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USANS in a slide
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Q range: ~3x10-5 Å-1 to ~3x10-3 Å-1

Size range: ~0.5 to ~10 um

Slit geometry

Same sample environments as SANS



Effects of High Pressure on 
Casein Micelle Structure



Casein Micelles

Holt, Yearbook Hannah Research, (1994) 
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SAXS
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In-Situ Pressure Measurements



Changes with Pressure

A. J. Jackson, and D. J. McGillivray  Chem. Comm. (2011) 47 (1) 487-489



Stability and Reversibility
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Skim Milk at Multiple Contrasts

A. J. Jackson, and D. J. McGillivray  Chem. Comm. (2011) 47 (1) 487-489



Model of Casein Micelle

Colloidal Calcium Phosphate

Protein 
matrix 

Protein 
shell 

Free “sub-micelles”

Bound “sub-micelles”
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Summary

Neutrons enable in-situ measurement of structure under pressure

Multiple contrasts and co-refinement reduce the number of free 
parameters in modelling complex systems 

Casein micelles appear to break down into subunits consistent with 
protein decorated calcium phosphate clusters when subjected to high 

pressures.



High Internal Phase Emulsions
and
Sphere Packing



High Internal Phase Emulsions

Water-in-oil type emulsion 
with internal phase volume 

fraction > 90%

On-site manufactured.
Pumped ANFO for mining applications

Deformation Polydispersity
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Microscopy

Cryo-EM
Direct imaging of emulsion
Freeze-fracture process may damage structure

Confocal Fluorescence
Direct imaging of “unperturbed” emulsion
Depth scanning for volume reconstruction
Local probe only

Theoretical treatment needs statistical sample
Edge effects probably important in thin samples

Present up to 10 particle diameters from surface
Surface induced crystallization



Emulsions



Emulsions
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Our Tasks

Construct model systems of mixed spheres 
on relevant length scales

Determine packing density

Determine pair correlations

Goal
To correlate polydispersity with packing 
arrangement and density and then with 

physical properties of the system. 
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Random / Loose Packing?

Polydispersity?



McGeary, R. K. (1961) 
J. Amer. Ceramic Soc. 44, 513.

Gauthier, F. G. R. & Danforth, S. C. (1991) 
J.  Mater. Sci. 26, 6035

Previous Studies
Mixtures of metal balls

Sizes must be different enough
Too-large a difference leads to phase separation
Max. packing fraction at 20-30% small spheres
Sphere correlations not known



Maximum Packing Density = Minimum Viscosity



Materials

Emulsions - PIBSA:hexadecane:saturated Ammonium Nitrate

Glass spheres - polydisperse ‘3-10’ micron range

PMMA spheres- monodisperse ‘1.5’ and ‘10’ microns

Silica spheres - monodisperse ‘1’ and ‘5’ micron diameter

Why PMMA/Silica/Glass?

Chemically inert
Useful scattering length density
Available in suitable sizes



Polydisperse Glass Spheres
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Obvious polydispersity (as expected)

Two “knees” in the data give lower and upper size bounds 
of 2 μm and 20 μm. Compare with nominal 3 - 10 μm

Porod/Invariant suggest incomplete wetting



Unmixed PMMA Spheres
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Use Percus-Yevick Fluid model with Schulz size distribution

Two corrections
A Debye-Buche term for voids - packing not exactly like a fluid
Allow structure factor to have different polydispersity from form factor 

Small (1.5 µm) Large (10 µm)
Porod/Invariant
ϕ = 0.45

Gravimetric
ϕ = 0.33

Porod/Invariant
ϕ = 0.61

Gravimetric
ϕ = 0.53

Loose packing at 1.5 µm - electrostatic forces more important than gravity.

Text

P. A. Reynolds, D. J. McGillivray, A. J. Jackson, and J. W. White,  Physical Review E (2009) 80 (1) 011301



Mixed PMMA Spheres

I(Q) = ISS + 1LL +ISL +IDB

I12  is calculated using Ashcroft-Langreth S(Q) for 
bimodal spheres

Two “empirical” factors:
Allow Small-Large interactions to vary 
independently of Small-Small and Large-Large
Take account of size segregation 

ISS and ILL are calculated as for unmixed spheres

IDB accounts for voids in the packing

Mixed phases are partially self-segregated

S12 is less than for perfectly mixed spheres
P. A. Reynolds, D. J. McGillivray, A. J. Jackson, and J. W. White,  Physical Review E (2009) 80 (1) 011301



Mixed PMMA Spheres

Linear relationship

No peak in packing fraction

P. A. Reynolds, D. J. McGillivray, A. J. Jackson, and J. W. White,  Physical Review E (2009) 80 (1) 011301



Conclusions

PMMA systems display low total packing fractions indicating that 
non-gravitational forces are indeed important at this length scale.

Around 50% of a mixed size PMMA sample is demixed.

The mixed volumes are not a random distribution of small and 
large spheres - the large spheres tend to self avoid and are coated 
with small particles.

USANS can provide rich data on mixed powders on the micron 
length scale which contains non-trivial information relating to the 
packing of the powder particles.



Monodisperse Silica
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Monodisperse Silica

Repeat method as before but:
Put sample under vaccum to remove air
Load water into cell whilst sample is under vacuum

Guinier region now 
present.

Silica contrast matched 
sample shows residual 

scattering from 
remaining air bubbles.

Much better wetting
Air bubbles not causing a 
significant perturbation



Monodisperse Silica
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Soft Spheres
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Ongoing Work

Continuing analysis of wetted silica data

Contrast matching studies to extract partial structure factors directly:
Silica/PMMA mixtures (experiment next week)
Make deuterated PMMA.

Computer simulations of packing to compare with our model and data - 
will hopefully provide basis for “empirical” factors or a replacement.

Ternary/Quaternary/... mixtures

Viscosity
Would like to understand viscosity - polydispersity relationship



Ongoing Work

Started with emulsions but ...

Foams
Powder Processing

Composite Filler Aggregation
Pumped Slurries

Geology and Carbon Capture

Important theoretical problem with 
applications beyond emulsions

“What distribution of sizes do I 
need to get this volume fraction or 

that physical property”



NCNR USANS 
Highlights



SWNT/Epoxy
T. Chatterjee and R. Krishnamoorti, U. Houston, and A. Jackson

T. Chatterjee, R. Krishnamoorti, Phys. Rev. E., 75 (5), 050403, 2008
T. Chatterjee, A. Jackson, R. Krishnamoorti, J. Am. Chem. Soc, 130 (22), 6934, 2008
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Floc size is invariant under different 
concentration conditions. This 

suggests that it is floc-floc 
interactions that are determining 

elastic network strength.



Fibrinogen Clots
D. Pozzo, U. Washington, L. Porcar, ILL/NCNR and P. Butler, NCNR

Combined SANS/USANS provides 
structural information over 4 orders of 

magnitude. 

Neutrons allow us to study the system 
under shear and under biologically 

relevant conditions



Cement
A.  Allen, NIST Ceramics Division and J. Thomas and H. Jennings, Northwestern University
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Combination of SANS/USANS and 
SAXS/USAXS gives detailed information 

about the mean formula and mass 
density of calcium-silicate-hydrate 

without drying - the first such 
measurement.

Allen AJ, Thomas JJ, Jennings HM. Nature Materials, 6(4), 311 (2007)
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USANS - What and Why?

Wavevector Transfer Q (Å-1)
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USANS - What and Why?
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Differences from SANS
Slit vs Pinhole Geometry
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Differences from SANS
0D vs 2D detector

SANS USANS

• 2D detector

• Collect wide Q range 
simultaneously

• Non-azimuthally 
symmetric data easily 
analyzed

• 0D detector

• Point-by-point data 
collection

• Non-azimuthally 
symmetric data hard to 
analyze



Differences from SANS
Data Collection

SANS USANS

• Multiple sample-
detector distances to 
cover whole Q-range

• Transmission and 
blocked beam 
measurements

• Counting time per 
sample < 1 hour

• Multiple sets of analyzer 
angle scans to cover 
whole Q-range

• Transmission 
measurement is part of 
scan, blocked beam is 
constant

• Counting time per 
sample 1 to 12 hours (6 
hours usual)


