
Hadronic Hadronic Parity Violation Parity Violation TheoryTheory
Mike Snow

Indiana University
I am not and never have been a member of the Communist Party theorist,

And if you ask me I’ll take the 5th Amendment

But since there is no theory for hadronic parity violation, the damage that
an experimentalist can do to this subject is limited

The reason why there is no theory is because such a theory would need to
understand quark-quark correlation effects in a two nucleon system. We
are still trying to understand single quark effects in a one-nucleon system

From all of our previous experience with many-body systems, we know
that it is very important to understand the ground state of the theory, and
if the ground state is not boring it is typically highly correlated. The QCD
ground state is not boring: in fact it has two condensates (gluons and
quark-antiquark pairs) which are difficult to probe directly

The NN weak interaction silently probes quark-quark interactions in a way
which does not excite the ground state of QCD.

What, you ask, is QCD?



U(1) Local Gauge Invariance U(1) Local Gauge Invariance ⇒⇒ QED QED
If we demand that the electromagnetic Lagrangian be invariant under
local (space-time-dependent) U(1) gauge transformations:
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Euler-Lagrange eq’n with respect to Aµ ⇒ Maxwell Eq’ns:
Hence, U(1) local gauge invariance ⇒ QED, a covariant field theory of
charged fermions interacting with a massless vector field satisfying
Maxwell Eq’ns and originating from a conserved vector current !
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N.B.  A mass term
~m2AµAµ would
violate local gauge
invariance ⇒
massless photon!



QCD Interactions Arise from Color ChargeQCD Interactions Arise from Color Charge
Quarks are spin-1/2 Dirac particles that come in 3 colors:  R, G, B
Antiquarks carry anti-color = “color propagating backwards in time”:

R, G, B

∑ λ8

∑ λ3
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Quarks and antiquarks interact by exchanging bi-colored gluons
that form an SU(3) color octet:
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For example, from the point of view of
color flow:
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The color singlet combination:
{RR + GG + BB}/√ 3 is not

available to gluons.



SU(3)-Color Local Gauge Invariance SU(3)-Color Local Gauge Invariance ⇒⇒ QCD QCD
For quarks of a given flavor, the general local gauge transformation allows
color changes, in addition to space-time-dependent phase rotations:
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Non-commutivity of generators ⇒ non-Abelian group ⇒ surprising
consequences of insisting on local gauge invariance. Introducing
interaction with vector gauge fields (here, corresponding to 8 gluons)
must be done with the transformation which mixes gluon colors!
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Last term embodies coupling among gluon fields, and demands
consequent term in gauge-invariant field strength tensor:

!

Gµ!
a "#µG!

a $ #!Gµ

a $ g fabc Gµ

b
G!

c

b, c

% & SU(3) locally gauge $ invariant

"QCD = q i' µ#µ $ m( )q $ g q' µ
T̂a

a

% q
(
)*

+
,-
Gµ

a $
1

4
Gµ!

a
Ga

µ! .

This non-Abelian (Yang-Mills) gauge field theory involves not only QED-
like qqg vector coupling vertices, via 2nd term, but also ggg and gggg
vertices via 3rd term ⇒ QCD !



So, If mSo, If mγγ =  = mmgluongluon  = 0, Why is the Strong Interaction= 0, Why is the Strong Interaction
Between Hadrons Short (~1 fm) Range?  QCD vs. QEDBetween Hadrons Short (~1 fm) Range?  QCD vs. QED

In QCD, gluons carry color, while photons do not carry electric charge !

q

q

q

q

GB
gluon

−
8 independent gluons represent

possible color-anticolor combos,
excluding singlet  (RR + GG +

BB) ⇒ 3- and 4-gluon
interactions allowed!

Gluon-gluon interactions:
 strongly affect polarization of vacuum ⇒ many gluons and qq pairs
excited near a color charge

 replace charge screening of QED (bare electron charge larger than
seen from a distance) with color anti-screening
 make color force very strong at long distance (low
momentum xfer) ⇒ “infrared slavery”, weak at short
distance (high mom. xfer) ⇒ “asymptotic freedom”

 confine color:  stretch color “flux tube” btwn quarks
too far and it breaks, leading to meson formation
 imply colorless hadrons interact via residual inter’n that
can be viewed as meson exchange, of range λπ ≈ 1.4 fm



QCD QCD ⇒⇒ QED-like Vector Currents, With Important QED-like Vector Currents, With Important
Differences Introduced by Gluon Self-CouplingDifferences Introduced by Gluon Self-Coupling

+ …

The gluon loops change the sign of
the coupling constant correction from
QED.  For SU(3) color, Gross, Wilczek
& Politzer (2004 Nobel Prize) found:
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The + sign in the denominator ⇒ color
force weakens with increasing Q2 or
decreasing distance ⇒ asymptotic
freedom.  Confirmed by measurements
of QCD processes vs. energy.

αs ≳ 1 for Q2 < 1 GeV 2,
∴ for hadrons of size ~ 1 fm

Perturbation approach works only for
hard (high Q2) collisions where αs small
compared to 1.  Even then, can’t expect
QED-like precision from first order !

αs blows up for momentum transfers ~
ΛQCD ≈ 200-300 MeV ⇒ infrared slavery.
Quarks and gluons confined within
colorless hadrons.



Complexity of QCD Vacuum Complexity of QCD Vacuum ⇒⇒ Rich  Rich Hadron Hadron SubstructureSubstructure
As seen by a high-energy probe, a hadron shares
its momentum among many partons, not just 3
valence quarks (or a valence qq pair), but a
multitude of gluons and sea qq pairs as well.

Reactions that transfer large momentum, like the
EM processes pictured below, excite the nucleon
with small wavelength.  The larger the momentum
transfer, the more gluons and sea quarks we see.

xf(x) in proton
from fits to
world PDF
database



Phase Diagram for QCD MatterPhase Diagram for QCD Matter

As one raises T or in-
creases baryon density,
quarks & gluons should
re-emerge as the funda-
mental degrees of
freedom.

At low baryon density but high temperature, a transition to a plasma of
quarks & gluons is anticipated.  Collisions of heavy nuclei at RHIC
attempt to form matter retracing the path of the early universe.

Increasing net baryon density →
At densities several times higher than normal nuclear matter saturation
point, as obtainable in the cores of neutron stars, speculation focuses on
“color superconducting” states:  bi-colored pairs of quarks condense in the
lowest-E state, giving gluons an effective mass via coupling to the pairs.

Ordinary, zero-temperature,
Fermi liquid nuclear matter
represents just one point in
a more general view of the
possible states of strongly
interacting matter!
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Constituent vs. Current Quarks and Constituent vs. Current Quarks and Hadron Hadron MassMass
For hadrons built from light quarks:
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where mcurrent are inferred from QCD
Lagrangian.  Hadron structure models
invoke effective “dressed” (constituent)
quark masses inside hadronic matter:
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Similar phenomena occur in condensed matter physics: for example the
effective mass for the motion of an electron in matter is not the same as
its “free” mass. Once again, we see that QCD exhibits the features of a
condensed, many-body medium. Not only that, for light quarks u and d,
the size of the effect is HUGE!

To understand this requires an explanation of chirality, the chiral
symmetry of QCD, and its apparent “spontaneous” breakdown



Helicity Helicity and and ChiralityChirality
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Energy eigenstates of free Dirac equation are also states of well-defined
helicity λ ≡ ½ (σ⋅ p)/ | p | = ± ½ .  Operator σ⋅ p in HDirac ⇒ no other spin
component commutes with H and can be sharp in an energy eigenstate.
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γ5 is called the “chirality”
operator. The operators
½(1 + γ 5) and ½(1 − γ 5) are
QM projection operators
which project out right-
and left-handed chiral
components, respectively,
of u(p). The Dirac energy
and helicity eigenspinors
are not γ 5 eigenstates
unless m=0.

States of good helicity cannot be states of good parity in general,
because parity and σ⋅p operators do not commute!∧

Helicity and chirality are therefore not identical
concepts if  m>0. Helicity is conserved, but is
frame-dependent: γ 5 commutes with Lorentz trans.



QED and QCD Vector Currents: Parity Conservation, QED and QCD Vector Currents: Parity Conservation, ChiralChiral
Symmetry, and (Approximate) Symmetry, and (Approximate) Helicity Helicity ConservationConservation

Under parity:ψψ (scalar) is unchanged, ψ γ 5ψ (pseudoscalar) changes sign, and
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Both QED and QCD interactions involve the conserved Dirac (4-vector)
current ψ γ µ ψ . The product of vector currents is even under parity, so both
QED and QCD conserve parity. Furthermore, there is no vector coupling
between L- and R spinors, leading to a property known as chiral symmetry:
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For m=0 or E >>m,
this means that
helicity is conserved
at the vertex



Chiral Chiral SymmetrySymmetry  of QCDof QCD  in in Massless Massless Quark LimitQuark Limit
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QCD symmetries important for light quarks can be seen by rewriting
L in terms of chiral [(1±γ5)/2] projections of the quark spinors:

For flavors where mj << ΛQCD (certainly u and d, perhaps s) we can
neglect the mass terms, and also mu~ md.  Then two simplifications
occur:
1) L is flavor-independent, ∴ invariant under flavor transformations ⇒
SU(2) isospin (good) or SU(3) flavor symmetry (not so good).

2) L-handed and R-handed quarks interact separately, without
mutual coupling ⇒ L is invariant under independent flavor
transformations for L- and R-handed quark sectors.  This is SU(2)L
× SU(2)R [or SU(3)L × SU(3)R ] chiral symmetry.

Chiral symmetry ⇒ separately conserved L & R flavor-changing currents:
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Isospin Isospin Symmetry in QCDSymmetry in QCD
Isospin:  Introduced (1930’s) by Heisenberg, Wigner to distinguish n and
p as two “substates” of the same particle (“nucleon”, N), distinguished by
their isospin projection, in analogy to a spin-1/2 particle.

Thus:

Where subscript “3” denotes analog of z-projection in abstract
3-dimensional “isospin space”, where isospin operators
generate rotations, just as normal angular momentum operators
generate rotations in ordinary 3-dimensional physical space.
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Δ++

Δ 0

Other Examples of Other Examples of Isospin MultipletsIsospin Multiplets::

Pions:  π +, π 0, π − , all with mπ ≈ 140 MeV, spin-0 ⇒
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Deltas:  Δ++, Δ +, Δ 0, Δ −, all with mΔ ≈ 1233
MeV, spin-3/2, excited states of the
nucleon first observed as resonances in
pion-nucleon scattering ⇒ IΔ = 3/2

Quark level:  u and d are the
fundamental isospin doublet – isospin
is a subset of “flavor” – the small bare
mass difference mu ≠ md is (mainly)
responsible for small violations of
isospin conservation in strong
interaction processes.



Isospin Isospin Symmetry in Symmetry in Pseudoscalar Pseudoscalar and Vector  Mesonsand Vector  Mesons
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K0(498) K+(494)
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π−(140) π+(140)
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η0(547) η′0(958)

Flavor octet Flavor singlet
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+1-1 +1/2-1/2

K*0(896) K*+(892)

K*−(892) K*0(896)

ρ−(770) ρ+(770)
ρ0(770)

Flavor octet Flavor singlet

Pseudoscalars have
S=0 and q and q in L=0
state ⇒ negative parity

The vector mesons
have L=0, S=1 ⇒
JP=1−.  They are
typically several
hundred MeV higher
in mass than the
light pseudoscalars.

In both cases, isospin
symmetry leads to
near-degenerate
masses in a multiplet



Isospin Isospin Symmetry in the JSymmetry in the JPP=3/2 =3/2 ++ and  and 1/2 1/2 ++ (L=0) Baryons (L=0) Baryons
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Σ−(1189)
Σ0(1193)

Σ+(1197)

Λ0(1116)

Ξ−(1321) Ξ0(1315)

Both sets of L=0
baryons exhibit
isospin symmetry



QCDQCD  Ground State Breaks Ground State Breaks Chiral Chiral Symmetry, GivesSymmetry, Gives
Large Large ““Effective MassEffective Mass”” To Light Quarks To Light Quarks

Light hadrons form SU(2), but not  SU(2)L × SU(2)R  flavor multiplets. Why?
LQCD invariant under parity (L ↔ R) and, for mq=0, under chiral trans-
formations.  But parity and chiral (L vs. R) operators do not mutually
commute!  Could accommodate by mass degeneracy of opposite
parity hadrons, but this is not observed, e.g., no 0+ to match 0– pions.

Chiral symmetry is explicitly broken by the quark masses, but these
effects are very small for u,d.  Most of the breaking is attributed to
spontaneous breaking of chiral symmetry in the QCD vacuum:
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0 = 0 ! q
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0 = 0.

SSB of a continuous symmetry ⇒
massless scalar Goldstone bosons.
Here need  pseudoscalar (0–) bosons
(triplet for SU(2) χSB ⇒ π± , π0; octet for
SU(3) ⇒ π, K, η) to enable quark helicity-
flip: qR qL
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QCDQCD  Summary: Confinement and Summary: Confinement and Chiral Chiral Symmetry BreakingSymmetry Breaking

Renormalizable gauge field theory, a generalization of QED to an interaction
with 3 types of elementary charge (R,G,B).

Vector interaction of quarks with gluons ->LQCD conserves parity (like EM)

In mq=0 limit and for u and d quarks, a SU(2)L × SU(2)R  symmetry in L.
This full symmetry does not appear in the QCD spectrum: spontaneous
breaking of chiral symmetry in the QCD vacuum occurs. The dynamical
mechanism for how this happens is not understood.

χSB reduces the remaining symmetry to SU(2) transformations among
the u and d flavors (isospin). Due to small current quark masses, this
symmetry is approximate (good to ~1%) but still very useful

QCD gauge coupling becomes large at large distance according to
perturbation theory. Quarks “must” be permanently confined since we
have never isolated one.The mechanism by which quarks are
permanently confined is not completely understood.

                                          only, so where does the proton
mass come from? Gluon field energy from the

QCD “gluon condensate”!
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Reminder:  Basic Features of the Weak InteractionsReminder:  Basic Features of the Weak Interactions

e−

νe

W−

µ− νµ

Z0

ν ν

q q

Charge-changing weak currents are mediated by W ± exchange;
neutral weak currents mediated by Z 0 exchange.

Heavy boson exchange ⇒ very short range, often approximated by
contact interaction at low and moderate momentum transfers.

Charged weak currents change quark flavor, but neutral currents don’t:
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Parity Violation and the Structure of the Weak CurrentParity Violation and the Structure of the Weak Current

+

60Co
J=5

60Ni*
J=4

(νe )R

(e− )L

Parity violation in weak interactions was
first predicted by Lee & Yang (1956) to
account for observed K+ decay to both
even (ππ ) and odd (πππ ) parity final
states.                       Subsequently confirmed in
nuclear β -decay by C.S. Wu at NBS via
〈 sCo⋅ pe 〉 ≠ 0 pseudoscalar correlation,
consistent with emission of left-handed
(negative helicity) e– and right-handed νe .

Weak currents can therefore not be pure vector            or pure axial
vector               in form.  Observation of only L-handed neutrinos
suggests equal mixture of the two:
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In the Standard Model, parity violation is included by allowing the
(charged current) weak interaction to act only on L chiral component of
u(p) particle spinors (“maximal” parity violation). Why Nature chooses
to do this is not yet fully understood, but it is pretty enough to be
interesting.



Leptonic Leptonic Weak Process (Weak Process (Muon Muon Decay)Decay)

using the Feynmann rules for the tree-level amplitude. In µ– → e–νµνe ,
momentum transfer q2 << MW

2, so to excellent approximation:
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Semileptonic Semileptonic Weak Process: Neutron and Nuclear Weak Process: Neutron and Nuclear ββ-Decay-Decay
In weak interactions of quarks bound within baryons (spin ≠ 0), the
charged current need not take the simple V – A form found for
leptons.  In general, allow for various bilinear coupling forms:
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Nuclear β-decay proceeds via:
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For free nucleons, only n → pe–νe  (τ = ? s) energetically allowed.
Inside nucleus, energy release depends on binding energy of initial
and final-state nucleons.  In any case, q2 → 0 and no evidence seen
of need for tensor or pseudoscalar terms in nucleon decay:



(Selected) Feynman Rules(Selected) Feynman Rules  in Electroweakin Electroweak  TheoryTheory
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Standard Model Predictions:



Nonleptonic Nonleptonic Weak Processes: NN Weak InteractionWeak Processes: NN Weak Interaction
Although the quark-quark weak interactions at tree level can be
written down in the same way as for leptonic and semileptonic
processes, now BOTH the quarks in the initial AND final states are
bound within hadrons by QCD.

For the weak interaction between nucleons, some (of the many)
possible processes are (not showing the gluons!):

Many possible amplitudes can contribute, but nonperturbative QCD
makes direct calculation of the amplitudes difficult.  Is there anything
simple we can say?
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qq qq Weak Interaction: Weak Interaction: Isospin Isospin DependenceDependence
The quark-quark weak interaction at energies below the W and Z
mass can also be written in a “current-current” form, with
contributions from charged currents and neutral currents

The weak interaction does NOT conserve isospin, but QCD conserves
isospin to a good approximation. Therefore we can classify what are
the possible isospin changes from qq weak interactions as follows:

Charged current: ΔI=0,2 (~ V2
ud), ΔI=1 (~ V2

us)

Neutral current: ΔI=0,1,2.

The ΔI=1 terms comes only from the quark-quark neutral currents in the
absence of strange quarks (due to small size of Vus, we expect this term to
be suppressed anyway by a factor of V2

us~0.05

These terms are about the same size, so any large differences in different
channels can only come from the ground state dynamics of QCD. This is
one of the few ways to probe the nonperturbative ground state of QCD
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NN Weak Interaction: Independent AmplitudesNN Weak Interaction: Independent Amplitudes
Consider elastic NN scattering at low enough energies that the nucleons
are nonrelativistic. In this case, we can describe the scattering using
phase shifts in a partial wave expansion. For spinless particles, you
remember the usual form of the partial wave expansion

In our case, since the nucleons are spin 1/2, we need the spin-
dependent generalization of the partial wave expansion:
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And we can measure the matrix elements of M. Recall that the
parity operator inverts space:

P 2 = 1 ⇒ parity eigenfcns are either even (eigenvalue P = +1) or odd (P = -1)
∧ ∧

So, states of good orbital angular momentum quantum # L have well-defined
spatial parity (−1)L.



NN Weak Interaction: Independent AmplitudesNN Weak Interaction: Independent Amplitudes

Total NN (two identical fermion) wave function

must be A under interchange, restricting Pauli-allowed L,S,I combinations:
!!=" 321 ,|,|),()2,1( IISSrr totztotspace

NN

tot

!!
#

Itot = 1 (isospin-S ):

Space-S (even L) ⊗ spin-A (Stot = 0) ⇒ 1S0 , 1D2 , 1G4 , …
or Space-A (odd L) ⊗ spin-S (Stot = 1) ⇒ 3P0,1,2 , 3F2,3,4 , … (2S+1)LJ notation,

with L=0,1,2,3,4,…
denoted as S,P,D,
F,G,…

Itot = 0 (isospin-A ):

Space-A (odd L) ⊗ spin-A (Stot = 0) ⇒ 1P1 , 1F3 , …
Space-S (even L) ⊗ spin-S (Stot = 1) ⇒ 3S1 , 3D1,2,3 , 3G3,4,5 , …

Only upper 2 rows available for pp or nn.  For np system, all combinations
available. We therefore have 5 independent NN parity-violating amplitudes:

 3S1⇔ 1P1(ΔI=0, np); 3S1⇔ 3P1(ΔI=1, np); 1S0⇔ 3P0(ΔI=0,1,2; nn,pp,np)

If we consider low energy NN scattering, the parity violating amplitudes are
those that connect L=0 and L=1 two-nucleon states. We can classify them.



Some Approaches to Some Approaches to Non-Perturbative Non-Perturbative QCDQCD
Lattice QCD:  solve QCD numerically for quarks and gluons confined
to finite space-time lattice;  extrapolate to continuum limit (lattice
spacing → 0) and to light quark masses (so-called chiral limit) to
predict properties of hadrons and of quark-gluon matter.

Great recent progress & success!  Concerns:  provides limited
insight; CPU limitations ⇒ limits to applications, extrapolation
uncertainties.

Effective field theory:  impose QCD symmetry constraints on L written
in terms of effective degrees of freedom (not quarks and gluons) most
relevant at low energies;  adjust numerous coupling strength
parameters to reproduce experiment (à la Standard Model).

Used for low-E πN and NN interactions, and to extrapolate lattice
QCD results to mq → 0.  Rigor at given expansion order, but
applicability range limited to low momentum transfer processes.

QCD-inspired models:  e.g., constituent-quark potential models of
hadrons; one-boson-exchange models of NN interaction, chiral
models, instanton models,  etc.

Wide applicability and predictive power, once parameters set
for simple systems, but (except for chiral EFT!) lose guarantee
of controlled expansion.

Fortunately for us, strong NN interaction is well-measured and
understood. Weak NN can be added as a perturbation



Symmetry Constraints on the Strong NN PotentialSymmetry Constraints on the Strong NN Potential
At low E, the NN system can be treated by solving the Schrödinger eq’n
with a Hermitian potential that may depend on the vector separation and
on the nucleon spins, isospins and momenta.

Okubo and Marshak (1958) wrote down the most general potential form
that maintains invariance under: space & time translations and rotations;
parity and time reversal; isospin rotations and particle interchange.
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Experiment  Experiment  ⇒⇒  Phase Shifts   Phase Shifts ⇐⇐  Potential Model  Potential Model
Real δl ⇒ angular redistribution, but no loss of incident beam flux from
elastic channel.  Phase shifts for each contributing space-spin state and
tensor mixing parameters εJ (e.g., 3S1-3D1 , 3P2-3F2 ) are adjusted to fit
elastic data.  Potential models are tuned to fit phase shifts as a fcn. of E.

E.g., some low-L phase shifts from np scattering exp’ts + a potential
model fit to them (solid curves), up to pion production threshold:



Major Inferred Features of the Strong NN PotentialMajor Inferred Features of the Strong NN Potential
1) VNN has finite range R, because δlsj

remains small for l > kR.  S-waves
dominate for Elab ≲ 10 MeV.

2) Longest-range part of central
potential is attractive, with range
characteristic of one-π exchange

3) Short-range (~0.5 fm) repulsive
core needed to account for δ (1S0 )
sign change near Elab ≅ 250 MeV.

4) Polarization measurements indicate L⋅ S term, including short-range
part affecting P-waves at Elab ≳ 100 MeV.

5) Phase-shift differences among 3P0,1,2 indicate need for tensor force.

6) Backward cross section peak for np at Elab ~ few hundred MeV ⇒
important charge-exchange (τ1⋅τ2 ) contribution.

7) Low-energy behavior of δ (1S0 ) ⇒ appreciable
isospin violations:
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Do NN Potentials Have Predictive Power for Light Nuclei?Do NN Potentials Have Predictive Power for Light Nuclei?
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Other models employing more ad hoc short-range potentials do comparably
well for NN with similar # parameters.  How do these all do for A=3 systems?

Two bound states:  3H (triton) ≅                 3He ≅              with tighter binding,
smaller size than deuteron: n  n  p

L = 0

p  p  n

L = 0

NnNpNmomentmagnetic µµµµµµ /127.2/979.2/: !"=!=

binding energy:     = – 8.482 MeV     = – 7.718 MeV
Last N separation energy:    Sn= 6.26 MeV     Sp = 5.49 MeV
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N.B.  Mn > Mp  ⇒
M(3H) – M(3He) =
530 keV  ⇒ 3H β
-decays to 3He
with Ee

max= 18.6
keV.  Endpoint
used to test mν .

Faddeev eq’ns ⇒ exact Schrödinger
sol’n for 3 bodies subject to mutual 2-
body finite-range inter’ns in terms of:

All NN potential models under-
bind A=3 nuclei and predict size
too large by ~5-10%.
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Three-Nucleon Forces Needed to Understand Light NucleiThree-Nucleon Forces Needed to Understand Light Nuclei
Understanding A=3 and 4 binding requires introduction
of NNN interactions that cannot be treated as sequential
NN interactions.  There are many possible diagrams --
ones treated most often are of following type:

Δ

N N N

N N N

π

π

Inclusion of a couple of selected diagrams of this type,
with parameters adjusted to fit A=3 and A=4 (28.3 MeV)
binding energies, yields excellent predictions for
energy levels of all other light nuclei up to A~12.

These are computer-intensive
variational calculations,
exploiting Monte-Carlo sampling
of many complex multi-
parameter trial wave functions,
e.g., evaluating:
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least as complex a spin & iso-
spin structure as NN, but are far
less constrained by scattering
data.  How to proceed?



Chiral Chiral Effective Field Theory Effective Field Theory ⇒⇒ Common Framework for Common Framework for
NN, NNN and NNNN InteractionsNN, NNN and NNNN Interactions

One can include NN
terms in Lchiral and order
terms (as in χPT) in
powers of pion mass/
momentum over ΛχSB ≅ 1
GeV.  Consistent
treatment through given
order then automatically
includes 3N, 4N inter’ns:
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Potentials from Potentials from Chiral Chiral EFT Account Well for NN DataEFT Account Well for NN Data

~ same quality
of fit as OBE
models, with
similar # or
fewer params.

If EFT gives
consistent
basis for under-
standing 3N, 4N
inter’ns, it will
represent
considerable
advance.

Theory still under
construction



Different Theoretical Approaches to weak NN interaction

• Kinematic: 5 S->P transition amplitudes in elastic NN scattering [Danilov]

• QCD effective field theory: χ perturbation theory [Liu, Holstein, Musolf, et al,
incorporates chiral symmetry of QCD]

• Dynamical model: meson exchange model for weak NN [effect of qq weak
interactions parametrized by ~6 couplings, Desplanques, Donoghue, Holstein,…]+
QCD model calculations

• Standard Model [need QCD in strong interaction regime, lattice+EFT extrapolation
(Beane&Savage)]

N N

N N

Mesonexchange

STRONG
(PC)

WEAK
(PNC)

Lweak



Meson Exchange Model (DDH) and other QCD Models

fπ now calculated to be ~3E-7 with QCD sum rules
(Hwang+Henley, Lobov) and SU(3) soliton model
(Meissner+Weigel), calculation in chiral quark model in
progress (Lee et al).

N

N

PV

PC

!, ",#

assumes π, ρ, and ω exchange
dominate the low energy PNC
NN potential as they do for
strong NN

Weak meson-nucleon couplings
fπ , hρ

0, hρ
1, hρ

2, hω
0, hω

1 to be
determined by experiment



 ∆I = 0, 1 Weak NN Constraints in DDH Model

Present goal: perform measurements in few body systems
interpretable in terms of weak NN, at low E to apply  χPT

Nonzero P-odd effects seen experimentally in p-p and p-α

Next step: see P-odd effects in low energy neutron reactions 



NN χPT coefficients and quantum numbers (Liu07)

First 5 couplings are allowed s->p transition amplitudes in NN elastic scattering
in “pionless” EFT limit (same as Danilov parameters)

Last coupling is long-range part of weak pion exchange [in DDH~ fπ]

mλs
pp√√√21 ↔ 11S0 ↔ 3P0

√
√

p-p

Cπ [~ fπ]√10 ↔ 13S1 ↔ 3P1

mλs
np√11 ↔ 1 1S0 ↔ 3P0

mλs
nn√√01 ↔ 11S0 ↔ 3P0

mλt√00 ↔ 03S1 ↔ 1P1

mρt√10 ↔ 1 
3S1 ↔ 3P1

EFT couplingn-pn-nΔII ↔ I’Partial wave transition



NN χPT coefficients and observables (Liu07)

Column gives relation between PV observable and weak couplings in EFT with pion
Needs calculations of PV in few body systems (NN done, others in progress)

0-0.45,
-0.78

00000mλs
pp (1S0- 3P0)

0.3

2.5

0

-0.6

1.4

np  φ

-3.3
±0.9

-0.93,
-1.57
±0.2

8
±14

42
±38

1.8
±1.8

0.6
±2.1

experiment
(10-7 )

00000-0.3Cπ
 (3S1- 3P1)[~ fπ]

-0.2400.60.5-0.160mλs
np (1S0- 3P0)

-0.4801.20.600mλs
nn (1S0- 3P0)

-0.5401.31.20.70mλt (3S1- 1P1)

-1.070-2.71.40-0.09mρt (3S1- 3P1)

pα Azpp Aznα  φnD Aγnp Pγnp Aγ
EFT coupling (partial wave
mixing)



“Conclusion”: the Weak NN Interaction on one slide

|N>=|qqq>+|qqqqq>+…=valence+sea quarks+gluons+…
interacts through strong NN force, mediated by mesons |m>=|qq>+…
Interactions have long (~1 fm) range, QCD conserves parity

NN repulsive core (from Pauli principle applied to
quarks)->1 fm range for strong NN

weak

If the quarks are close, the weak interaction can act, which violates parity at a
length scale small compared to that set by ΛQCD
Relative weak/strong amplitudes: ~[e2/m2

W]/[g2/m2
π]~10-6

Quark-quark weak interaction induces NN weak interaction
Visible using parity violation

q-q weak interaction: an “inside-out” probe of strong QCD

~1 fm

Both W and Z exchange possess much smaller 
range [~1/100 fm]


