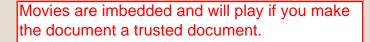
HFBS Experiments Talk

TIMOTHY JENKINS HFBS TUTORIAL FEB. 5, 2008

NIST CENTER FOR NEUTRON RESEARCH GAITHERSBURG, MD 20899



General Outline

- Quantum Rotation in Methyl Iodide.
 - Demonstration of methyl rotational tunneling in methyl iodide.
 - Shows how to distinguish the between libration motion, tunneling, and jump diffusion.

• Polymers and HFBS.

- Demonstration of the usefulness of HFBS for looking at the dynamics of poly (vinyl methyl ether).
- Shows how to interpret a fixed window scan and corresponding quasi-elastic spectra.

Quantum Rotations in Methyl Iodide

TIMOTHY JENKINS HFBS TUTORIAL FEB. 5, 2008

NIST CENTER FOR NEUTRON RESEARCH GAITHERSBURG, MD 20899

Quantum Phenomena ...weird things happen at small length scales...

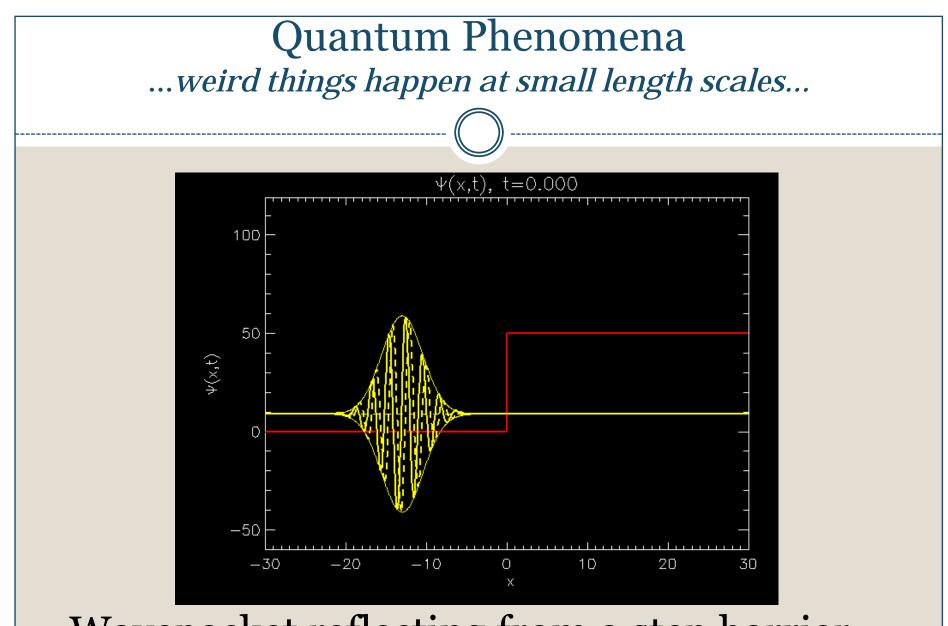
- Wave/particle behavior of matter: $\Psi(x,t)$
- Quantized/discrete energy levels for confined particles
- Observable motion that is classically forbidden

Classically Forbidden Phenomena

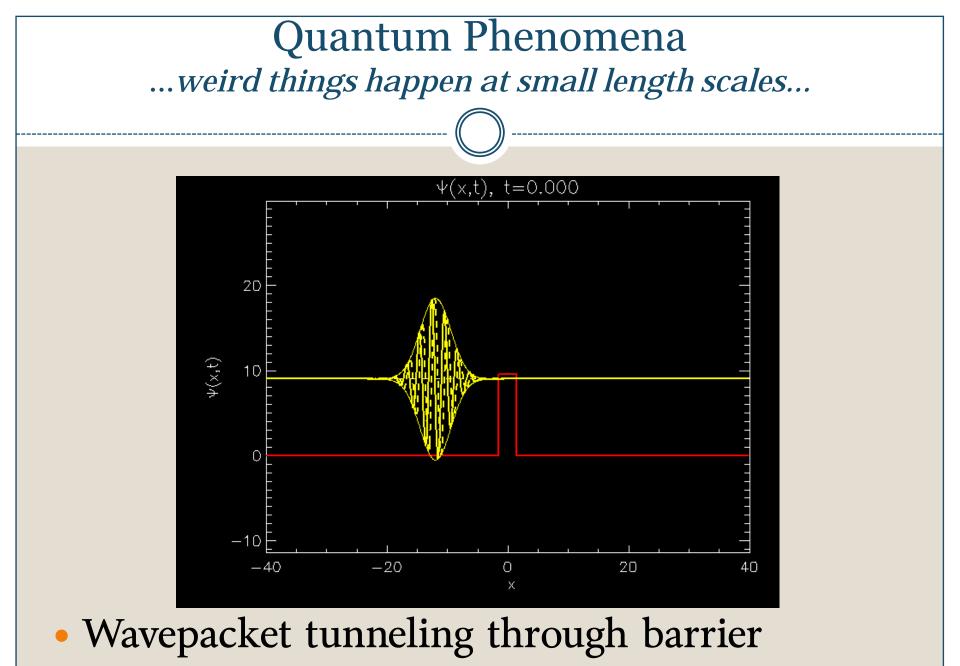
Caption: Train *Tunneling* through a house.

• Prob ~
$$1/10^{(10^{39})}$$

- Stars in universe:
 10²¹
- Size of universe (m): 10²⁷
- Water molecules in ocean: 5×10⁴⁶
- Hydrogen atoms in universe: 10⁷⁹
- Probability of a monkey typing Hamlet with random keystrokes: 1/10^(10⁵)



Wavepacket reflecting from a step barrier



What are quantum rotations?

- Molecules in molecular solids can undergo reorientational motion.
- H₂ is a dumbell rotor and its quantum rotations are nearly "free" (i.e. no barrier hinders its motion)

$$E_{\ell} = BJ(J+1), \quad J = 0,1,2,\dots$$
$$B = \frac{\hbar^2}{2I}$$

• Hindered rotors can perform torsional oscillations and even rotational tunneling through the barrier!

Why study quantum rotations?

- Rotational dynamics as studied with neutrons reflect the molecular environment, i.e. the *energy landscape*
- Neutron tunneling spectroscopy provides extremely detailed information on the shape and magnitude of the potential energy of the molecular groups.
- Rotational tunneling measurements can be used to quantify interatomic interactions.
- Good test of first-principles/DFT calculations

Bulk CH₃I A Canonical Rotational System

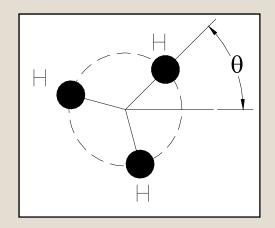
• Properties

• MP: -66.5°C
• MW: 141.94 g/mol
• Dipole moment: μ = 1.62 debye

Projection onto the a-c plane

(Prager et.al., J.Chem.Phys. 86, 2563 (1987))

• We want to study the dynamics about the main molecular axis



I[CH₃] = 5.3×10⁻⁴⁷ kg•m²
B =
$$\frac{\hbar^2}{2I}$$
 = 0.65 meV

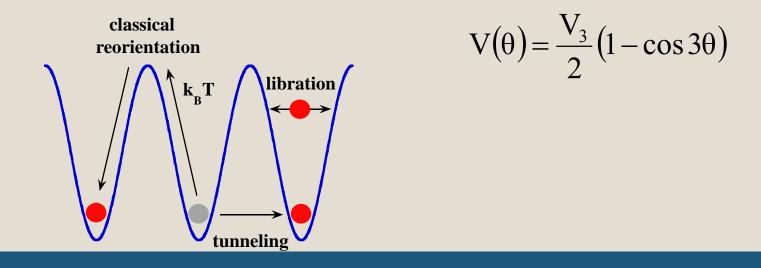
Free rotor energy levels: $E_j = BJ(J+1), \quad j = 0, 1, 2, ...$

Useful conversions $1 \text{ meV} \leftrightarrow 4 \text{ ps}$ $1 \mu eV \leftrightarrow 4 \text{ ns}$

Bulk CH₃I Dynamics

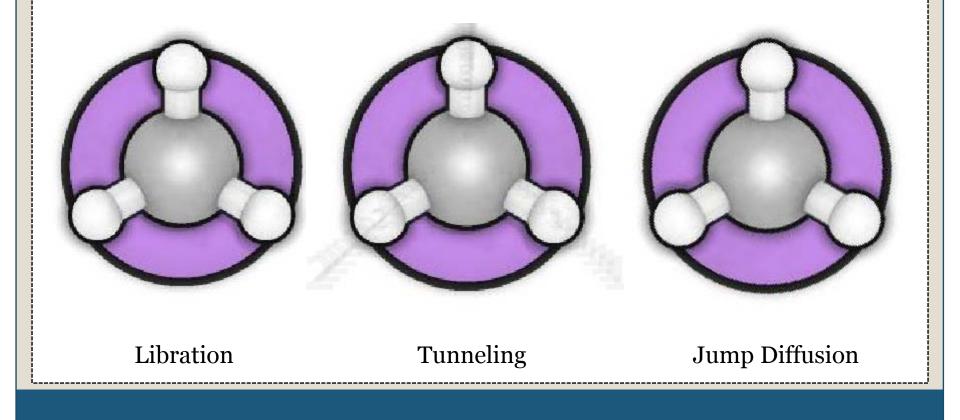
Interaction potential of methyl group (1) van der Waals term, (2) short-range steric repulsion, and (3) additional multipole terms

Simplified model based on symmetry alone:



Pictorial description of motions.

• Pictures looking down the C-I axis showing the motions of the hydrogen.

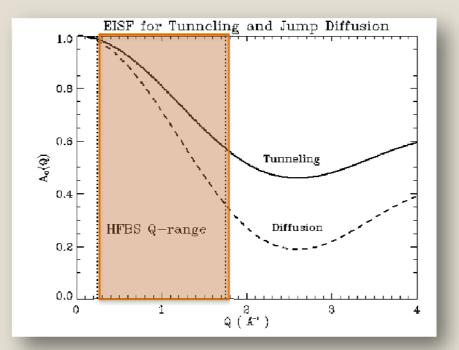


Quantum Rotational Dynamics Torsional oscillations Tunneling

Using Inelastic Neutron Scattering to See Quantum Rotational Tunneling Q (A⁻¹)=0.87072 Neutron scattering law for methyl tunneling E 0.03 $S(Q,\omega) = A_0(Q)\delta(\omega) + (1 - A_0(Q))\frac{1}{2}[\delta(\omega - \omega_t) + \delta(\omega + \omega_t)]$ $A_0(Q) = \frac{5 + 4j_0(Qr\sqrt{3})}{9}$ ο hω(μeV) 1.00.8 0.6 $A_o(Q)$ radius of methyl group r: tunneling energy ω_t: 0.4elastic incoherent structure factor A_o: 0.2 (EISF) 0.015 5 10 20 0

qr

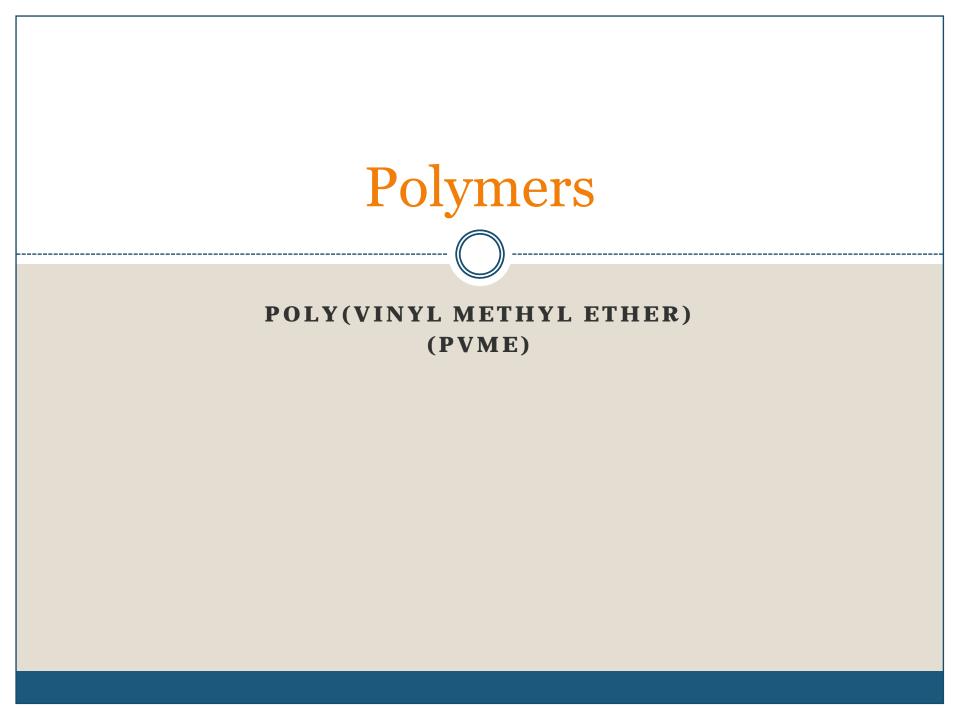
EISF for Tunneling and Jump Diffusion



 Fit of previous equation to the data gives the model of the dynamics.

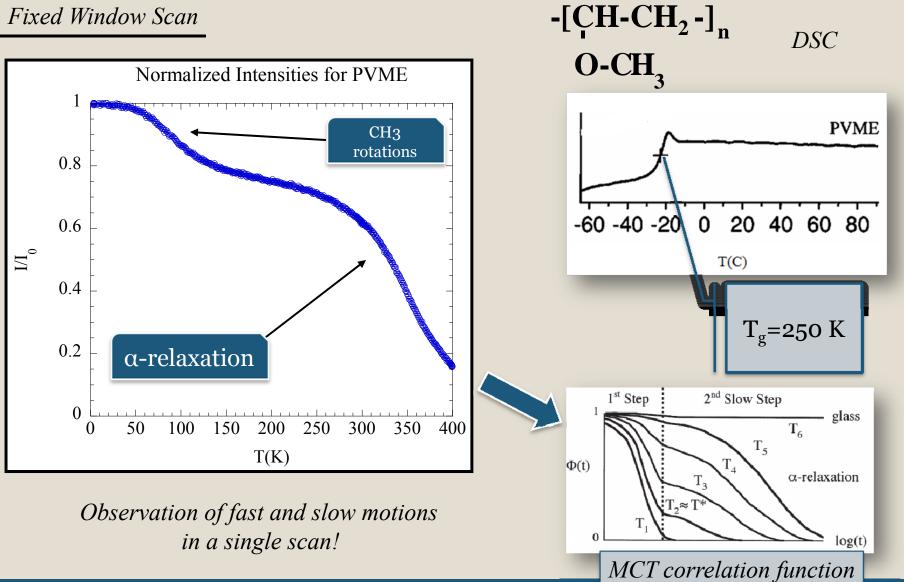
 $A_0(Q) = \frac{5 + 4j_0(Qr\sqrt{3})}{2}$

• This gives us the value for the radius of the methyl rotation.

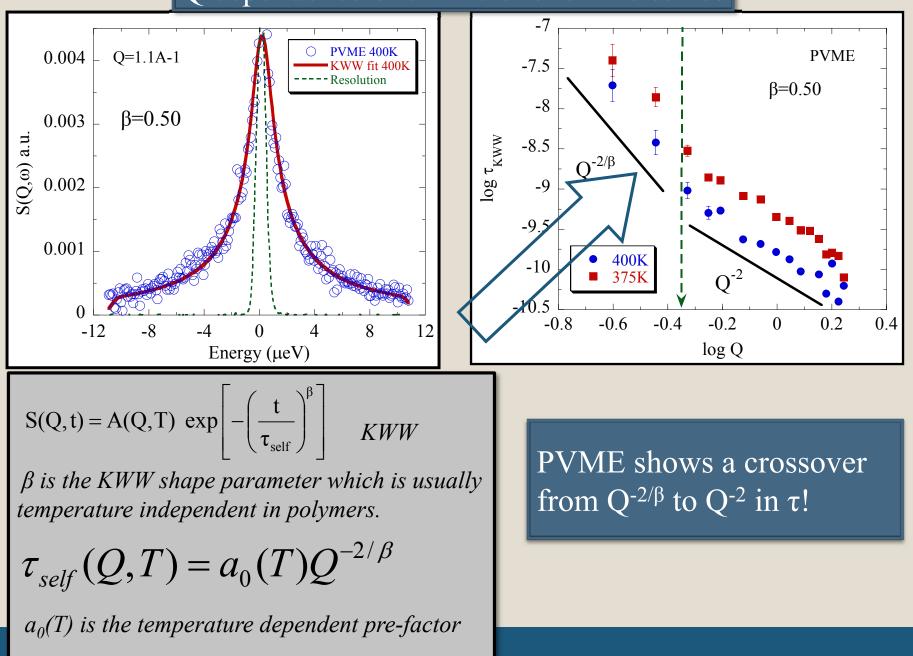


Poly(vinyl methyl ether)

Fixed Window Scan



Q dependence of characteristic time scales



$$Implications of Q^{-2/\beta} power law$$

$$Van-Hove correlation function$$

$$G_{s}(r,t)$$

$$G_{aussian case}$$

$$S_{self}(Q,t) = A(Q,T) \exp\left[-\left(\frac{t}{\tau_{self}(Q,T)}\right)^{\beta}\right]$$

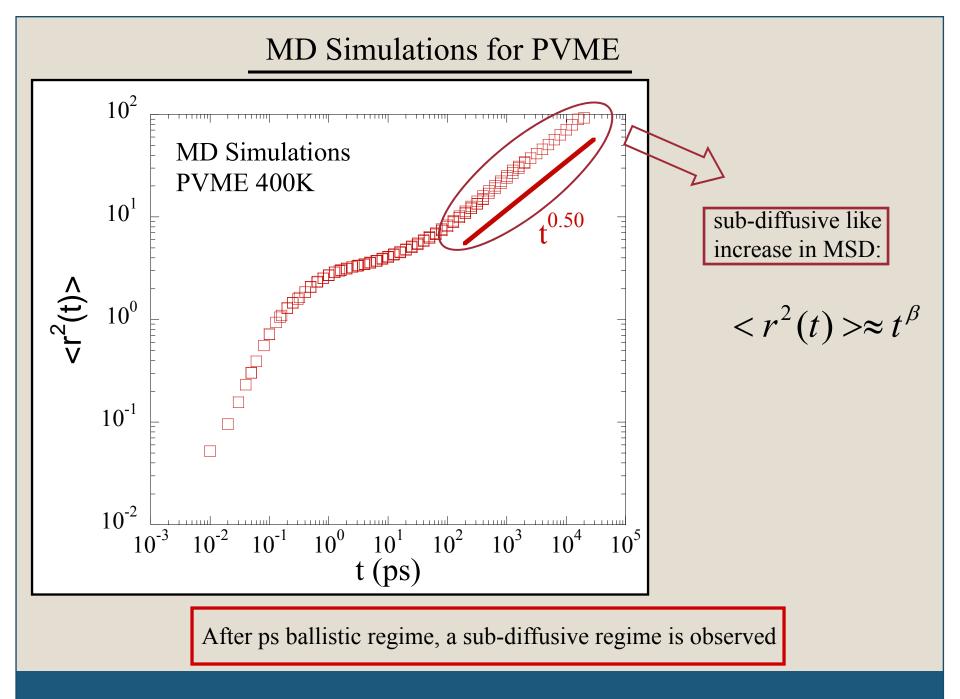
$$A(Q,T) = \exp\left[-\left(\frac{Q^{2} < u^{2} >}{3}\right)\right]$$

$$Power law for characteristic times $\tau(Q,T)$:
$$\tau_{self}(Q,T) = a_{0}(T)Q^{-2/\beta}$$

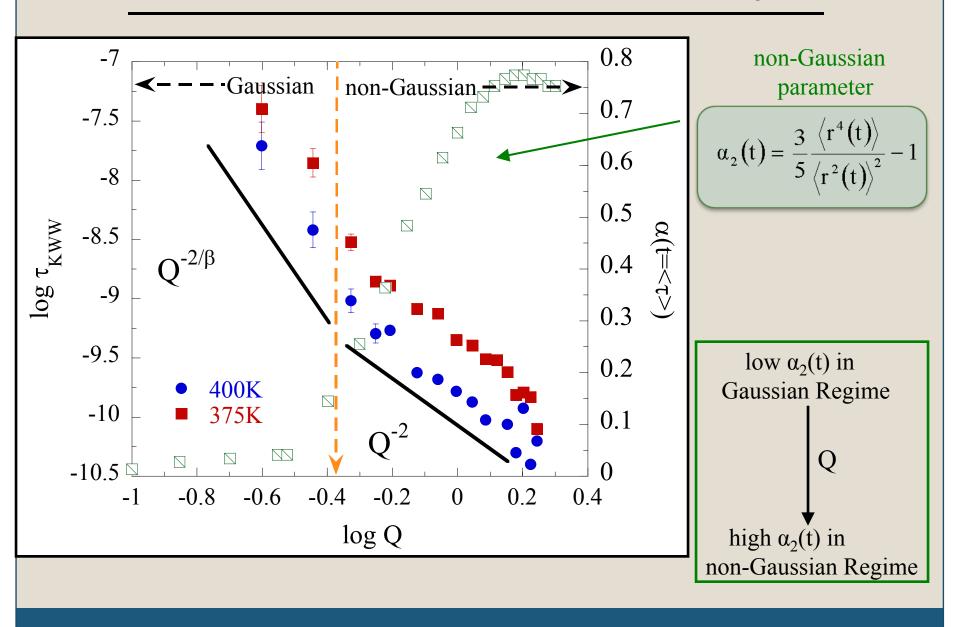
$$S_{self}(Q,t) = \exp\left[-\frac{Q^{2} < r^{2}(t) >}{6}\right]$$

$$< r^{2}(t) > \approx t$$

$$< r^{2}(t) > \approx t$$$$



A crossover from Gaussian to non-Gaussian regime



A general picture of dynamics in polymers

