is distinguishes the origin of events based on the UNAME
of the widgets. The three events are (1) from the ‘Quit’ button, (2) from the
‘Randomize’ button, and (3) events generated by moving the cursor over the draw
widget. For ‘Quit’ we simply destroy the top-level base. For an event that is
generated from the ‘Randomize’ button we invoke the wex3_rand_events procedure.
This simply populates the data variable with a new set of random numbers. Note that
when we call the procedure from here, we pass the event structure on.

The procedure wex3_rand_events is written as an event handler which is evident from
the fact that the only parameter expected is an event structure. The first statement
in that procedure gets the pointer to the state structure (pstate) from the top-level
base (actually from the top field of the event structure). This is obtained from the
GET_UVALUE keyword to the WIDGET_CONTROL procedure:

widget_control,event.top,get_uvalue = pstate

Next we create a new set of 50 random numbers and replace the current data field
from the state structure. Note the use of pointer de-referencing here:

(*pstate).data = randomn(s,50)

The final part of this procedure is to display the data by invoking the
wex3_plot_refresh procedure. Again the event structure is passed on into this
procedure.

The wex3_plot_rand procedure plots the data to the current plotting device. Note
that this procedure does not specify the device because this procedure is supposed to
be used in a modular way. For instance this procedure is called from the
wex3_plot_refresh procedure in order to update the pixmap (winpix) and then copy it
to the plot window (winvis).

The procedure wex3_win_events contains the code to deal with draw widget events.
Since we set the MOTION_EVENTS keyword in the call to WIDGET_DRAW, then we can
expect that the event structure from the draw widget will contain x and y fields (see
the on-line help for WIDGET_DRAW). These fields are the cursor position in pixel units.
The first statement in this procedure extracts the state pointer from the top field of
the event structure. The second statement converts the cursor coordinates from
pixel units to data units using the CONVERT_COORD function. The next statement
ensures that the horizontal cursor position (in data coordinates) is not larger than 49
and not less than 0 and assigns it to the variable x.

 97

x = 49 < (round(coords[0]) > 0)

The next statement assigns the data point at that x coordinate to y. Next the title
field of the state pointer is set to display the x and y coordinates. Next the data is
displayed in the window and the new title is displayed at the top of the window.
Finally a thicker symbol is plotted at the corresponding x and y coordinates using the
PLOTS command.

The last routine we discuss is the cleanup routine which contains a single argument.
For reasons that we will not go into here, the argument is not an event structure but
rather is the widget id for the top-level base. Therefore to get the state pointer it is
necessary only to use widget_control to extract it from tlb. Then we can delete the
pixmap and free the state pointer pstate.

When I ran the program and moved the cursor around the plot I got the following
output shown in Figure 26. You should see the little white ball jump from one data
point to another as you move the cursor about.

Figure 26 Screen shot of widget_ex_3.pro.

Distributing your application with the IDL Virtual Machine

After you have written an application you may wish to distribute it to users who do
not have an IDL license. One option that became available recently is to distribute it
so that it works in the IDL Virtual Machine (VM). This is a free option and anyone can

 98

download the VM from the Research Systems website
(http://www.rsinc.com/download/).

The first step is to compile your program which you can do from the command line as
follows:

IDL> .compile widget_ex_3

Next resolve all of the routines with which widget_ex_3 depends:

IDL> resolve_all

Finally save the routines into a file:

IDL> save,/routines,filename = 'c:\widget_ex_3.sav'

Now you can run the VM and choose the file that you just created. The program will
run without an IDL license. You can even create a standalone icon on your desktop (if
you’re running WINDOWS, that is) that will launch the IDL VM with your particular
application (i.e. without needing to select the file). You can do this by doing the
following:

1. Make a copy of the IDL VM on your desktop (not a shortcut).
2. Right click on the new icon and select PROPERTIES.
3. In the text field labeled Target add the fully path-qualified filename

jusft after the “…vm=” string. For instance on my machine the original
string in the Target text field is C:\RSI\IDL61\bin\bin.x86\idlrt.exe -vm=.
I changed this to
C:\RSI\IDL61\bin\bin.x86\idlrt.exe -vm=widget_ex_3.sav

4. Change the icon symbol to something else if you wish.

Finally you should be able to double-click the new icon and your program should start
running (after the VM splash screen…no way to get rid of that!).

Applications such as DAVE require an embedded IDL license-a license to distribute
code with an embedded IDL license which precludes the end user from needing to
purchase a copy of IDL. Why not distribute DAVE with the VM? The reason is that
there are certain limitations of the VM. For instance, the use of the EXECUTE function
is forbidden with the VM. Since there are a number of applications in the DAVE
distribution that require the use of the EXECUTE function, it is impossible to use the
VM in this case.

Exercise: Create a distribution of widget_ex_1.pro and widget_ex_2.pro suitable for
the IDL Virtual Machine.

 99

Chapter 8-Writing a GUI application

In this chapter we will design and construct a rather sophisticated data display
application. We will begin with a description of the functionality desired and then
describe the plan for implementation in IDL. After we write the application we will
finish with some exercises for you to extend the application’s functionality.

Design specifications and functional requirements

The application that we wish to write will allow the user to load in some (synthetic)
two-dimensional neutron scattering data, visualize it in an image representation, and
display dynamics “cuts” through the image based on the current cursor position. The
user will also be able to zoom into a region of the image and change the color table
used to display it. In order to zoom into the image plot we will choose the following
mechanism: (1) user presses the left mouse button and holds it down, (2) a rubber-
band box is expanded based on where the user moves the mouse in the draw widget
(still holding the left mouse button down), and (3) when user releases the mouse
button the image display is updated to show the appropriate magnified view. There
will be three plot windows (draw widgets) configured as shown in Figure 27. As we
design the application please keep in mind the numbering scheme shown in the
figure.

3 1

2

Figure 27 Schematic layout of the draw widgets in this application.

The main image will be displayed in window 1. When the cursor is positioned over
window 1, a vertical line will extend in up and down to the extents of the image and
the horizontal line will extend to the left and right to the extents of the image. This
active cross-hairs will determine which “cuts” are displayed in windows 2 and 3. The
data displayed in window 2 will be a “constant-y” cut and the data displayed in
window 3 will be a “constant-x” cut. Just below window 3 the data coordinates
corresponding to the cursor’s position over window 1 will be updated dynamically.

 100

Implementation plan

The functionality described in the last section gives us the framework for developing
an outline of the code: procedures/functions and the data necessary for
implementation. There are a few new things that we will learn here regarding widget
programming. For instance the visualization technique of zooming into an image is
very useful, especially when you are looking for small features in the data. In
addition we will see how to change the color table. This will be done in an
interactive manner, again taking advantage of a widget application developed by a
third party. This particular color table selection application is called XCOLORS.PRO
written by David Fanning and is part of the distribution for this course. We will also
use PLOTIMAGE (covered in chapter 5) for display of the data in window 1. Finally we
will see how to construct a menu bar at the top of the application. This menu bar
will contain a selection for loading data, exiting the application, and changing the
color table.

From the specifications given above we can write down the routines that we will need
to write along with their purposes. We will name this application IMAGE_GUI.PRO.

Procedure/Function Purpose
IMAGE_GUI Widget creation module
IMAGE_GUI_EVENT Main event handler/dispatcher
IMAGE_GUI_CLEANUP Frees up heap variables and deletes pixmaps
IMAGE_GUI_LOAD_DATA Self explanatory
IMAGE_GUI_DRAW1 Plots data for window 1
IMAGE_GUI_DRAW2 Plots data for window 2
IMAGE_GUI_DRAW3 Plots data for window 3
IMAGE_GUI_REFRESH1 Updates pixmap 1 and copies to window 1
IMAGE_GUI_REFRESH2 Updates pixmap 2 and copies to window 2
IMAGE_GUI_REFRESH3 Updates pixmap 3 and copies to window 3
IMAGE_GUI_WIN_EVENTS Handles updating coordinates output and zooming events
IMAGE_GUI_CHANGE_COLORS Enables user to change color tables using XCOLORS.

Table 1 Procedures (and purpose) included in the IMAGE_GUI application.

GUI Layout

The draw widgets are arranged in a precise manner as shown in Figure 27 because the
aesthetics of the layout are important. The way to implement this particular layout is
two-fold: (1) make the dimensions of each of the three windows correspond
appropriately and (2) construct the bases sensibly. We address point (2) by selecting
the top-level base to be a row base and then create two column bases, both of whom
have the top-level base as their parent. For the sake of screen real-estate we will
make window 1 square (horizontal dimension = vertical dimension) and the exact
dimension will rely on the size of the display currently in use. We can access the

 101

current display size using the IDL command device, get_screen_size = screen_size.
When I invoked this command on my PC I got the following output:

IDL> device,get_screen_size = screen_size
IDL> print,screen_size
 1024 768

The variable screen_size is a two element integer array whose first element is the
horizontal size in pixels and whose second element is the vertical size in pixels. We
will choose a edge size for window 1 that is less than half the vertical screen size.
Moreover we will choose that the “cut” windows (2 and 3) have dimensions consistent
with the Golden Ratio (() 2/51+) which is considered to be aesthetically pleasing (so
sue me for being odd). We will place three label widgets below window 3 for
displaying the current cursor coordinates in data units. The following code for the
widget definition module arranges the widgets per our specification.

pro image_gui
; Widget creation module
; Initialize the color table to blue-white
device,decomposed = 0
loadct,1,/silent
; Get the screen size to make the draw widgets
; appropriately sized.
device,get_screen_size = screen_size
; Define the sizes. And just for fun we'll use the
; Golden Ratio to determine the size of the
; windows into which the cuts will be displayed.
golden_ratio = 0.5*(1.0+sqrt(5.))
xsize1 = (ysize1 = fix(0.35*screen_size[1]))
xsize2 = xsize1 & ysize2 = fix(ysize1/golden_ratio)
ysize3 = ysize1 & xsize3 = fix(xsize1/golden_ratio)
; Create the top-level base, make it a row-base, and
; specify that we want a menu bar
tlb = widget_base(/row,title = 'Data Display Application', $
 mbar = bar)
; Create the filemenu
filemenu = widget_button(bar,value = 'File',/menu)
; Create the first column base which holds window 3
; and the label widget that will display the cursor
; coordinates in data units.
col1 = widget_base(tlb,/col)
win3 = widget_draw(col1,xsize = xsize3,ysize = ysize3)
xlabel = widget_label(col1,value = 'x: ',/dynamic_resize, $
 uname = 'XLABEL',/align_left)
ylabel = widget_label(col1,value = 'y: ',/dynamic_resize, $
 uname = 'YLABEL',/align_left)
zlabel = widget_label(col1,value = 'z: ',/dynamic_resize, $
 uname = 'ZLABEL',/align_left)
col2 = widget_base(tlb,/col)
win1 = widget_draw(col2,xsize = xsize1,ysize = ysize1)
win2 = widget_draw(col2,xsize = xsize2,ysize = ysize2)

 102

; Let's center the top-level base on the screen
geom = widget_info(tlb,/geometry)
widget_control,tlb, $
 xoff = (screen_size[0]/2)-(geom.scr_xsize/2),$
 yoff = (screen_size[1]/2)-(geom.scr_ysize/2)
widget_control,tlb,/realize

end

We also implemented a menu bar by setting the output keyword mbar in the top-level
base. The output keyword, which we assign to bar, is a widget id into which we can
place additional widget buttons with the menu keyword set. We created a menu
heading on this list named FILE (whose widget id is filemenu) using the WIDGET_BUTTON
function (whose parent is bar) and setting the menu keyword. Try running the program
and you should see an interface similar to the one shown in the following figure.

Figure 28 Screen shot of the user-interface layout for IMAGE_GUI.

Event handler, data, and auxiliary procedures

In this application we will need to pass data from one module to another. We will
store this information in a structure and create a pointer to it and place it in the
UVALUE for the top-level base, thus making accessible to any procedure having access
to an event structure (via event.top). The following list of variables represents the
information necessary for this application.

 103

Variable name Purpose
winvis1 Window ID for draw widget 1
winvis2 Window ID for draw widget 2
winvis3 Window ID for draw widget 3
winpix1 Pixmap ID corresponding to draw widget 1
winpix2 Pixmap ID corresponding to draw widget 2
winpix3 Pixmap ID corresponding to draw widget 3
color_ptr Pointer to a structure containing the current color triplet (r,g,b) for

the image displayed in window 1
xtitle Label for the x-axis in the display
ytitle Label for the y-axis in the display
ztitle Label for the z-axis in the display
mouse Contains last button event from the mouse
Autoscale Flag which determines if autoscaling of the axes should occur
xbox Horizontal coordinates of the lower and upper bounds of the

rubberband zoom box
ybox Vertical coordinates of the lower and upper bounds of the

rubberband zoom box
xrange Horizontal zoom range in data coordinates
yrange Vertical zoom range in data coordinates
eindex Index specifiying the element in the energy-vector for the Q-cut
qindex Index specifying the element in the q-vector for the E-cut
zptr Pointer to the data array
dzptr Pointer to the uncertainty in the data array
eptr Pointer to the x-values corresponding to the data array
qptr Pointer to the y-values corresponding to the data array

Table 2 Table of variables included in the state structure and their purposes.

The code for the entire widget creation module is shown below. The statements
added to this from the previous listing are shown in boldface.

pro image_gui
; Widget creation module
; Initialize the color table to blue-white
device,decomposed = 0
loadct,1,/silent
; Load the colors into variables that we'll use
; to "color-protect" the cut data: i.e. we wish
; to maintain the white on black appearance of
; the cut plots but not affect the color table
; of the image plot.
tvlct,r,g,b,/get
color_ptr = ptr_new({r:r,g:g,b:b},/no_copy)
; Get the screen size to make the draw widgets
; appropriately sized.
device,get_screen_size = screen_size

 104

; Define the sizes. And just for fun we'll use the
; Golden Ratio to determine the size of the
; windows into which the cuts will be displayed.
golden_ratio = 0.5*(1.0+sqrt(5.))
xsize1 = (ysize1 = fix(0.35*screen_size[1]))
xsize2 = xsize1 & ysize2 = fix(ysize1/golden_ratio)
ysize3 = ysize1 & xsize3 = fix(xsize1/golden_ratio)
; Create the top-level base, make it a row-base, and
; specify that we want a menu bar
tlb = widget_base(/row,title = 'Data Display Application', $
 mbar = bar)
; Create the filemenu
filemenu = widget_button(bar,value = 'File',/menu)
void = widget_button(filemenu,value = 'Load data',uname = 'LOAD')
void = widget_button(filemenu,value = 'Change colors', $

uname = 'CHANGE_COLORS')
void = widget_button(filemenu,value = 'Quit',uname = 'QUIT')
; Create the first column base which holds window 3
; and the label widget that will display the cursor
; coordinates in data units.
col1 = widget_base(tlb,/col)
win3 = widget_draw(col1,xsize = xsize3,ysize = ysize3)
xlabel = widget_label(col1,value = 'x: ',/dynamic_resize, $
 uname = 'XLABEL',/align_left)
ylabel = widget_label(col1,value = 'y: ',/dynamic_resize, $
 uname = 'YLABEL',/align_left)
zlabel = widget_label(col1,value = 'z: ',/dynamic_resize, $
 uname = 'ZLABEL',/align_left)
col2 = widget_base(tlb,/col)
win1 = widget_draw(col2,xsize = xsize1,ysize = ysize1, $
 /motion_events,/button_events,uname = 'WIN')
win2 = widget_draw(col2,xsize = xsize2,ysize = ysize2)

; Let's center the top-level base on the screen
geom = widget_info(tlb,/geometry)
widget_control,tlb, $
 xoff = (screen_size[0]/2)-(geom.scr_xsize/2), $
 yoff = (screen_size[1]/2)-(geom.scr_ysize/2)
widget_control,tlb,/realize

; Get the window ids out and create the pixmaps
widget_control,win1,get_value = winvis1
widget_control,win2,get_value = winvis2
widget_control,win3,get_value = winvis3
window,/free,/pixmap,xsize = xsize1,ysize = ysize1
winpix1 = !d.window
window,/free,/pixmap,xsize = xsize2,ysize = ysize2
winpix2 = !d.window
window,/free,/pixmap,xsize = xsize3,ysize = ysize3
winpix3 = !d.window

; Initialize the pointers
zptr = ptr_new(/allocate_heap)
dzptr = ptr_new(/allocate_heap)
eptr = ptr_new(/allocate_heap)
qptr = ptr_new(/allocate_heap)

 105

state = { winvis1:winvis1, $
 winvis2:winvis2, $
 winvis3:winvis3, $
 winpix1:winpix1, $
 winpix2:winpix2, $
 winpix3:winpix3, $
 color_ptr:color_ptr, $
 xtitle:'E (meV)', $
 ytitle:'Q (!3!sA!r!u!9 %!3!n!E-1!N)', $
 ztitle:'Intensity', $

 mouse:0B, $
 autoscale:1B, $
 xbox:[0,0], $
 ybox:[0,0], $
 xrange:[0.,0.], $
 yrange:[0.,0.], $
 eindex:0, $
 qindex:0, $
 zptr:zptr, $
 dzptr:dzptr, $
 eptr:eptr, $
 qptr:qptr }

pstate = ptr_new(state,/no_copy)
widget_control,tlb,set_uvalue = pstate,/no_copy

xmanager,'image_gui',tlb, $
 event_handler = 'image_gui_event', $
 cleanup = 'image_gui_cleanup', $
 /no_block

end

The first addition to the code is the creation of a pointer to a color structure. The
reason for this is as follows. IDL can only keep a single color table loaded at any one
time. Yet in this application we wish to be able to specify any of the 42 color tables
for the image display (window 1) and maintain a white-on-black color scheme for the
cuts displayed in windows 2 and 3. The default plotting scheme for the PLOT
procedure is that the background is always the bottom of the color table (color 0)
whereas the text and symbols are displayed with the color at the top of the color
table (color 255). For many of the color tables this corresponds to black (0) and white
(255) respectively. However this is not true for color table 6. Therefore, since we
anticipate giving the users the option to select any color table for the display in
window 1, we must ensure that the colors in windows 1 and 2 are always white on a
black background. We do this by protecting the colors in the widget creation module.
The color table loaded here, 2, is the blue-white color table. In this color table black
is at the bottom of the table and white is at the top. Since this satisfies our color
requirements for the colors in the cuts plots then we can simply save the resulting r-
g-b color triplet. This is the reason why we call to TVLCT, r, g, b, /get and then
store this information in a structure (subsequently referenced with a pointer). Note

 106

that we also use the no_copy keyword in the creation of the pointer to the color
structure. The reason for doing this is that we do not wish to create a copy of the
structure with three 256-element vectors in it if we do not need to (in the interest of
maintaining a philosophy of good memory management). The no_copy keyword simply
creates a pointer to the original memory location for the r, g, and b color vectors.
The pointer is subsequently placed into an anonymous structure whose variable name
is state. A pointer named pstate is created which contains the state structure.

The next additions to the code are the menu items for (1) changing the color table
and (2) exiting the program. As in the program from the last chapter we assign
unames to each of these widgets so that we distinguish between events in the main
event handler and dispatch the events to the appropriate procedures accordingly.

We also modify the creation of the draw widget by setting the button_events and
motion_events keywords as well as specifying a uname (for distinguishing between
events in the main event handler). We gained some experience with setting the
motion_events keyword in the last program from the last chapter. However here we
also need to set the button_events keyword so that whenever we press a button on
the mouse, an event is generated. Recall from our specifications stated previously
that we need to be able to capture both motion events and button events.

The final statements added to the widget creation module come after the top-level
base is realized (i.e. widget_control,tlb,/realize). The statements that
immediately follow (1) get the window IDs for each of the draw widgets (we will need
them all so that we can tell where to draw different plots) and (2) create pixmaps to
enable smooth screen updates via the double buffering mechanism with which you
should now be familiar.

Next we initialize the data pointers. We set the keyword allocate_heap in each of
them although this is not strictly necessary. It is a personal preference of mine to do
so so that when data is loaded in, we simpley de-reference the data into the pointer
(rather than create a new one everytime a new dataset is loaded in). Next we define
the state structure composed of all of the variables listed in table 2. A pointer to this
structure is then created and stored in the uvalue of the top-level base for easy
retrieval from the event handler.

The final statement in the program is the call to the xmanager procedure. There is
nothing new or different about this call as compared to that in widget_ex_3, for
instance. We specify the main event handler, a cleanup routine, and the fact that it
is a non-blocking widget.

The next important procedure in the program is the main event handler,
image_gui_event. It is listed below:

pro image_gui_event,event
uname = widget_info(event.id,/uname)

 107

case uname of
'LOAD': image_gui_load_data,event
'QUIT': widget_control,event.top,/destroy
'WIN': image_gui_win_events,event
'CHANGE_COLORS': image_gui_change_colors,event
'SHOW_SURF': image_gui_show_surf,event
else:
endcase
end

As done in a previous widget program we are distinguishing between all of the
possible events based on the unames of the widgets that generate the events.

The first logical event that will be generated with this application will be to load
data. The procedure that handles loading data, image_gui_load_data, is shown
below:

pro image_gui_load_data,event
widget_control,event.top,get_uvalue = pstate
filename = dialog_pickfile(dialog_parent = event.top, $
 filter = '*.sav',path = sourceroot())
if ~file_test(filename) then return
restore,filename = filename
*(*pstate).zptr = y
*(*pstate).dzptr = dy
*(*pstate).eptr = e
*(*pstate).qptr = q
image_gui_refresh3,event
image_gui_refresh2,event
image_gui_refresh1,event
end

In this module we used a built-in IDL widget called dialog_pickfile which allows the
user to select a file with an interface that is native to the platform (operating system)
upon which you are running. Next we check if the file selected with dialog_pickfile
indeed exists. If so it is opened and the data values from the state pointer are de-
referenced with these values. Note that we are assuming that the data was stored in
IDL’s native binary format using the program you created in the exercise at the end of
Chapter 3. It is further assumed that the variables saved in your exercise were named
y, dy, e, and q. The last three statements simply refresh each of the three plot
widgets.

Each of the three “refresh” routines, image_gui_refresh1, image_gui_refresh2, and
image_gui_refresh3, are all identical in function and the only difference is the source
of the graphics and the destination of the graphics. We only list the “refresh” routine
for the draw widget 1. There should be no surprises here since we are simply doing
the same double-buffering for a smooth graphics display.

pro image_gui_refresh1,event
widget_control,event.top,get_uvalue = pstate
wset,(*pstate).winpix1

 108

image_gui_draw1,event
wset,(*pstate).winvis1
device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix1]
end

The three procedures that do the actual plot creation, image_gui_draw1,
image_gui_draw2, and image_gui_draw3, are different from each other and we should
address the content of each one in turn.

pro image_gui_draw1,event
widget_control,event.top,get_uvalue = pstate
e = *(*pstate).eptr
q = *(*pstate).qptr
y = *(*pstate).zptr
if (*pstate).autoscale then begin
 (*pstate).xrange = [min(e),max(e)]
 (*pstate).yrange = [min(q),max(q)]
endif
de = e[1] - e[0]
dq = q[1] - q[0]
imgxrange = [min(e)-0.5*de,max(e)+0.5*de]
imgyrange = [min(q)-0.5*dq,max(q)+0.5*dq]
plotimage,bytscl(y),imgxrange = imgxrange, $
 imgyrange = imgyrange, $
 xrange = (*pstate).xrange, $
 yrange = (*pstate).yrange, $
 xtitle = (*pstate).xtitle, $
 ytitle = (*pstate).ytitle
end

This plotting procedure uses the plotimage routine to render the data in an image
representation with meaningful axes surrounding it. The data are first de-referenced
from the state pointer. Next the horizontal and vertical data ranges are determined
based on if the autoscale keyword is set or not. If autoscale is set then the
horizontal and vertical ranges extend to the limits of the data. Next the imgxrange
and imgyrange values are determined based on the actual data range. In order to get
the data to be displayed “bin-centered” we subtract off half a channel (bin) from the
lower bound and add half a channel (bin) to the upper bound. Finally the data are
displayed using plotimage with the appropriate range and label keywords set.

pro image_gui_draw2,event
widget_control,event.top,get_uvalue = pstate
ycut = (*(*pstate).zptr)[*,(*pstate).qindex]
dycut = (*(*pstate).dzptr)[*,(*pstate).qindex]
dely = max(ycut)+max(dycut)
tvlct,r,g,b,/get
tvlct,(*(*pstate).color_ptr).r, $
 (*(*pstate).color_ptr).g, $
 (*(*pstate).color_ptr).b
plot,*(*pstate).eptr,ycut,psym = 4, $
 xrange = (*pstate).xrange,/xsty, $
 yrange = [0.0,1.1*dely],/ysty, $

 109

 xtitle = (*pstate).xtitle, $
 ytitle = (*pstate).ztitle
errplot,*(*pstate).eptr,ycut-dycut,ycut+dycut, $
 width = 0.0
; Now plot the vertical line
plots,[(*(*pstate).eptr)[(*pstate).eindex], $
 (*(*pstate).eptr)[(*pstate).eindex]],!y.crange,/data
tvlct,r,g,b
end

In image_gui_draw2, we come across our first instance of “color-protection.” First
from the data and uncertainty arrays, we get the appropriate single q-cut with energy
as the independent variable. For aesthetic reasons we always want to plot the y-
range over a range greater than the extents of the data. This is accomplished by
creating the variable dely which is based on the largest data point and the largest
“error bar.” This is then used in the yrange keyword in the subsequent plot
statement. Next we get the current r-g-b color triplet and save the variables r, g,
and b (i.e. save the color table for the image plot in window 1 and then load the
stored color triplet in which will ensure that the plot is white on black. The “error
bars” are then plotted on top of the data. Then the vertical line is drawn over the
data (using PLOTS) which will be coincident with the horizontal location of the mouse
position in window 1. Finally the color table is restored via the final call to the
procedure TVLCT.

pro image_gui_draw3,event
widget_control,event.top,get_uvalue = pstate
xcut = (*(*pstate).zptr)[(*pstate).eindex,*]
dxcut = (*(*pstate).dzptr)[(*pstate).eindex,*]
q = *(*pstate).qptr
delx = max(xcut)

tvlct,r,g,b,/get
tvlct,(*(*pstate).color_ptr).r, $
 (*(*pstate).color_ptr).g, $
 (*(*pstate).color_ptr).b
plot,xcut,*(*pstate).qptr,psym = 4, $
 yrange = (*pstate).yrange,/ysty, $
 xrange = reverse([0.0,1.1*delx]),/xsty, $
 xtitle = (*pstate).ztitle, $
 ytitle = (*pstate).ytitle
for i = 0,n_elements(xcut)-1 do $
 plots,[xcut[i]-dxcut[i],xcut[i]+dxcut[i]], $
 [q[i],q[i]],/data
; Now plot the vertical line
plots,!x.crange,[(*(*pstate).qptr)[(*pstate).qindex], $
 (*(*pstate).qptr)[(*pstate).qindex]],/data
tvlct,r,g,b
end

The procedure to draw the plot in window 3 is slightly more challenging than that for
window 2 because we want to draw the plot “on its side.” We want to rotate a
“normal” plot counter-clockwise by 90 degrees. We accomplish this by (1) swapping

 110

the x and y arguments to the PLOT procedure and (2) reversing the xrange variable for
the plot. Also, the errplot routine will not accommodate “horizontal” error bars.
Therefore we can use our own procedure which is just a loop over each of the data
values and a call to the PLOTS procedure to create the horizontal lines of the right
length and at the correct location. One other point to note about both
image_gui_draw2 and image_gui_draw3 is that in both cases the range for the
independent variable is determined by the current range (magnification) of window 1.

pro image_gui_win_events,event
widget_control,event.top,get_uvalue = pstate
if n_elements(*(*pstate).zptr) eq 0 then return
case event.type of
0: begin ; button press
 (*pstate).mouse = event.press
 if event.press eq 1 then begin
 ; Left mouse button
 (*pstate).xbox[0] = event.x
 (*pstate).ybox[0] = event.y
 image_gui_refresh1,event
 (*pstate).autoscale = 0B
 endif
 end
1: begin ; button release
 if (*pstate).mouse eq 4 then begin
 (*pstate).autoscale = 1B
 image_gui_refresh1,event
 endif
 if (*pstate).mouse eq 1 then begin
 xll = (*pstate).xbox[0] < (*pstate).xbox[1]
 yll = (*pstate).ybox[0] < (*pstate).ybox[1]
 w = abs((*pstate).xbox[1] - (*pstate).xbox[0])
 h = abs((*pstate).ybox[1] - (*pstate).ybox[0])
 xur = xll + w
 yur = yll + h
 ll = convert_coord(xll,yll,/device,/to_data)
 ur = convert_coord(xur,yur,/device,/to_data)
 (*pstate).xrange = [ll[0],ur[0]]
 (*pstate).yrange = [ll[1],ur[1]]
 image_gui_refresh1,event
 endif
 (*pstate).mouse = 0B
 end
2: begin ; motion events
 if (*pstate).mouse eq 1 then begin
 (*pstate).xbox[1] = event.x
 (*pstate).ybox[1] = event.y
 xc = [(*pstate).xbox[0],event.x,event.x,$
 (*pstate).xbox[0],$
 (*pstate).xbox[0]]
 yc = [(*pstate).ybox[0],(*pstate).ybox[0],$
 event.y,event.y,$
 (*pstate).ybox[0]]
 wset,(*pstate).winvis1
 device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix1]

 111

 plots,xc,yc,/device
 endif
 if (*pstate).mouse eq 0 then begin
 ; We haven't pressed a button. The things that we
 ; need to do here are (1) display the current cursor
 ; coordinates in the widget labels and (2) generate
 ; the cuts.
 coords = convert_coord(event.x,event.y, $
 /device,/to_data)
 elo = min(*(*pstate).eptr,max = ehi)
 qlo = min(*(*pstate).qptr,max = qhi)
 condition = (coords[0] lt elo) or (coords[0] gt ehi) or $
 (coords[1] lt qlo) or (coords[1] gt qhi)
 if condition then return
 e = *(*pstate).eptr
 q = *(*pstate).qptr
 eindex = (where(abs(e-coords[0]) eq min(abs(e-coords[0]))))[0]
 qindex = (where(abs(q-coords[1]) eq min(abs(q-coords[1]))))[0]

 xlabel = widget_info(event.top,find_by_uname = 'XLABEL')
 ylabel = widget_info(event.top,find_by_uname = 'YLABEL')
 zlabel = widget_info(event.top,find_by_uname = 'ZLABEL')
 widget_control,xlabel,set_value = 'x: '+ $
 strtrim(string(coords[0]),2)
 widget_control,ylabel,set_value = 'y: '+ $
 strtrim(string(coords[1]),2)
 widget_control,zlabel,set_value = 'z: '+ $
 strtrim(string((*(*pstate).zptr)[eindex,qindex]),2)
 (*pstate).qindex = qindex
 (*pstate).eindex = eindex
 image_gui_refresh3,event
 image_gui_refresh2,event
 image_gui_refresh1,event
 ; Plot the cross-hairs
 plots,!x.crange,replicate((*(*pstate).qptr)[qindex],2),/data
 plots,replicate((*(*pstate).eptr)[eindex],2),!y.crange,/data
 endif
 end
else:
endcase
end

The procedure that handles motion and button events from the mouse is called
image_gui_win_events. This procedure distinguishes events based on the type field
from the event structure. The procedure uses a CASE statement to distinguish
between button press events, button release events, and mouse motion events. Just
a reminder that these events can only be generated from window 1.

Let’s start with button press events. If the left button is pressed then we store that
information (the button press information) in the mouse field of the state pointer and
also store the device coordinates of the current mouse position in the window in the
xbox and ybox fields of the state pointer.

 112

When either of the buttons (left or right) are released we use the mouse field of the
state pointer to determine which button was released. If the right button is released
then we set the autoscale field of the state pointer to be 1 so that subsequent
refreshes of the windows are “auto-scaled.”

If the left mouse button is released then we do something quite a bit different. In
this case the user has just completed selection of a region-of-interest using the
rubberband box type zooming. The subsequent commands create a properly ordered
set of two coordinates (device coordinates) that represent the lower left and upper
right hand corners of the zoom box. These coordinates are converted to data
coordinates and the xrange and yrange fields of the state pointer are updated
accordingly. Window 1 is refreshed once more and the mouse field of the state
pointer is set to zero.

The last event type that is handled in image_gui_win_events is motion events. There
are two circumstances for motion events that we need to distinguish: mouse button
pressed and no mouse button pressed. If no mouse button is pressed
((*pstate).mouse=0) then we do two things: (1) update the coordinates displayed in
the label widgets and (2) update the cuts being displayed in windows 2 and 3 based on
the cursor position. If the left mouse button is pressed ((*pstate).mouse=1) then we
create the dynamically changing rubberband zoom box based on the cursor
coordinates in window 1. We’ll consider the second situation first.

When the left mouse button is pressed and the cursor is being moved across window
1, events are being generated of type 2. Recall that we already have recorded where
the user initially pressed the button for event.type of 0 where we updated the first
positions of xbox and ybox in the state pointer. Here we wish to update the remaining
two elements in xbox and ybox with the current value of the cursor position in device
coordinates. Next we create the extents of the rubberband zoom box in device
coordinates using the updated xbox and ybox values in the state pointer. Finally the
current pixmap contents are copied to window 1 and the rubberband zoom box is
plotted over this using the PLOTS procedure.

When no mouse button is pressed but the cursor is moving over window 1 then events
are being generated which should lead to the data coordinates being updated in the
label widgets and the cuts generated and displayed in windows 2 and 3. First we
check to see if the cursor is still in the plot range using a sequence of conditional
statements. If not then we return. If the cursor is in the plot range then the index
into the e-vector is found as is the index into the q-vector. These are then used to
display the coordinates in the label widgets. The refresh procedures are called for all
windows so that the cuts can be updated with the new e and q indices. Finally the
PLOTS command is used to display a cross-hairs that is displayed at the appropriate e
and q values depending on the current e and q indices.

The last procedure in the program that we have not yet discussed is
image_gui_change_colors which calls the program XCOLORS to allow the user to change

 113

the current color table for the image displayed in window 1. This code is remarkably
short and is shown below.

pro image_gui_change_colors,event
widget_control,event.top,get_uvalue = pstate
this_event = tag_names(event,/structure_name)
case this_event of
'WIDGET_BUTTON': $
 xcolors,group_leader = event.top, $
 notifyid = [event.id,event.top]
'XCOLORS_LOAD': image_gui_refresh1,event
else:
endcase
end

In this procedure there are two possible events: (1) a widget button event coming
from the user pressing the button in our application labeled “Change colors” in the
menu bar and (2) an event from the XCOLORS program that loads in a new color table.
If we have the latter then we must issue a screen refresh to show the image display
with the new colors. I like this operation in particular because it allows us to see the
image with the new color table without needing to exit the XCOLORS program.

In the first case where the procedure responds to a button press, we call the XCOLORS
program with the group_leader keyword set to event.top (the top-level base) and a
keyword notifyid set to a 2-element long array of widget ids: the id of the button
that created the event that got us to this point in the program and the id of the top-
level base. This notion of using a notifyid keyword is very useful when you want to
implement your own non-modal widgets to be called from other applications,
especially if you want them to run concurrently.

Although we have listed all of the code for this application, for completeness we
display the code in it entirety below.

; ** ;
pro image_gui_cleanup,tlb
widget_control,tlb,get_uvalue = pstate
wdelete,(*pstate).winpix1
wdelete,(*pstate).winpix2
wdelete,(*pstate).winpix3
heap_free,pstate
help,/heap,/brief
end
; ** ;
pro image_gui_draw1,event
widget_control,event.top,get_uvalue = pstate
e = *(*pstate).eptr
q = *(*pstate).qptr
y = *(*pstate).zptr
if (*pstate).autoscale then begin
 (*pstate).xrange = [min(e),max(e)]
 (*pstate).yrange = [min(q),max(q)]

 114

endif
de = e[1] - e[0]
dq = q[1] - q[0]
imgxrange = [min(e)-0.5*de,max(e)+0.5*de]
imgyrange = [min(q)-0.5*dq,max(q)+0.5*dq]
plotimage,bytscl(y),imgxrange = imgxrange, $
 imgyrange = imgyrange, $
 xrange = (*pstate).xrange, $
 yrange = (*pstate).yrange, $
 xtitle = (*pstate).xtitle, $
 ytitle = (*pstate).ytitle
end
; ** ;
pro image_gui_draw2,event
widget_control,event.top,get_uvalue = pstate
ycut = (*(*pstate).zptr)[*,(*pstate).qindex]
dycut = (*(*pstate).dzptr)[*,(*pstate).qindex]
dely = max(ycut)+max(dycut)
tvlct,r,g,b,/get
tvlct,(*(*pstate).color_ptr).r, $
 (*(*pstate).color_ptr).g, $
 (*(*pstate).color_ptr).b
plot,*(*pstate).eptr,ycut,psym = 4, $
 xrange = (*pstate).xrange,/xsty, $
 yrange = [0.0,1.1*dely],/ysty, $
 xtitle = (*pstate).xtitle, $
 ytitle = (*pstate).ztitle
errplot,*(*pstate).eptr,ycut-dycut,ycut+dycut, $
 width = 0.0
; Now plot the vertical line
plots,[(*(*pstate).eptr)[(*pstate).eindex], $
 (*(*pstate).eptr)[(*pstate).eindex]],!y.crange,/data
tvlct,r,g,b
end
; ** ;
pro image_gui_draw3,event
widget_control,event.top,get_uvalue = pstate
xcut = (*(*pstate).zptr)[(*pstate).eindex,*]
dxcut = (*(*pstate).dzptr)[(*pstate).eindex,*]
q = *(*pstate).qptr
delx = max(xcut)

tvlct,r,g,b,/get
tvlct,(*(*pstate).color_ptr).r, $
 (*(*pstate).color_ptr).g, $
 (*(*pstate).color_ptr).b
plot,xcut,*(*pstate).qptr,psym = 4, $
 yrange = (*pstate).yrange,/ysty, $
 xrange = reverse([0.0,1.1*delx]),/xsty, $
 xtitle = (*pstate).ztitle, $
 ytitle = (*pstate).ytitle
for i = 0,n_elements(xcut)-1 do $
 plots,[xcut[i]-dxcut[i],xcut[i]+dxcut[i]], $
 [q[i],q[i]],/data
; Now plot the vertical line
plots,!x.crange,[(*(*pstate).qptr)[(*pstate).qindex], $
 (*(*pstate).qptr)[(*pstate).qindex]],/data

 115

tvlct,r,g,b
end
; ** ;
pro image_gui_refresh1,event
widget_control,event.top,get_uvalue = pstate
wset,(*pstate).winpix1
image_gui_draw1,event
wset,(*pstate).winvis1
device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix1]
end
; ** ;
pro image_gui_refresh2,event
widget_control,event.top,get_uvalue = pstate
wset,(*pstate).winpix2
image_gui_draw2,event
wset,(*pstate).winvis2
device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix2]
end
; ** ;
pro image_gui_refresh3,event
widget_control,event.top,get_uvalue = pstate
wset,(*pstate).winpix3
image_gui_draw3,event
wset,(*pstate).winvis3
device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix3]
end
; ** ;
pro image_gui_change_colors,event
widget_control,event.top,get_uvalue = pstate
this_event = tag_names(event,/structure_name)
case this_event of
'WIDGET_BUTTON': $
 xcolors,group_leader = event.top, $
 notifyid = [event.id,event.top]
'XCOLORS_LOAD': image_gui_refresh1,event
else:
endcase
end
; ** ;
pro image_gui_win_events,event
widget_control,event.top,get_uvalue = pstate
if n_elements(*(*pstate).zptr) eq 0 then return
case event.type of
0: begin ; button press
 (*pstate).mouse = event.press
 if event.press eq 1 then begin
 ; Left mouse button
 (*pstate).xbox[0] = event.x
 (*pstate).ybox[0] = event.y
 image_gui_refresh1,event
 (*pstate).autoscale = 0B
 endif
 end
1: begin ; button release

 116

 if (*pstate).mouse eq 4 then begin
 (*pstate).autoscale = 1B
 image_gui_refresh1,event
 endif
 if (*pstate).mouse eq 1 then begin
 xll = (*pstate).xbox[0] < (*pstate).xbox[1]
 yll = (*pstate).ybox[0] < (*pstate).ybox[1]
 w = abs((*pstate).xbox[1] - (*pstate).xbox[0])
 h = abs((*pstate).ybox[1] - (*pstate).ybox[0])
 xur = xll + w
 yur = yll + h
 ll = convert_coord(xll,yll,/device,/to_data)
 ur = convert_coord(xur,yur,/device,/to_data)
 (*pstate).xrange = [ll[0],ur[0]]
 (*pstate).yrange = [ll[1],ur[1]]
 image_gui_refresh1,event
 endif
 (*pstate).mouse = 0B
 end
2: begin ; motion events
 if (*pstate).mouse eq 1 then begin
 (*pstate).xbox[1] = event.x
 (*pstate).ybox[1] = event.y
 xc = [(*pstate).xbox[0],event.x,event.x,$
 (*pstate).xbox[0],$
 (*pstate).xbox[0]]
 yc = [(*pstate).ybox[0],(*pstate).ybox[0],$
 event.y,event.y,$
 (*pstate).ybox[0]]
 wset,(*pstate).winvis1
 device,copy = [0,0,!d.x_size,!d.y_size, $
 0,0,(*pstate).winpix1]
 plots,xc,yc,/device
 endif
 if (*pstate).mouse eq 0 then begin
 ; We haven't pressed a button. The things that we
 ; need to do here are (1) display the current cursor
 ; coordinates in the widget labels and (2) generate
 ; the cuts.
 coords = convert_coord(event.x,event.y, $
 /device,/to_data)
 elo = min(*(*pstate).eptr,max = ehi)
 qlo = min(*(*pstate).qptr,max = qhi)
 condition = (coords[0] lt elo) or (coords[0] gt ehi) or $
 (coords[1] lt qlo) or (coords[1] gt qhi)
 if condition then return
 e = *(*pstate).eptr
 q = *(*pstate).qptr
 eindex = (where(abs(e-coords[0]) eq min(abs(e-coords[0]))))[0]
 qindex = (where(abs(q-coords[1]) eq min(abs(q-coords[1]))))[0]

 xlabel = widget_info(event.top,find_by_uname = 'XLABEL')
 ylabel = widget_info(event.top,find_by_uname = 'YLABEL')
 zlabel = widget_info(event.top,find_by_uname = 'ZLABEL')
 widget_control,xlabel,set_value = 'x: '+ $
 strtrim(string(coords[0]),2)
 widget_control,ylabel,set_value = 'y: '+ $

 117

 strtrim(string(coords[1]),2)
 widget_control,zlabel,set_value = 'z: '+ $
 strtrim(string((*(*pstate).zptr)[eindex,qindex]),2)
 (*pstate).qindex = qindex
 (*pstate).eindex = eindex
 image_gui_refresh3,event
 image_gui_refresh2,event
 image_gui_refresh1,event
 ; Plot the cross-hairs
 plots,!x.crange,replicate((*(*pstate).qptr)[qindex],2),/data
 plots,replicate((*(*pstate).eptr)[eindex],2),!y.crange,/data
 endif
 end
else:
endcase
end
; ** ;
pro image_gui_load_data,event
widget_control,event.top,get_uvalue = pstate
filename = dialog_pickfile(dialog_parent = event.top, $
 filter = '*.sav',path = sourceroot())
if ~file_test(filename) then return
restore,filename = filename
*(*pstate).zptr = y
*(*pstate).dzptr = dy
*(*pstate).eptr = e
*(*pstate).qptr = q
image_gui_refresh3,event
image_gui_refresh2,event
image_gui_refresh1,event
end
; ** ;
pro image_gui_show_surf,event
; Use FSC_SURFACE to display an interactive
; fully orientable 3D surface representation
; of the data.
widget_control,event.top,get_uvalue = pstate
if n_elements(*(*pstate).zptr) eq 0 then return
z = *(*pstate).zptr
x = *(*pstate).eptr
y = *(*pstate).qptr
nx = n_elements(x) & ny = n_elements(y)
; For aesthetic reasons, display the data as a square
; matrix. Use congrid for the interpolation.
if nx ge ny then begin
 xi = x
 yi = makepts(xlo = min(y),xhi = max(y),npts = nx)
 zi = congrid(z,nx,nx,/cubic)
endif else begin
 xi = makepts(xlo = min(x),xhi = max(x),npts = ny)
 yi = y
 zi = congrid(z,ny,ny,/cubic)
endelse
fsc_surface, zi, xi, yi, group_leader = event.top, $
 /shaded,/elevation_shading, $
 xtitle = (*pstate).xtitle, $
 ytitle = (*pstate).ytitle, $

 118

 colortable = 15
end
; ** ;
pro image_gui_event,event
uname = widget_info(event.id,/uname)
case uname of
'LOAD': image_gui_load_data,event
'QUIT': widget_control,event.top,/destroy
'WIN': image_gui_win_events,event
'CHANGE_COLORS': image_gui_change_colors,event
'SHOW_SURF': image_gui_show_surf,event
else:
endcase
end
; ** ;
pro image_gui
; Widget creation module
; Initialize the color table to blue-white
device,decomposed = 0
loadct,1,/silent
; Load the colors into variables that we'll use
; to "color-protect" the cut data: i.e. we wish
; to maintain the white on black appearance of
; the cut plots but not affect the color table
; of the image plot.
tvlct,r,g,b,/get
color_ptr = ptr_new({r:r,g:g,b:b},/no_copy)
; Get the screen size to make the draw widgets
; appropriately sized.
device,get_screen_size = screen_size
; Define the sizes. And just for fun we'll use the
; Golden Ratio to determine the size of the
; windows into which the cuts will be displayed.
golden_ratio = 0.5*(1.0+sqrt(5.))
xsize1 = (ysize1 = fix(0.35*screen_size[1]))
xsize2 = xsize1 & ysize2 = fix(ysize1/golden_ratio)
ysize3 = ysize1 & xsize3 = fix(xsize1/golden_ratio)
; Create the top-level base, make it a row-base, and
; specify that we want a menu bar
tlb = widget_base(/row,title = 'Data Display Application', $
 mbar = bar)
; Create the filemenu
filemenu = widget_button(bar,value = 'File',/menu)
void = widget_button(filemenu,value = 'Load data',uname = 'LOAD')
void = widget_button(filemenu,value = 'Change colors',uname =
'CHANGE_COLORS')
void = widget_button(filemenu,value = 'Surface representation',uname =
'SHOW_SURF')
void = widget_button(filemenu,value = 'Quit',uname = 'QUIT')
; Create the first column base which holds window 3
; and the label widget that will display the cursor
; coordinates in data units.
col1 = widget_base(tlb,/col)
win3 = widget_draw(col1,xsize = xsize3,ysize = ysize3)
xlabel = widget_label(col1,value = 'x: ',/dynamic_resize, $
 uname = 'XLABEL',/align_left)
ylabel = widget_label(col1,value = 'y: ',/dynamic_resize, $

 119

 uname = 'YLABEL',/align_left)
zlabel = widget_label(col1,value = 'z: ',/dynamic_resize, $
 uname = 'ZLABEL',/align_left)
col2 = widget_base(tlb,/col)
win1 = widget_draw(col2,xsize = xsize1,ysize = ysize1, $
 /motion_events,/button_events,uname = 'WIN')
win2 = widget_draw(col2,xsize = xsize2,ysize = ysize2)

; Let's center the top-level base on the screen
geom = widget_info(tlb,/geometry)
widget_control,tlb, $
 xoff = (screen_size[0]/2)-(geom.scr_xsize/2), $
 yoff = (screen_size[1]/2)-(geom.scr_ysize/2)
widget_control,tlb,/realize

; Get the window ids out and create the pixmaps
widget_control,win1,get_value = winvis1
widget_control,win2,get_value = winvis2
widget_control,win3,get_value = winvis3
window,/free,/pixmap,xsize = xsize1,ysize = ysize1
winpix1 = !d.window
window,/free,/pixmap,xsize = xsize2,ysize = ysize2
winpix2 = !d.window
window,/free,/pixmap,xsize = xsize3,ysize = ysize3
winpix3 = !d.window

; Initialize the pointers
zptr = ptr_new(/allocate_heap)
dzptr = ptr_new(/allocate_heap)
eptr = ptr_new(/allocate_heap)
qptr = ptr_new(/allocate_heap)

state = { winvis1:winvis1, $
 winvis2:winvis2, $
 winvis3:winvis3, $
 winpix1:winpix1, $
 winpix2:winpix2, $
 winpix3:winpix3, $
 color_ptr:color_ptr, $
 xtitle:'E (meV)', $
 ytitle:'Q (!3!sA!r!u!9 %!3!n!E-1!N)', $
 ztitle:'Intensity', $

 mouse:0B, $
 autoscale:1B, $
 xbox:[0,0], $
 ybox:[0,0], $
 xrange:[0.,0.], $
 yrange:[0.,0.], $
 eindex:0, $
 qindex:0, $
 zptr:zptr, $
 dzptr:dzptr, $
 eptr:eptr, $
 qptr:qptr }

 120

pstate = ptr_new(state,/no_copy)
widget_control,tlb,set_uvalue = pstate,/no_copy

xmanager,'image_gui',tlb, $
 event_handler = 'image_gui_event', $
 cleanup = 'image_gui_cleanup', $
 /no_block

end

A screen shot of this application is shown below in Figure 29.

Figure 29 Screen shot of the application with data loaded.

Exercise: Add the ability to display the data as a 3-D surface using the procedure
called FSC_SURFACE written by David Fanning. Give users of your application access to
this functionality via the menu bar on the top-level base.

 121

Chapter 9-Writing a multi-module GUI
application

Up until this point we have discussed how to create a single application. However you
may wish to distribute a number of "standalone applications" in one program suite.
The DAVE suite of neutron scattering applications is an example. In this brief chapter
we will show how to create a simple program that launches the widget programs
developed thus far.

Design specifications and functional requirements

The new application, prog_menu.pro, will expose a menu of buttons which allow the
user to launch image_gui and widget_ex_3. These programs can be run
simultaneously. A QUIT button will also close all applications.

Implementation plan

The outline of the code for this launcher program is straightforward. There are two
procedures necessary: a widget creation module and an event handler to handle all of
the possible button events. In this program these two modules are named prog_menu
and prog_menu_event, respectively.

We could just launch the two programs with no programmatic link between the
launcher and the individual applications. The code for that situation is shown below:

; ******************************** ;
pro prog_menu_event,event
case widget_info(event.id,/uname) of
'QUIT': widget_control,event.top,/destroy
'IMAGE_GUI': image_gui
'RANDOM_GUI': widget_ex_3
else:
endcase
end
; ******************************** ;
pro prog_menu
; Widget creation module
tlb = widget_base(/col,title = 'Multi-Apps')
void = widget_button(tlb,value = 'Image GUI', $
 uname = 'IMAGE_GUI')
void = widget_button(tlb,value = 'Random Data Display', $
 uname = 'RANDOM_GUI')
void = widget_button(tlb,value = 'Quit',uname = 'QUIT')
centertlb,tlb

 122

widget_control,tlb,/realize

xmanager,'prog_menu',tlb, $
 event_handler = 'prog_menu_event',/no_block
end

This is a standard widget program and you should be comfortable with everything in
it. The main event handler distinguishes between button identities based on the
uname as usual. We actually use a nice widget utility here called centertlb.pro that
centers the top-level base on the screen. The source code for centertlb is listed
below.

pro centertlb,tlb
; This procedure centers the entire widget (the
; top-level-base) on the screen (independent of
; the platform).
device,get_screen_size = screenSize
geom = widget_info(tlb,/geometry)
widget_control,tlb, $
 xoff = (screenSize[0]/2)-(geom.scr_xsize/2),$
 yoff = (screenSize[1]/2)-(geom.scr_ysize/2)
end

When you press the Image GUI button the event handler just calls the IMAGE_GUI
procedure. The same thing happens with the Random Data Display button. Run the
prog_menu program and launch image_gui. Now press the quit button in prog_menu.
You will notice the undesired behavior that image_gui does not close. At the moment
the programs are completely independent even though one calls the other. There is
no programmatic means by which the programs are linked.

We can link the programs using the group_leader keyword. However we must modify
the existing image_gui and widget_ex_3 programs to accomplish this. Open up both
image_gui and widget_ex_3 and make the following changes to their respective widget
creation modules.

pro image_gui,group_leader = group_leader
if n_elements(group_leader) eq 0 then group_leader = 0L
.
.
tlb = widget_base(/row,title = 'Data Display Application', $
 mbar = bar,group_leader = group_leader)
.
.
.

pro widget_ex_3,group_leader = group_leader
if n_elements(group_leader) eq 0 then group_leader = 0L
tlb = widget_base(/row,title = '',group_leader = group_leader)
.
.
.

 123

The additional keyword for these programs, group_leader, tells IDL to specify a group
leader (widget ID) at the top of the widget hierarchy. In our case the group leader is
the top-level base for prog_menu. If the user does not pass in a group_leader then the
default is set to 0L (long zero). This is never a valid widget ID and its inclusion in the
individual top-level base's function call is swallowed without an exception.

The necessary modification to the event handler for prog_menu is as follows:

pro prog_menu_event,event
case widget_info(event.id,/uname) of
'QUIT': widget_control,event.top,/destroy
'IMAGE_GUI': $
 image_gui,group_leader = event.top
'RANDOM_GUI': $
 widget_ex_3,group_leader = event.top
else:
endcase
end

Now run prog_menu and then press the quit button in prog_menu. You should see all
applications disappear which is the desired behavior using the group_leader keyword.

Suppressing multiple instances of an application

If you press the buttons in the prog_menu GUI for each application you will find that
you can quickly create many simultaneous instances of the same program. This may
not be the behavior you wish. For instance you may wish to allow only a single
instance of each program during a session. This can be done using the XREGISTERED
function. We will show how to do this for widget_ex_3.

pro widget_ex_3,group_leader = group_leader
if n_elements(group_leader) eq 0 then group_leader = 0L
if xregistered('widget_ex_3') then return
.
.
.

The addition of the line in boldface to widget_ex_3 is all that is necessary to ensure
that you cannot launch more than one instance of this particular application. The
argument in the XREGISTERED function is the name of the widget program. Note that
this is the same name as used as the first argument in the call to XMANAGER.

Exercise: Modify image_gui.pro so that you cannot launch more than one
instance of it from prog_menu.

 124

Chapter 10-Plugging your application
into DAVE

What is DAVE?

DAVE (the Data Analysis and Visualization Environment-version 1.x) is mainly a
collection of (almost independent) application modules that are glued together
through a single main widget application. The DAVE application suite can be
encapsulated in the following statements:

1. A basic framework that allows applications to be easily plugged in.
2. All the main functionality (such as data reduction and visualization tasks) are

implemented as modules. Little or no constraints are placed on the design and
operation of the modules. This decision was made in order to foster the
creation of new functionality within DAVE, which at conception had only a few
developers working on the project in their spare time.

3. Applications within the framework can share, or have access to, a single
dataset. This dataset is created and owned by the main framework even though
it can be read or modified by any interested module.

There are some shortcomings to this design (such as the single dataset limitation, lack
of a standard look and feel, and some duplication of effort) which will be addressed in
a future version of the application. Nevertheless, DAVE has experienced a tremendous
growth in features over a brief timescale since its inception in 2001 as a result of the
initial decisions that were made.

Adding your IDL application to DAVE

There are three main steps necessary to include a functioning application into DAVE.

1. Modifications to the application, necessary for communicating with DAVE.
2. Write a launch procedure that acts as a bridge between DAVE and the module.

The launch procedure follows a well defined API and is only a few lines of code.
3. Insert a new menu entry in DAVE for launching the application. This is also a

couple of lines of code.

Modifications to the application

The following changes to your IDL application are necessary to facilitate incorporation
into DAVE:

 125

o Event passing – the module needs to be able to send events to others
(usually an exit event). We will not demonstrate this in this chapter.

o Data sharing – where applicable, the module needs to view or even
modify the DAVE dataset.

o Group leader widget ID in the case of a GUI application.

The required changes include additional parameters and/or keywords to the main
entry procedure or function for the application.

As an example, we will incorporate our application IMAGE_GUI into DAVE so that it can
display DAVE data. We will add a menu item to the menu bar which allows us to load
in a DAVE data set (rather than reading the fake data set). Note that in DAVE there
are two menu options that can be exposed to the user. In the "classic" DAVE the menu
selections are composed of buttons in the menu bar in the DAVE interface. In "tree-
view" DAVE the menu selections are tree widget leaves. DAVE.PRO has two menu-
building modules depending on the preference of the user: DAVE_BUILD_MENU and
DAVE_BUILD_TREE_MENU. We will need to add code to both of those sections. In the
DAVE.PRO module we would add the following line (shown in boldface) in the
procedure named DAVE_BUILD_MENU:

.
.
visMenu = widget_button(bar, value = 'Visualization', /menu)
 twoDRen = widget_button(visMenu, value = 'Trifenestra (Three Windows)' $
 , event_pro = 'fdaveTAS', uvalue='PSD')
 void = widget_button(visMenu,value = 'Simple image slicer',event_pro = 'daveLaunchIS')
 void = widget_button(visMenu,value='Data Browser',event_pro='launch_dave_db')
 void = widget_button(visMenu,value = 'DAVE PEEK',event_pro = 'launch_dave_peek')
 void = widget_button(visMenu,value = 'Image Viewer',event_pro = 'launch_image_gui')
.
.

Similarly we add the following line to the procedure in DAVE.PRO named
DAVE_BUILD_TREE_MENU:

.
.
visualization = widget_tree(file_tree,value = 'Data Visualization',/folder,$
 event_pro = 'dave_do_nothing',bitmap = vis_icon)
void = widget_tree(visualization,value = 'Trifenestra (Three Windows)',$
 event_pro = 'fdaveTAS',uvalue = 'PSD',bitmap = app_icon)
void = widget_tree(visualization,value = 'Simple image slicer',$
 event_pro = 'daveLaunchIS',bitmap = app_icon)
void = widget_tree(visualization,value = 'Data Browser',$
 event_pro = 'launch_dave_db',bitmap = app_icon)
void = widget_tree(visualization,value = 'DAVE PEEK',$
 event_pro = 'launch_dave_peek',bitmap = app_icon)
void = widget_tree(visualization,value = 'Image Viewer',$
 event_pro = 'launch_image_gui',bitmap = app_icon)
.
.

The launcher application, launch_image_gui, is a simple event handler that launches
IMAGE_GUI with the appropriate arguments. The code for it is shown below. Note
that we used the existing group_leader keyword in IMAGE_GUI so that the group leader

 126

for our application is the top-level base of the DAVE application. This ensures that
our application will be closed if the DAVE application is closed (while both are
running). We also added the keyword notify_ids which we saw when we
implemented the XCOLORS program into IMAGE_GUI. Again notify_ids is a two-
element long array composed of a widget id for the widget that got us into the event
handler and the second element is the top-level base in DAVE.PRO.

pro launch_image_gui,event
thisEvent = tag_names(event,/structure_name)
case thisEvent of
'WIDGET_BUTTON': $
 image_gui, group_leader = event.top, $
 notify_ids = [event.id,event.top]

'WIDGET_TREE_SEL': $
 image_gui, group_leader = event.top, $
 notify_ids = [event.id,event.top]
else:
endcase
end

In addition to adding the notify_ids keyword to the procedure's interface we also add
this keyword to the state structure so that it is available throughout this application.
Although we will not do it here, it is possible to send information from this application
that is "plugged into" DAVE up to DAVE so that it is available for other DAVE
applications. Therefore the addition of notify_ids is not strictly necessary in our
case. The modifications to the widget creation module in IMAGE_GUI regarding these
changes are shown below.

; ** ;
, notify_ids = notify_ids pro image_gui,group_leader = group_leader

if n_elements(notify_ids) ne 2 then notify_ids = [0L,0L]
if n_elements(group_leader) eq 0 then group_leader = 0L
if xregistered('image_gui') then return
; Widget creation module
; Initialize the color table to blue-white
device,decomposed = 0
loadct,1,/silent
.
.
state = { winvis1:winvis1, $
 winvis2:winvis2, $
 winvis3:winvis3, $
 winpix1:winpix1, $
 winpix2:winpix2, $
 winpix3:winpix3, $
 color_ptr:color_ptr, $
 xtitle:'E (meV)', $
 ytitle:'Q (!3!sA!r!u!9 %!3!n!E-1!N)', $
 ztitle:'Intensity', $

 mouse:0B, $
 autoscale:1B, $

 127

 xbox:[0,0], $
 ybox:[0,0], $
 xrange:[0.,0.], $
 yrange:[0.,0.], $
 eindex:0, $
 qindex:0, $
 zptr:zptr, $
 dzptr:dzptr, $
 eptr:eptr, $
 qptr:qptr, $
 notify_ids:notify_ids }
.
.

At this point the application IMAGE_GUI will run just fine as a part of DAVE. However
we cannot read in any DAVE data into IMAGE_GUI which would make it truly useful. To
do so we need to add a new procedure into IMAGE_GUI that allows us to load in a
DAVE data set.

First we need to include a new menu option to load in a DAVE file. In the widget
creation module for IMAGE_GUI, add the following line shown below in boldface.

.
.
filemenu = widget_button(bar,value = 'File',/menu)
void = widget_button(filemenu,value = 'Load data',uname = 'LOAD')
void = widget_button(filemenu,value = 'Load DAVE data',uname = 'LOAD_DAVE')
void = widget_button(filemenu,value = 'Change colors',uname = 'CHANGE_COLORS')
.
.

We also must update the event handler for IMAGE_GUI as follows:

pro image_gui_event,event
uname = widget_info(event.id,/uname)
case uname of
'LOAD': image_gui_load_data,event
'QUIT': widget_control,event.top,/destroy
'WIN': image_gui_win_events,event
'CHANGE_COLORS': image_gui_change_colors,event
'SHOW_SURF': image_gui_show_surf,event
'LOAD_DAVE': image_gui_load_dave,event
else:
endcase
end

Finally we write the procedure that loads in the DAVE data, image_gui_load_dave. In
this procedure we query the user for a DAVE data file using the DIALOG_PICKFILE
routine, restore this file, extract the contents of the DAVE data file using a function
called GET_DAVE_PTR_CONTENTS, fill up the local variables with the values from the
DAVE pointer and then plot the data.

pro image_gui_load_dave,event
widget_control,event.top,get_uvalue = pstate

 128

filename = dialog_pickfile(dialog_parent = event.top, $
 path = sourceroot(), filter = '*.dave', $
 /read,title = 'Please select a DAVE data file')
if ~file_test(filename) then return
restore,filename
; The statement above restores a variable called
; DAVEPTR. We can extract the variables for
; displaying using a function called
; GET_DAVE_PTR_CONTENTS.
ret_val = get_dave_ptr_contents(daveptr, $
 qty = z, $
 err = dz, $
 yvals = q, $
 xvals = e, $
 xlabel = xlabel, $
 ylabel = ylabel)
; Free the DAVE pointer to prevent memory
; leaks.
heap_free,daveptr
*(*pstate).eptr = e
*(*pstate).qptr = q
*(*pstate).zptr = z
*(*pstate).dzptr = dz
image_gui_refresh3,event
image_gui_refresh2,event
image_gui_refresh1,event
end

Now you should be able to run this application from DAVE, load in DAVE data, and
visualize it.

More details of the DAVE pointer

In the last section we saw how to read in a DAVE formatted data file that was saved
to disk without knowing any of the details of the data structure. In general there are
a few simple functions that allow reading/writing information from/to the DAVE data
files. In this section we will go into some depth to describe the structure.

DAVE 1.x uses a simple data structure to store experimental data. The structure was
conceived early on in the development of DAVE and at the time emphasis was placed
on ensuring that the plottable data is well represented. The complete data structure
is created and saved on file as an IDL pointer (heap variable) hence it is commonly
referred to as a davePtr (pronounced DAVE pointer). DAVE 1.x files are saved using
IDL's sav binary format.

Essentially several data structures have been defined to store the relevant
information within the DAVE pointer. The complete structure is outlined in the
diagram below using the following rules.
● Each rectangular shape contains the definition of an IDL structure.
● Structure member names are in the left column (in blue).
● Their IDL data type and description are in the right column.

 129

● Highlighted structures member names (bold-underlined) are themselves structures
or pointers to structures.

A hierarchical description of the structure now follows.

davePtr
The davePtr points to an IDL structure consisting of two other pointers: dataStrPtr
and descriPtr. The experimental data and all relevant metadata are stored in the
dataStrPtr. The descriPtr is used for labeling or tagging the dataset.

descriPtr
The descriPtr points to a structure as described in the diagram. It is used for labeling
or tagging the davePtr. This tagging can be user-defined and consists of a name,
description and value. For example a user might make several measurements of a
particular sample at different temperatures. The descriPtr may be used to identify
these measurements as part of a series. In this case the (*descriPtr).name and
(*descriPtr).units fields for all measurements could be 'Temperature' and 'K'
respectively while the actual temperature for each measurement would be stored in
the corresponding (*descriPtr).qty field. Although the descriPtr is optional, if
present some applications within DAVE do make use of it. For example the Data
Browser (visualization module) is able to combine datasets that belong to the same
series to produce a composite dataset.

 130

 131

dataStrPtr
The experimental data is contained within the dataStrPtr. The dataStrPtr points to a
structure consisting of two fields: commonStr and specificPtr. commonStr contains
the plottable data and is the only mandatory component of the davePtr. The
specificPtr is optional and is included as a placeholder for any instrument specific
information.

specificPtr
Points to an instrument-dependent structure that can be used to store any relevant
information about that instrument. The definition of the structure is unspecified and
hence any information stored here can only be useful for instrument specific modules.

commonStr
The commonStr is an IDL structure designed to hold plotable data and additional basic
attributes required to display it. A structure member, histPtr, holds the data itself
with the remaining fields storing various useful attributes for displaying the data. The
meaning of the attributes are easily understood as described in the diagram. The
treatmentPtr points to a string array of arbitrary length that describes all the
treatment details applied so far to the DAVE pointer. Hence, all program modules that
modify a DAVE pointer should ensure that the treatmentPtr is updated accordingly
with concise human readable textual information about the modification.

histPtr
The actual data is stored in the histPtr, a four member structure as indicated in the
diagram. The dependent variable (eg counts) is stored in the qty field and the
associated uncertainty in err. The first independent variable is stored in the x field. If
qty is two dimensional then the second independent variable is stored in the y field.
The dimensions of the fields should obey these rules:

histPtr field name dimension dimension scale

qty 1D or 2D (nx) or (nx,ny)

err 1D or 2D (nx) or (nx,ny)

x 1D nx' where

nx'=nx; if commonStr.xtype='points'

nx'=nx+1; if commonStr.xtype='histogram'

y 1D ny' where

ny'=ny; if commonStr.ytype='points'

ny'=ny+1; if commonStr.ytype='histogram'

 132

Working with the davePtr

Once you become familiar with the davePtr structure, it is quite straightforward to
directly manipulate it's contents. Simply remember:
● the syntax for accessing structure members (structure.field).
● a pointer variable has to be dereferenced to access its contents (all pointers within

the DAVE pointer have a Ptr suffix).
● to be careful about inadvertently deleting heap memory within the dataset. For

example never directly assign a local pointer to one in the data structure and then
subsequently freeing the local pointer – this would result in deletion of content
from the dataset.

A few simple examples will now be given to illustrate reading/writing from/to a DAVE
pointer. In all examples it will be assume that the DAVE pointer is available as a
locale variable called davePtr – the internal structure will already be properly defined
for you. A separate document is available that deals with attaching an application
module to the DAVE suite , obtaining a reference to the DAVE pointer and
reading/writing to a file.

Example 1
Reading the plottable data (counts, errors, independent variable(s)) .

IDL>data = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).qty
IDL>error = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).err
IDL>xval = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).x
IDL>yval = (*(*(*davePtr).dataStrPtr).commonStr.histPtr).y

The local variables data, error, xval and yval should now contain copies of the data,
associated uncertainties, x- and y-axis data. Note that if data is 1D then yval will be
scalar (value 0.0) instead of a vector.

Example 2
Reading the treatment history. This contains an account of the data processing that
the dataset has an undergone.

history = (*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr)

The local variable, history, should contain the treatment history as a string array.

Example 3
Obtaining plot attributes.

IDL>instr_name = (*(*davePtr).dataStrPtr).commonStr.instrument
IDL>xtype = (*(*davePtr).dataStrPtr).commonStr.xtype
IDL>xlabel = (*(*davePtr).dataStrPtr).commonStr.xlabel

 133

IDL>xunits = (*(*davePtr).dataStrPtr).commonStr.xunits

xtype will be 'points' or 'histo*gram', etc

Example 4
Updating data. counts and xdata are local variables containing the new data. Can
either make direct assignments like

IDL>(*(*(*davePtr).dataStrPtr).commonStr.histPtr).qty = counts
IDL>(*(*(*davePtr).dataStrPtr).commonStr.histPtr).x = xdata

or (to emphasize a point) make use of an intermediate local variable for histPtr

IDL>local_histPtr = (*(*davePtr).dataStrPtr).commonStr.histPtr
IDL>(*local_histPtr).qty = counts
IDL>(*local_histPtr).x = xdata

Both methods are equivalent. However, in the second case, the local variable
local_histPtr should not be freed (ie don't use: ptr_free, local_histPtr) since this
is the same heap memory that is being used by the histPtr field within davePtr.

Example 5
Appending information to the treatmentPtr. This should be done whenever a
noteworthy modification is made to the dataset.

IDL>old_rec = (*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr)
IDL>new_rec = ['First additional line – counts scaled by 2',
 'Second line as required, etc',
 '--']
IDL>new_rec = [old_rec,new_rec]
IDL>(*(*(*davePtr).dataStrPtr).commonStr.treatmentPtr) = new_rec

String arrays are used for storing treatment information. The style is arbitrary but the
language should be clear and concise.

While it is straightforward to work with the DAVE pointer, the syntax is very verbose
and as such it is easy to make mistakes. For these reasons, a set of functions have
been created for writing to and reading from a DAVE pointer. You have already used
GET_DAVE_PTR_CONTENTS. Brief references for these functions now follow.

function create_dave_pointer, davePtr, instrument=instrument, qty=qty, qtunits=qtunits, $
qtlabel=qtlabel, err=err, xvals=xvals, xtype=xtype, xunits=xunits, xlabel=xlabel, yvals=yvals, $
ytype=ytype, yunits=yunits, ylabel=ylabel, specificstr=specificstr, treatment=treatment, $
dname=dname, dunits=dunits, dlegend=dlegend, dqty=dqty, derr=derr, ermsg=errmsg

● all keywords except ermsg specify input quantities
● davePtr parameter and qty keyword are required

 134

function get_dave_pointer_contents, davePtr, instrument=instrument, qty=qty, qtunits=qtunits, $
qtlabel=qtlabel, err=err, xvals=xvals, xtype=xtype, xunits=xunits, xlabel=xlabel, yvals=yvals, $
ytype=ytype, yunits=yunits, ylabel=ylabel, specificstr=specificstr, treatment=treatment, $
dname=dname, dunits=dunits, dlegend=dlegend, dqty=dqty, derr=derr, ermsg=errmsg

● all keywords specify output quantities
● davePtr parameter is required

Both functions return a 1 if successful or 0 otherwise. Meaning of
parameter/keywords:
davePtr DAVE pointer. For create_dave_pointer() it can either be an input or output

parameter. For get_dave_pointer_contents() it is an input parameter. davePtr
must be a valid DAVE pointer when it is used as an input parameter.

instrument string variable describing instrument.

qty double or float array containing the data variable

qtunits string variable specifying the units of qty

qtlabel string variable specifying the plot label for qty

err double of float array containing the error associated with qty. It must have the same
dimension and size as qty.

xvals double or float array containing the first independent variable for qty. If not provided
then a simple index array is determined based on the size of qty.

xtype string variable specifying if the first independent variable, xvals, is "POINTS" or
"HISTOGRAM".

xunits string variable specifying the units of xvals.

xlabel string variable specifying the plot label for the first independent variable, xvals.

yvals y-axis equivalent of xvals

ytype y-axis equivalent of xtype

yunits y-axis equivalent of xunits

ylabel y-axis equivalent of xlabel

specificstr structure containing any instrument specific information to be include in the DAVE
pointer. Can contain any variable type in its fields.

treatment string array of any length containing the treatment of the data.

dname string name of the davePtr tag (descriPtr).

dunits string units of the davePtr tag (descriPtr).

dlegend string description of the davePtr tag (descriPtr).

dqty value of the davePtr tag (descriPtr).

derr uncertainty in the value of the davePtr tag (descriPtr).

ermsg output keyword. Contains error message if the function is unsuccessful.

 135

	Acknowledgments
	Chapter 1 Introduction
	Chapter 2 Data types and variables
	Scalars
	Arrays
	Pointers
	System variables

	Chapter 3 Functions and procedures
	Mathematics
	Syntax
	Convolution
	Synthesizing data

	Chapter 4 Accelerating your IDL code
	Simple first examples
	Matrix multiplication
	Eliminating a double loop
	Functions built for speed
	Rebinning data
	Rebinning histogram data
	Rebinning point data

	Convolution redux

	Chapter 5-Data visualization
	Simple plots
	Surface and image plots
	Animating data
	Example showing convergence of Fourier Series

	Chapter 6-Data Analysis
	Fitting a straight line with LINFIT
	Using CURVEFIT
	Using MPCURVEFIT
	Analyzing neutron scattering data with MPCURVEFIT
	Visualizing the intermediate fitting steps
	A diversion: Monte-Carlo estimation of parameter uncertaint

	Chapter 7-User Interface basics
	Event-driven programming
	A UI with user input
	Interacting with a plot window
	Distributing your application with the IDL Virtual Machine

	Chapter 8-Writing a GUI application
	Design specifications and functional requirements
	Implementation plan
	GUI Layout
	Event handler, data, and auxiliary procedures

	Chapter 9-Writing a multi-module GUI application
	Design specifications and functional requirements
	Implementation plan
	Suppressing multiple instances of an application

	Chapter 10-Plugging your application into DAVE
	What is DAVE?
	Adding your IDL application to DAVE
	Modifications to the application

	More details of the DAVE pointer
	Working with the davePtr

