

Shape variations of spherical shell microemulsion using Neutron Spin Echo

Brisa Arenas, Scott Danielsen, Joey Kim, Jannatun Nayem, Yimin Wang, Zhikun Cai, Namrata Salunke

Outline

- Surfactants
- Why spin echo?
- Neutron Spin Echo

 Principle
 - Instrumentation
- Data Reduction
- Data Analysis
- Summary

Blind dates

Neutrons vs X-Rays

Surfactants – the molecular ice breaker

Surfactants – the molecular ice breaker

The system of interest

Dioctyl sodium sulfosuccinate (AOT)

AOT ($C_{20}H_{37}O_7SNa$): 5.1 vol.% D₂O: 2.5 vol.% d-hexane (C_6D_{14}): 92.4 vol.%

How to study microemulsions

static structure-from SANS

R_{core}=20.9Å Shell thickness=7.5Å Core polydispersity=0.19

How to study microemulsions

Dynamic structure

Translational diffusion

Shape fluctuation

So we need a technique that can measure both on length scale and time scale

What are NSE advantages?

The "Special" Instrument: Neutron Spin Echo

NSE directly measures the intermediate scattering function in time domain!

The Idea of NSE: Precession of Spin

Neutron Properties

- Spin, $S = 1/2 \hbar$
- Gyromagnetic ratio $\gamma = g_n \mu_n / \hbar$

Torque in a magnetic field:

Larmor Precession Frequency:

$$N = S \quad B$$
$$\omega_{L} = \gamma B$$

Larmor Precession

Encoding neutron velocity (energy) into spin orientation!

I(Q, t) from Polarization Measurement

Quasi-Elastic scattering

$$P_{x}\left(\mathsf{D}J^{pb_{i}},\mathcal{Q},t\right)=P_{s}\left(\mathsf{D}J^{pb_{i}}\right)\int S\left(\mathcal{Q},\mathcal{W}\right)\cos\left[\mathcal{W}t\right]d\mathcal{W}=P_{s}\left(\mathsf{D}J^{pb_{i}}\right)I\left(\mathcal{Q},t\right)$$

NSE measures the Fourier Transform of the Dynamic Structure Factor, namely, the Intermediate Scattering Function.

NSE: Instrumental Setup

Polarization & Phase for Range of Q and Fourier Time

Physical Information Embedded in 2D Detector

- 2D Detector
- Each pixel encodes an echo
- I(Q,t) calculated pixel by pixel and averaged by Q value

$$\frac{I(Q,t)}{I(Q)} = \frac{2\left[A - (1 - \phi)\frac{T}{T^{BKG}}A^{BKG}\right] / \left[(Up - Dwn) - (1 - \phi)\frac{T}{T^{BKG}}(Up^{BKG} - Dwn^{BKG})\right]}{2A^{R} / (Up^{R} - Dwn^{R})}$$

Data Analysis

Full Cumulant Expansion

$$\frac{I(Q,t)}{I(Q,0)} = \exp_{\hat{\theta}}^{\hat{\theta}} - \mathop{\varepsilon}_{0}^{\hat{\theta}} c_{1}(Q)t + \frac{c_{2}(Q)t^{2}}{2!} + \frac{c_{3}(Q)t^{3}}{3!} \dots K_{\frac{1}{2}\hat{U}}^{\hat{0}\hat{U}}$$

First Cumulant Expansion

$$\frac{I(Q,t)}{I(Q,0)} = \exp \overset{\acute{e}}{e} - D_{eff}(Q)Q^2 t^{\check{U}}_{\check{U}} \qquad D_{eff}(Q) = D_0 \frac{1}{S(Q)}$$

т	298	к
К _в	1.38E-23	m²kg/s²K
р	0.188	
η	0.31	сР
η'	1.096	сР
Ro	26.8	Å

Data Analysis

Effective Diffusion Coefficient = D_{eff}

$$D_{def}(Q) = \frac{5/_{2}f_{2}(QR_{0})\langle |a_{2}|^{2} \rangle}{Q^{2} \{4\rho \not\in j_{0}(QR_{0}) \not\in^{2} + 5f_{2}(QR_{0})\langle |a_{2}|^{2} \rangle\}}$$

 $D_{eff} = D_{tr} + D_{def}$

Hydrodynamic Limit: (Q \rightarrow 0): $D_{eff} = D_{tr}$

λ ₂	4.39E+08	s-1
D ₀	1.84E+10	Å^2/s
Ro	23.4	Å

Stokes-Einstein Equation

$$D_0 = \frac{k_B T}{6\rho h R_H}$$

R_H = 38.17 Å

R_H	Theoretical Value	Experimental Value
$\overline{R_g}$	1.29	1.42

Bending Modulus of Elasticity

$$k = \frac{1}{48} \frac{\acute{e}}{\acute{e}} \frac{k_{B}T}{\rho p^{2}} + l_{2}h R_{0}^{3} \frac{23h' + 32h}{3h} \frac{\grave{u}}{\acute{u}}$$

 $k = 0.69 K_{B}T$

Thermally Active

Summary

Thank You!

