If you would like to have a function of your own added to the library of PAN fitting functions you simply need to create a function definition as shown below:

```plaintext
function pan_myfunction, x, parms,$
   parmnames = parmnames, $  
   canDraw = canDraw, $  
   _Extra = extra

; This is an example of a Gaussian parametrized in terms of 
; its area, center, and full-width at half-maximum

if n_params() eq 0 then begin
   ; User enters the parameter names in this string vector
   parmnames = ['AREA', 'CENTER', 'FWHM']
   return, -1
endif

; User defines YOUT to be his/her function in terms of x and 
; the parameters, parms
fwhm = parms[2]
sig = fwhm/2.354
area = parms[0]
cen = parms[1]
yout = (area/sqrt(2.0*dpi*sig^2))*exp(-0.5*((x-cen)/sig)^2)

canDraw = 0    ; User does not change this!
return, yout
end
```