Radiation Safety – Health Physics

Neutron Scattering **Summer School** 2015

Thomas P. Johnston, NCNR Health Physics

- Radiation, Ionization and Radioactivity

Services in

وت تكال

- Radiation Dose
- Radiation Safety
- Questions: x5810, x5815

Electromagnetic Radiation: Gammas and X-Rays

Radiation Basics

What is Radiation?

Radiation

Energy moving through space as invisible waves

Non-ionizing Radiation

 Light, sound, heat or infrared waves, microwaves, radio waves, low frequency power line radiation

Ionizing Radiation

For Comparison

VIST Center for

Health Risks from Radiation Compared with Other Situations

Estimated Loss of Life Expectancy

The NCNR Layout

NUST Center for Neutron Research

Radiation Dosimetry

NIST Center for Research Occupational Dose Limit = 5,000 mrem/y

General Public Dose Limit = 100 mrem/y Average Dose to US Public = 620 mrem/y

Average Dose to NIST Researcher ~ 50 mrem/y

Health Physics Labels/Signs

Contamination Control

Always monitor yourself and items you have with you when leaving a controlled area.

Radiation Detection / Measurement

NUST Center for Neutron Research

Campfire Analogy

Activity

Ş

Airborne

Radiation

Time	Reduce the duration of
	exposure
Distance	Increase distance between and the source
Shielding	Place shielding between personnel and the source

NGT Center for

$$I = I_0 e^{-\mu x}$$

- I = Radiation intensity after shielding
- L= Radiation intensity before shielding
- e= logarithm base e (2.178)
- µ= linear attenuation coefficient
- x= thickness of shielding material in centimeter(s)

Ionizing Radiation

Can not see it, feel it, or smell it

Relatively simple to detect and measure

Biological effects have been intensely studied for 50 years

Questions? x5810, x5815

15

NIST Center for Neutron Research