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Motivation

» Adsorbed natural gas technology
Material-based storage

Low pressure

Light weight and portable
Safe
Cheaper than compressed natural gas technology

» DOE’s Methane Opportunities Vehicular Energy (MOVE) projects are finding
innovative ways to create natural gas storage tanks.

Porous Metal-Organic Frameworks (MOFs) for methane storage
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MOF-5 System
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Each cubic unit cell contains 32 CH, molecules on preferential sites. Given the C-H bond length (~
1 A), if the surface area are fully occupied by CH, molecules, 1 cm3 MOF-5 have surface area ~2.3x%
103 m2 which can accommodate 1/6 mol CH, molecules.
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MOF-5 System

(2h4-2h)

( h-hy)

Symmetry
Breaking

A ¥ V¥ (6h+2hy)

Adsorbed methane molecule

2 hindered rotor Ground Rotational Energy Splitting

Neutron spectroscopy: various vibrational and rotational motions of adsorbed CH, molecules, e.g.,
« CH, center-of-mass motion (phonons), ~1-20 meV, DCS
* CH, quantum rotational tunneling (at low T), ~1 - 600 ueV, DCS
« CH, jump diffusion (at high T), DCS
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Disk Chopper Spectrometer (DCS)
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CH4 in U066, 9 A

05 1.0 1.5
|a] (A7)

P 500

- -] 500
= 1400

- o 300

200

100

Intensity (arb. units)

Intensity (arb. units)

CH4 in UiO66, 9 A
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> Inelastic peaks — Transition energies between tunneling levels
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Phonons on CH4 MOFs

» Deuterated organic framework allows us to see the collective CH, framework motions.

CH4 in D-MOF-5, 1.81A
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Tunneling of CH4 in MOF
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(Image credit: Rob Dimeo)
Due to Van der Waals interaction between There are 12 positions of the CH, which are
CH, and MOF, the CH, experiences a degenerate in the gas phase. In potential
potential which hinders rotation. caused by the MOF, the ground state splits
into 4 energy levels, with a total of 5 possible
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Tunneling of CH4 in MOF-5

* Inelastic peaks give the allowed transitions between energy levels.
« Data taken at 6K, scattering from other processes minimal.

CH, in D-MOF-5,9 A
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The transition energies can be used to calculate the potential barrier in the over which the methane
rotates.

Barriers are ~23 meV for 3 fold rotation, ~17 meV for 3’ fold rotation.

Predicted barriers from DFT-D are 47 meV and 25 meV NIST concer for
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Comparison of Tunneling of CH4 in MOF-5 and UiO-66

- Data taken at 6K; all CH, absorbed
 Charged sample container

» Concentrations: 1 CH, per 1 Zn for MOF-5; 0.5 CH, per Zr UiO-66; 1 CH, per Zr UiO-66

CH, in D-MOF-5,9 A CH, in UiO-66,9 A
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Applications of DCS

> Diverse Phenomena

* Low energy vibrational and magnetic excitations
- Translational and rotational diffusion processes

> Various Materials
+ Magnetic and ferroelectric materials
+ Organic molecules
- Molecular crystals




Conclusions

» DCS is used to investigate the rotational dynamics in CH,-MOF
systems, and to understand the CH,-MOF interactions.

» By analyzing the inelastic neutron scattering spectra, the
transitions and rotational barriers of MOF-5 were determined.

» UI10-66 exhibits broadened inelastic peaks with respect to MOF-5
due to its structural defects.

» The experimental results are a useful comparison to DFT
calculations.




Future Directions

» Analyze higher quality samples of UiO-66
» Improve DFT methods

» Rational design towards improved hydrocarbon
storage
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