Using MACS to probe spinon in 1-D $S=1 / 2$ antiferromagnetic chain

Group D:
Chih-Wei Chen
Yizhang Chen
Chunruo Duan
Alex Frano
Patrick Mengyan Ganesh Pokharel
Zachary Kelly
Kefeng Wang

Many questions:

-What is a one-dimensional antiferromagnet?
-What is a spinon?
-Why do we need neutron scattering?

- Why do we use MACS?

One dimensional material

CuPzN: $\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}$, Cu has spin $\mathrm{S}=1 / 2$

What is the spinon?

Hamiltonian of 1-D Heisenberg model:

$$
\widehat{H}=2 J \sum_{r} \vec{S}_{r} \cdot \vec{S}_{r+1}
$$

How to detect spin excitations?

Neutron:

1. $E=\frac{\hbar^{2} k^{2}}{2 m}$
2. $\vec{\mu} \propto \vec{S}(=1 / 2)$

Fourier transform of correlation function in space time $S(q, w)$

Triple axis neutron scattering

MACS:
 - Cold neutron source: Suitable E and q range
 - High flux

Dispersion along (h00) direction

(E, q) map:

Energy dispersion is consistent with theoretical prediction.

E cut at $\mathrm{H}=0.75$

E cut at $\mathrm{H}=0.5$

The susceptibility scales with E / T.

Take home message

${ }^{66}$ Flux, (q,E) range/resolution available at MACS provide an ideal environment in which spin fluctuations in a low dimensional quantum system may be probed. ${ }^{99}$

Thank you for your attention. Thanks to Yamali, Yun, and all the NCNR staff.

$$
\chi^{\prime \prime} T=A \operatorname{Im}\left[\frac{E}{4 \pi k_{B} T}\right]
$$

Why the donut shape in reciprocal space?

