Introduction to Neutron Spin Echo Spectroscopy

Antonio Faraone

NIST Center for Neutron research & Dept. of Material Science and Engineering, U. of Maryland

Methods and Applications of SANS, NR, and NSE NCNR, June 18th – 23rd, 2012

Outline

- History
- Dynamic Neutron Scattering (Recap)
- The principles of Neutron Spin Echo
- Instrumental Setup of Neutron Spin
 Echo
- Conclusion

NSE principles: summary

- Neutron Spin Echo Instruments are "machinery" which measure the Fourier transform of the Dynamic Structure Factor, S(Q,ω), i.e. the (normalized) Intermediate Scattering Function (ISF), I(Q,t)/I(Q,0).
- The neutrons' velocity is encoded into their spin state.

- The neutron beam goes through two equals homogeneous magnetic field paths before and after the sample.

- Within the magnetic fields each neutrons' spin performs a precession at a speed determined by the field intensity.

- If the scattering event does not change the neutrons' speed (elastic scattering), the initial polarization of the beam is recovered.

• The polarization of the scattered neutron beam is proportional to the ISF at a specific value of *t* determined by the strength of the precession field (and by the incident neutron wavelength).

Nuclear Scattering Polarization Analysis

If no magnetic scattering is present and the sample is isotropic, the three polarization directions, xyz, are equivalent:

$$N^{incoh} = \frac{3}{2}SF$$
$$N^{coh} = NSF - \frac{1}{2}SF$$

- F. Mezei (ed.): Neutron Spin-Echo, *Lecture Notes in Physics*, 128, Springer, Heidelberg, 1980
- F. Mezei, C. Pappas, T. Gutberlet (Eds.): Neutron Spin-Echo Spectroscopy (2nd workshop), *Lecture Notes in Physics*, 601, Springer, Heidelberg, 2003.
- D. Richter, M. Monkenbusch, A. Arbe, and J. Colmenero, "Neutron spin echo in polymer systems" *Adv. in polym. Sci*, **174**, 1 (2005).
- B. Farago, "Recent developments and applications of NSE in soft matter" *Curr. Opin. Colloid Interface Sci.*, **14**, 391 (2009).

