Dynamics of Methane Adsorbed on MOFs by Disk Chopper Spectrometer

Group B: Benjamin Foley Pawan Tyagi Wenjie Wang Fred Yang Sidi Maiga Zheng Yuan

Kavindya Senanayake Stephanie Ramos

Motivation

- Adsorbed natural gas technology Material-based storage
- Low pressure
- Light weight and portable
- Safe
- Cheaper than compressed natural gas technology
- DOE's Methane Opportunities Vehicular Energy (MOVE) projects are finding innovative ways to create natural gas storage tanks.

Porous Metal-Organic Frameworks (MOFs) for methane storage

Each cubic unit cell contains **32** CH₄ molecules on preferential sites. Given the C-H bond length (~ 1 Å), if the surface area are fully occupied by CH₄ molecules, **1 cm³** MOF-5 have surface area ~2.3× 10^3 m² which can accommodate **1/6 mol** CH₄ molecules.

MOF-5 System

Neutron spectroscopy: various vibrational and rotational motions of adsorbed CH₄ molecules, e.g.,

- CH₄ center-of-mass motion (phonons), ~1-20 meV, DCS
- CH_4 quantum rotational tunneling (at low T), ~1 600 ueV, DCS
- CH₄ jump diffusion (at high T), DCS

Disk Chopper Spectrometer (DCS)

- Inelastic neutron scattering
- Choppers: Select initial energy of neutrons incident on sample
- Neutrons scattered by sample gain or lose energy
- Time-of-flight

Measured Intensity

 \blacktriangleright Inelastic peaks \rightarrow Transition energies between tunneling levels

Phonons on CH4 MOFs

 \blacktriangleright Deuterated organic framework allows us to see the collective CH₄ framework motions.

Tunneling of CH4 in MOF

(Image credit: Rob Dimeo)

Due to Van der Waals interaction between CH_4 and MOF, the CH_4 experiences a potential which hinders rotation.

There are **12 positions** of the CH_4 which are degenerate in the gas phase. In potential caused by the MOF, the ground state splits into **4 energy levels**, with a total of **5 possible transitions**.

Smalley & Huller 1981

Tunneling of CH4 in MOF-5

- Inelastic peaks give the allowed transitions between energy levels.
- Data taken at 6K, scattering from other processes minimal.

CH₄ in D-MOF-5, 9 Å

- The transition energies can be used to calculate the potential barrier in the over which the methane rotates.
- Barriers are ~23 meV for 3 fold rotation, ~17 meV for 3' fold rotation.
- $\circ~$ Predicted barriers from DFT-D are 47 meV and 25 meV

Comparison of Tunneling of CH4 in MOF-5 and UiO-66

- Data taken at 6K; all CH₄ absorbed
- Charged sample container
- Concentrations: 1 CH₄ per 1 Zn for MOF-5; 0.5 CH₄ per Zr UiO-66; 1 CH₄ per Zr UiO-66

Applications of DCS

➤ Diverse Phenomena

- Low energy vibrational and magnetic excitations
- Translational and rotational diffusion processes

➤ Various Materials

. . .

- Magnetic and ferroelectric materials
- Organic molecules
- Molecular crystals

Conclusions

- DCS is used to investigate the rotational dynamics in CH₄-MOF systems, and to understand the CH₄-MOF interactions.
- By analyzing the inelastic neutron scattering spectra, the transitions and rotational barriers of MOF-5 were determined.
- ➢ UiO-66 exhibits broadened inelastic peaks with respect to MOF-5 due to its structural defects.
- The experimental results are a useful comparison to DFT calculations.

Future Directions

- ➤ Analyze higher quality samples of UiO-66
- ➤ Improve DFT methods
- Rational design towards improved hydrocarbon storage

Acknowledgement

- ✤ NCNR Staff
- HFBS & BT-7 Staff Scientists
- DCS Team
- ✤ Guest Speakers
- Class of 2015Groups A and C

Dr. Wei Zhou

Dr. Yun Liu

Yamali Hernandez

Dr. Nick Butch

Special Acknowledgement

Dr. John Copley – Retiring after many years at NIST?

Q&A

