## Research Reactor Enriched Uranium: Demand, Supply, Capabilities, and Quality

TRTR-IGORR 2005 Meeting, September 12-16, 2005 Gaithersburg, Maryland

> Presented by Morris E. Hassler hasslerme@y12.doe.gov

Authors Trent Andes, International Program Manager Randall Dunavant, Technical Specialist Morris Hassler, Manager, Global Nuclear Security & Supply Kristin Mencer, Intern

> BWXT Y-12, L.L.C. Y-12 National Security Complex Oak Ridge, TN 37831-8206





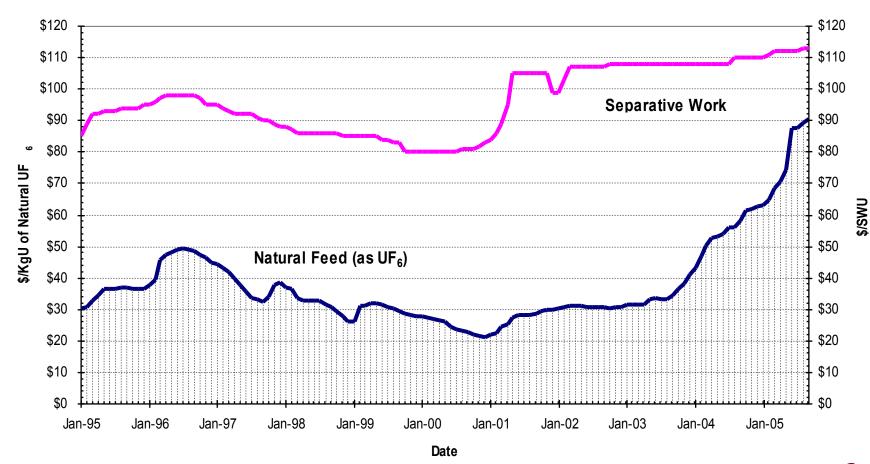


## **Commercial Power vs. Research Reactors**

#### Purpose

- Provide information on the pricing, demand, supply, capabilities, and quality of enriched uranium for the research reactor market
- Significant differences between commercial power and research reactor nuclear fuel markets
  - Much more private industry interest in the commercial power fuel market
  - Considerable information available about commercial power fuel market
  - Commercial power fuel is more of a commodity
  - Research reactor fuel market is more closely tied to military stockpiles and production facilities because of the higher enrichment and material forms used




# **Research Reactor EU Pricing**

- EU is sold as kgUs of enriched product containing:
  - Enrichment Separative Work Units (SWUs)
  - Feed kgUs of natural uranium required to produce product
  - Conversion/processing of material form
  - Analytical cost of chemical/physical property certification
  - Material packaging and transportation
  - Federal Acquisition Charges (FAC)
- Commercial market has influence on some price components
  - Prices have increased from around \$7,500 per kilogram to over \$10,000 per kilogram with increases in SWU and feed components in the last couple of years



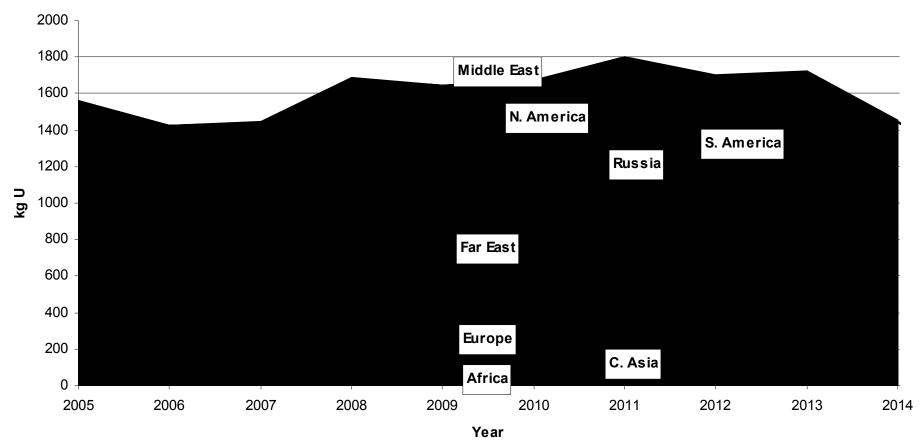
# **Pricing Challenges**

US Market Prices for Natural UF<sub>6</sub> and Separative Work



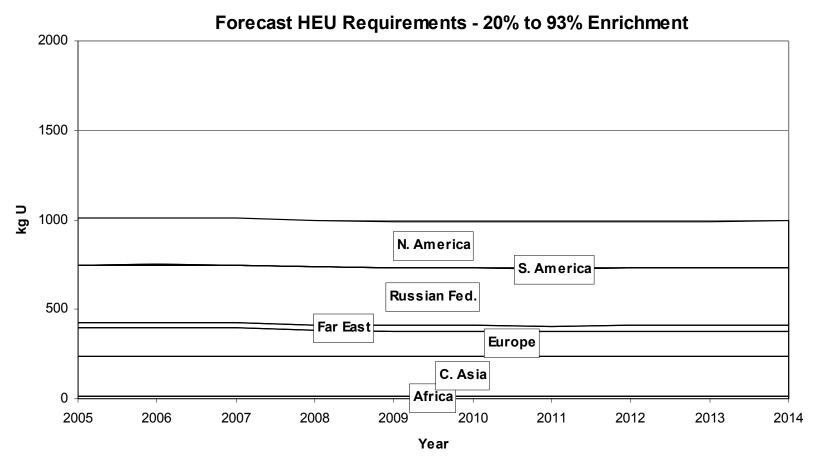
Source: The Ux Consulting Company, L.L.C.




## **Research Reactor Requirements**

- Difficult to predict due to the nature of research reactor utilization
- Incomplete reporting from IAEA member states
- Forecasts dependent upon conversion of reactors from HEU to LEU
- Demand somewhat tied to back-end solution of fuel cycle
- Demand for research reactors trends the commercial markets




# **LEU Requirements Forecast**

Forecast LEU Requirements - 5% to 20% Enrichment





# **HEU Requirements Forecast**





# **Research Reactor Supply History**

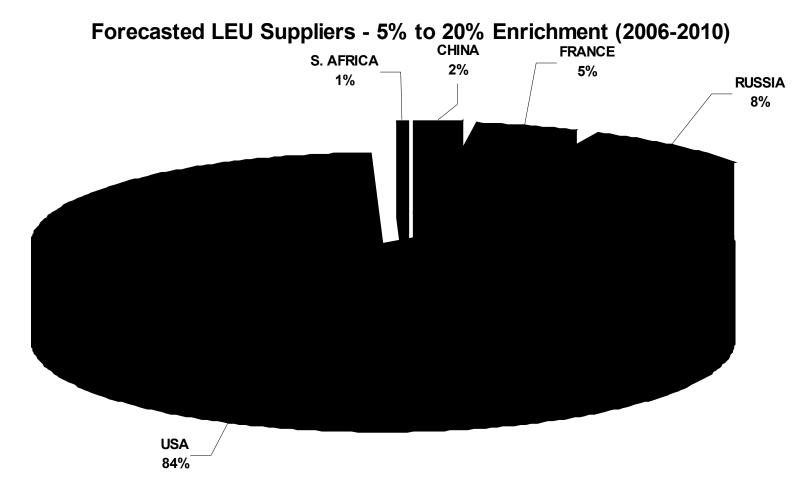
#### Two primary suppliers

U.S. and Russian Federation

## 1990s uncertain time

- Schumer Amendment
  - U.S. exports of HEU restricted
- Y-12 Stand Down
  - 1994-1997 U.S. production capability shut down
- Alternative Supply
  - Brokers, fabricators, processors fill the gap

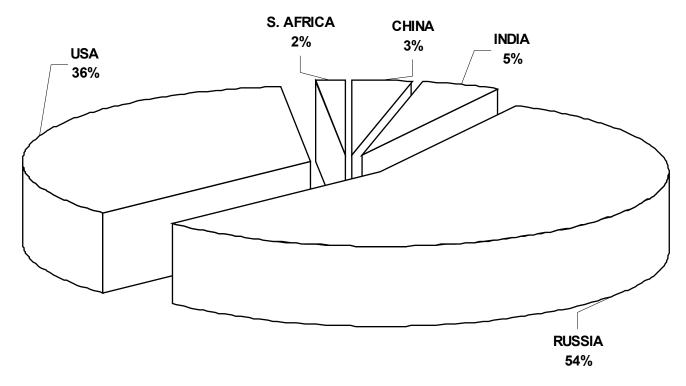
## Last few years very positive for U.S. supply


- Multiple Long-term contracts & record orders
- Production improvements
- Extension of fuel take back program

## Upcoming challenges

Escalating uranium component prices




## Forecasted LEU Suppliers (2006-2010)





## **Forecasted HEU Suppliers (2006-2010)**

#### Forecasted HEU Suppliers - 20% to 93% Enrichment





# **Supplier Capabilities**

- Production capabilities stem from military origins
- Capacities easily ramped up to meet demand with lead time
- Different forms of material can be produced primary product is metal
- Much of material comes from downblended surplus military stockpiles – not freshly enriched
  - Only Russia, China, India, Brazil, North Korea enrich above 5% <sup>235</sup>U
- Scrap recovery capabilities limited and costly



# A Core NNSA/Y-12 Mission

- Uranium supplied by the Department of Energy National Nuclear Security Administration's (NNSA) Y-12 National Security Complex (Y-12) for research and test reactor fuel is critical to the production of medical isotopes and nuclear research around the globe.
- Program provides multiple benefits to nuclear nonproliferation missions:
  - Reduced Enrichment for Research and Test Reactor (RERTR) Program
  - Spent Nuclear Fuel from Foreign Research Reactors (FRR) Acceptance Program
  - U.S. Surplus HEU Disposition Program



# Quality

- Quality of material is dependent upon the origin and processing steps of the material
  - Newly enriched or chemically purified best material
  - Material from weapons is good quality when selective
  - Recycled material of greater concern
- Standard specifications will improve quality and lower costs



# **Y-12 LEU Metal Specification**

|                     |         |       | ASTM     | New Y12 |
|---------------------|---------|-------|----------|---------|
| Element             | Symbol  | Units | C1462-00 | Spec    |
| Uranium             | U       | wt %  | 99.850%  | 99.880% |
| U-232               | U-232   | µg/gU | 0.00200  | 0.00200 |
| U-234               | U-234   | wt %  | 1.000%   | 0.260%  |
| U-235               | U-235   | wt %  | 19.750%  | 19.750% |
| U-236               | U-236   | µg/gU | 40,000   | 4,600   |
| Trans-U (Alpha)     | TRU     | Bq/gU | 250.0    | 100.0   |
| Activation Products | ActProd | Bq/gU |          | 100.0   |
| Fission Products    | Gamma   | Bq/gU | 600      | 600     |



| Specific   | ation ( | cont.) | ASTM     | New Y12 |
|------------|---------|--------|----------|---------|
| Element    | Symbol  | Units  | C1462-00 | Spec    |
| Aluminum   | AI      | µg/gU  | 150      | 150     |
| Arsenic    | As      | µg/gU  |          | TBR     |
| Beryllium  | Ве      | µg/gU  | 10       | 1       |
| Boron      | В       | µg/gU  | 1        | 1       |
| Cadmium    | Cd      | µg/gU  | 1        | 1       |
| Calcium    | Са      | µg/gU  | 100      | 100     |
| Carbon     | С       | µg/gU  | 800      | 350     |
| Chromium   | Cr      | µg/gU  | 50       | 50      |
| Cobalt     | Со      | µg/gU  | 10       | 5       |
| Copper     | Cu      | µg/gU  | 50       | 50      |
| Dysprosium | Dy      | µg/gU  | Sum < 3  | 5       |
| Europium   | Eu      | µg/gU  | Sum < 3  | 2       |
| Gadolinium | Gd      | µg/gU  | Sum < 3  | 1       |
| Iron       | Fe      | µg/gU  | 250      | 250     |
| Lead       | Pb      | µg/gU  | 10       | 5       |
| Lithium    | Li      | µg/gU  | 10       | 2       |
| Magnesium  | Mg      | µg/gU  | 50       | 50      |
| Manganese  | Mn      | µg/gU  | 50       | 24      |



# Y-12 Specification (cont.)

|                          |         |       | ASTM     | New Y12 |
|--------------------------|---------|-------|----------|---------|
| Element                  | Symbol  | Units | C1462-00 | Spec    |
| Molybdenum               | Мо      | µg/gU | 100      | 100     |
| Nickel                   | Ni      | µg/gU | 100      | 100     |
| Niobium                  | Nb      | µg/gU |          | TBR     |
| Nitrogen                 | Ν       | µg/gU |          | TBR     |
| Phosphorus               | Р       | µg/gU | 100      | 50      |
| Potassium                | К       | µg/gU |          | TBR     |
| Samarium                 | Sm      | µg/gU | Sum < 3  | 2       |
| Silicon                  | Si      | µg/gU | 250      | 100     |
| Silver                   | Ag      | µg/gU |          | TBR     |
| Sodium                   | Na      | µg/gU | 25       | 25      |
| Tin                      | Sn      | µg/gU | 100      | 100     |
| Tungsten                 | W       | µg/gU | 100      | 100     |
| Vanadium                 | V       | µg/gU | 30       | 30      |
| Zinc                     | Zn      | µg/gU |          | TBR     |
| Zirconium                | Zr      | µg/gU | 250      | 250     |
| Total Impurities         | Totl mp | µg/gU | 1,500    | 1,200   |
| Equivalent Boron Content |         |       | 4.00     | 3.00    |



## **Product Improvements Will Help Quality**

- Standardization of LEU metal specification
  - Allows for pre-production for better responsiveness
  - Decreases production cost by allowing larger production runs
  - Reduces risk of quality issues
- Emphasis on consistent product form
  - Will reduce fabrication losses by 5-10% at some fabricators
  - Reduces production cost by eliminating process steps
- "On the Shelf" Inventories
  - Certified material
  - Minimize impacts of production disruptions
  - Offers quick response to customer needs
  - Optimizes production runs



# **Nonproliferation Emphasis**

- Global Threat Reduction Initiative to secure, remove, and disposition weapons-usable materials
  - Reduce proliferation risks
  - Reduces high costs of safeguards, security, and inventory of unneeded special nuclear materials
  - In some cases, part of economic value of the material can be realized.
- Several countries working with various sites to remove excess special nuclear materials (SNM)
- Better security of SNM is being realized
- Good for the Research Reactor community
  - One bad incident will be bad for all



# **Summary**

- Last few years have been very positive for research reactors with regard to enriched uranium supply.
- Fuel is becoming more costly with the increased component prices and security requirements
- Nuclear Nonproliferation Programs will continue to benefit from supporting the research reactor community by supplying enriched uranium down blended from surplus weapons material stocks.
- Very beneficial for sites to work to remove excess quantities of weapons-usable SNM



## For more information, contact:

#### **Becky Eddy**

Y-12 Site Office National Nuclear Security Administration P.O. Box 2050, MS-8009 Oak Ridge, TN 37831-8009 Telephone: 1.865.576.4119 Email: eddybg@yso.doe.gov

#### **Morris Hassler**

Global Nuclear Security and Supply BWXT Y-12 , L.L.C. Y-12 National Security Complex P.O. Box 2009, MS-8206 Oak Ridge, TN 37831-8206 Telephone: 1.865.576.8136 Email: hasslerme@y12.doe.gov

