Neutron Diffraction Studies of Micromechanics of Material Deformation

Ersan Üstündag
Department of Materials Science, California Institute of Technology

Collaborators
Rob Rogan, Can Aydiner, Geoff Swift, Seung-Yub Lee and Greg Welsh
Department of Materials Science, California Institute of Technology

Bjørn Clausen, Don Brown and Mark Bourke
Los Alamos Neutron Science Center, Los Alamos National Laboratory

Mark Daymond
ISIS Neutron Facility, Rutherford Appleton Laboratory (U.K.)

Supported by NSF (CAREER and MRSEC), NASA, DARPA, ARO and DOE-LANL
Outline

- Introduction and motivation
- New engineering diffractometers: SMARTS and ENGIN-X
- Metallic glass composites
- In-situ-reinforced Si₃N₄
- Polycrystalline ferroelectrics
- Future directions: DANSE
Fracture of a Fiber Composite under Tension

- **Aim**: prediction of strength and lifetime
- **Need**: “realistic” constitutive laws

Complications
- Fabrication processes
- Inhomogeneous dislocation densities
- Changes in grain size
- Geometrical constraints
- Interface introduced with different properties
- Residual stresses
Motivation and Approach

- Little information about deformation and \textit{in-situ} constitutive behavior of materials.
- Need to link experimental data with rigorous micromechanics modeling.
- **Approach**: Use neutron diffraction to investigate deformation in materials and complement it with modeling.
- **Critical issues**:
 - Need for model specimens
 - “High selectivity” of diffraction
 - Only elastic lattice strains are measured with diffraction
 - Lack of “realistic” constitutive laws to calculate stress and interpret diffraction data
Advantages of ND

- Non-destructive.
- Ability to distinguish different phases.
- Can measure elastic strain and texture.
- Multi-scale: \textit{nm} to \textit{cm}.
- Deep penetration.
- \textit{In-situ} experiment capability.

⇒ Determination of \textit{in-situ} constitutive behavior

Bragg’s law:

$$\lambda = 2dsin\theta$$

Differences in lattice spacing

⇒ Elastic lattice strain

$$\varepsilon_{hkl}^{el} = \frac{d_{hkl} - d_{hkl}^0}{d_{hkl}^0} = \frac{d_{hkl}}{d_{hkl}^0} - 1$$

\begin{align*}
\bullet & \quad \bullet \\
n & \quad n
\end{align*}
Neutron Powder Diffraction: Data Analysis

Rietveld Method*

- Least-squares-based fitting method.
- Requires a priori phase information.
- Fits the whole diffraction pattern.
- Phase discrete.
- Can distinguish superimposed reflections.
- Yields detailed crystallographic information: lattice constants, texture, site occupancies, phase fractions, thermal parameters, etc.

Fitting Parameter

“Weighted Pattern” Residual:

$$ R_{wp} = \left[\frac{\sum_i w_i (I_{io} - I_{ic})^2}{\sum_i w_i (I_{io})^2} \right]^{1/2} $$

Third generation neutron powder diffractometer.

- 10-30 fold performance improvement over NPD.

First dedicated engineering diffractometer.

- Optimized for engineering stress/strain studies.

State-of-the-art ancillary equipment:

- 250 kN (60,000 lb) load frame.
- Controlled atmosphere furnace ($T_{\text{max}} = 1500^\circ \text{C}$ under load, 2000°C stand alone).

- Radial collimators for 1 mm3 spatial resolution.

- Rapid and accurate specimen handling capability.

- “Expert System” for experiment design and real time monitoring.
SMARTS: Spectrometer (for) MAterials Research (at) Temperature (and) Stress

Cave cutaway schematic

Cave with load frame & furnace installed on translator

Los Alamos Neutron Science Center, Los Alamos National Laboratory
SMARTS Load Frame

- Spectrometer for MAterials Research at Temperature and Stress (SMARTS)
- Schematic setup for *in-situ* compression loading
- Measurement time is about 10-20 minutes per load level
- Measure elastic strains in two directions simultaneously
- Bulk measurement contrary to conventional X-ray measurements

Bragg’s law: \(\lambda = 2dsin\theta \)
SMARTS Furnace

- $T_{\text{max}} = 1500^\circ\text{C}$ under load
- $T_{\text{max}} = 2000^\circ\text{C}$ stand alone
- Vacuum or inert atmosphere
ENGIN-X Diffractometer

ISIS Neutron Scattering Facility
Rutherford Appleton Laboratory (Didcot, UK)
Main problem with BMGs: catastrophic failure under unconstrained loading.

Main deformation mechanism is via shear bands (at room T).

Addition of reinforcements has been shown to increase damage tolerance and toughness.

Critical questions:

» What is the *in-situ* mechanical behavior of reinforcements?

» How do reinforcements interact with shear bands?
W-Fiber / BMG-Matrix Composites: Compressive Loading Behavior

- Vitreloy 1 matrix: $Zr_{41.2} Ti_{13.8} Cu_{12.5} Ni_{10} Be_{22.5}$
- Tungsten fiber composites:
 - Same ultimate stress as monolithic Vit.1
 - Large increase in ductility
 - Knee in stress strain curve as tungsten fibers yield

- In-situ deformation of W?
- What happens to BMG?

W-Fiber / BMG-Matrix Composites: Thermal Residual Stresses

- CTE mismatch: $\alpha_W (4.5 \times 10^{-6} \text{ 1/K}) < \alpha_{BMG} (10 \times 10^{-6} \text{ 1/K})$

- Measured residual strain in W fibers using neutron diffraction

- Calculated thermal residual stresses in both phases using FEM

- Residual stresses are generated just below T_g

W-Fiber / BMG-Matrix Composites: Finite Element Model

- Full 3-D model due to loading along fibers
 - Unit cell model
 - Plane strain along \(z \)
- Hexagonal stacking in all models to accommodate high volume fractions
- Thermal residual stresses: no relaxation below \(T_g \)*
- Constitutive laws:
 - \(W \): deduced \textit{in-situ} behavior
 - BMG: von Mises or Mohr-Coulomb**
 \[\tau_c = 946 - 0.04 \sigma_n \text{ [MPa]} \]

W-Fiber / BMG-Matrix Composites: Compressive Loading Behavior

- Important to account for *in-situ* deformation and residual stresses
- W yields at -1300 MPa, BMG yields at -1900 MPa
- Composite yielding at -360 MPa (20% W-BMG), -1060 MPa (80% W-BMG)
- Model struggles at high stresses (multiple shear bands in BMG?)

β-Si₃N₄: Neutron Diffraction Experiments

- Single phase sample (β-Si₃N₄) – AS800 or GS44 from Honeywell
- Multiple reflections used in elastic constant and CTE determination
- Si₃N₄ fitting parameters:
 - Space group $P6_3/m$ – hexagonal; $a = 7.608\,\text{Å}$, $c = 2.911\,\text{Å}$
 - 6-term background function, absorption, Debye-Waller (thermal) parameter
\[\beta-\text{Si}_3\text{N}_4: \text{ Coefficient of Thermal Expansion} \]

- Diffraction data used directly in CTE calculation*.
- Multiple reflections employed; higher precision.
- Least squares analysis of redundant data.
- Result for CTE tensor of AS800 \(\beta-\text{Si}_3\text{N}_4 \):

\[
\alpha_{ij} = \begin{bmatrix}
3.50 & 0 & 0 \\
0 & 3.50 & 0 \\
0 & 0 & 4.06 \\
\end{bmatrix} \times 10^{-6} \text{ } 1/K
\]

- Polycrystalline value:

\[\alpha = 3.69 \times 10^{-6} \text{ } 1/K \]

Self-Consistent Model (SCM)

- **Model Assumptions:**
 - Eshelby inclusion theory
 - Stresses and strains within an ellipsoidal inclusion are uniform
 - Homogeneous equivalent medium (HEM)

- **Output:**
 - Direct comparison with neutron diffraction measurements
 - Averages over grain sets representing reflections
 - Information about material behavior on a microscopic scale
 - *hkl* dependent behavior
 - Accurate description of texture
Elastic Constants of **AS800 β-Si₃N₄ at 1375°C**

- Employed self-consistent modeling (EPSC)
- Least square fitting of \(hkl \)-dependent elastic strains in both longitudinal and transverse directions
- Polycrystalline average:
 \[E = 310 \text{ GPa}, \ \nu = 0.31 \]

 manufactured values at 1200°C:
 \[E = 293 \text{ GPa}, \ \nu = 0.28 \]

\[
C_{ij} = \begin{bmatrix}
460 & 160 & 240 & 0 & 0 & 0 \\
160 & 460 & 240 & 0 & 0 & 0 \\
240 & 240 & 310 & 0 & 0 & 0 \\
0 & 0 & 0 & 140 & 0 & 0 \\
0 & 0 & 0 & 0 & 140 & 0 \\
0 & 0 & 0 & 0 & 0 & 150 \\
\end{bmatrix} \quad \text{(GPa)}
\]

Literature values (at room T):
\[C_{11} = 430, \ C_{33} = 570, \ C_{12} = 190, \ C_{13} = 130, \ C_{44} = 110 \text{ (GPa)} \]

Creep Mechanisms of ISR Si$_3$N$_4$

- Creep of ISR Si$_3$N$_4$ described by formation and growth of cavities in grain boundary phase**.
- Si$_3$N$_4$ grains remain elastic.
- Results in curvature of semi-log plot of creep rate vs. stress.
- Leads to the following creep equation:

\[
\varepsilon_s = B \sigma \exp\left(\frac{-\Delta H}{RT}\right) \frac{f^3}{(1-f)^2} \exp(\alpha \sigma)
\]

where \(\alpha \approx \frac{2\sigma_c}{9\sigma^2} \) and \(f : \text{vol. frac. of g.b. phase} \)

\[
\& = A' \sigma \exp(\alpha \sigma) \quad A'(\sigma) = 0.08 \left(\frac{\sigma - \sigma_c}{25} \right)
\]

Creep of **GS-44** at 1200°C: *Constant Stress Test*
Constitutive Behavior of Ferroelectric Materials

- Ferroelectric and piezoelectric materials couple electrical signals to mechanical displacements.

- Ideal for applications in vibration control, sensors, transducers, and micromechanical devices.
How Does Ferroelectricity Work?

PbTiO₃

Six equivalent $<001>_{\text{cubic}}$ directions give six equivalent states at room temperature

High temperature (non-polar cubic)

Room temperature ($<001>$ polarized tetragonal)

$\sigma / a = 1.065$

180° Switching

$T < T_c$

E, $\sigma = 0$

apply large electric field or stress

90° Switching

ferroelectricity switching induced by electric field

ferroelasticity switching induced by stress

180° Switching

E

$90°$ Switching

σ
Microscopic Effects

- Regions of organized unit cell polarizations are separated by twin boundaries called domain walls.

- Application of stress or electric field induces motion of domain walls, changing polarization and strain in the crystal.
Meso-/Macroscopic Effects

- Grains within a polycrystal possess randomly oriented domains
- Electrical poling is used to align a significant number of domains and produce a technologically viable ceramic material
- Domain motion may be constrained by grain orientation and local boundary conditions
Compression of Single Phase Tetragonal PZT

- Strain gauge data indicate linear elastic behavior
- March coefficient results suggest minor 90° domain switching
- Lattice strains are approximately linear
Comparison of Various PZTs

Tetragonal

Rhombohedral