Neutron Binding Energy Measurements for a Direct Test of E=mc²

Outline

- Framework of test
- Two crystal spectrometer
- Binding energy measurements
- Does E=mc² ?
- Towards 10⁻⁸ precision
- References
- Historical highlights of the program

Framework

 $n + {}^{A}X \rightarrow {}^{A+1}X + \gamma$'s

Framework

$$A_{\mathsf{r}}(\mathsf{n}) + A_{\mathsf{r}}({}^{A}\mathsf{X}) - A_{\mathsf{r}}({}^{A+1}\mathsf{X}) = \left\{10^{-3}\frac{N_{\mathsf{A}}h}{c}\right\}_{\mathsf{SI}} \left\{\frac{1}{\lambda_{A+1}^{*}}\right\}_{\mathsf{SI}}$$

NIST Physics Laboratory home pa	ge - Windows Internet Explorer		
← Nttp://physics.nist.gov/		Google	P -
😭 🏟 📲 NIST Physics Laboratory home	e page	🏠 🔹 🗟 👘 🖶 🖶 Page 🔹 🎯	Tools + »
Physics Laboratory Supporting U.S. industry by providin	g measurement services and research for electronic, optical, and radiation technologies.		^
About the Physics Laboratory • <u>What we do</u> • <u>Organization & Contacts</u> • <u>Staff directory</u> • <u>2005-2006 Awards and Honors</u> • <u>Working with us</u> grants, postdocs, students, research	Divisions / Research Areas The NIST Physics Laboratory [home to three Nobel Laureates (1997, 2001, 2005)] is divided into six major divisions described below. Also see: Postdoctoral Positions Major Research Facilities Seminars / Meetings • Electron & Optical Physics: develops measurement methods and associated technology for determining electron and photon interactions with matter.	Physics Lab Website Highlights • <u>The Official U.S. Time</u> • <u>Physical Reference Data</u> • <u>Physics Lab News</u>	
Products and Services Physical Reference Data Constants, Units & Uncertainty Measurements & Calibrations Publications General Interest Selected Projects Center for Nanoscale Science and Technology	 <u>Atomic Physics</u>: carries out a broad program of long-term experimental and theoretical research in atomic physics. <u>Optical Technology</u>: promotes accurate and useful optical radiation measurements in the ultraviolet, visible, and infrared spectral regions. <u>Ionizing Radiation</u>: provides national leadership in fundamental research and measurement standards for all types of ionizing radiation. <u>Time & Frequency</u>: is responsible for the standards of time and frequency; and since length is now derived from the second, develops optical frequency standards. 		
and Technology Nanotechnology Neutron Imaging Facility Quantum Information Biophysics / Medical Physics	<u>Quantum Physics</u> : conducts research in atomic and chemical physics, precision measurement, and laser and optical physics. <u>NIST Conferences</u> <u>NIST Visitor Info</u>		NIST
Search the Physics Laboratory Google Search or visit the Site Map.	Search NIST webspace Google Search NIST is an agency of the General NIST inquiries:	'NMR on a Chip' Features NIST Magnetic M Sensor A super-sensitive mini-sensor developed at NIS can detect NMR in tiny samples of fluids flowin	ini- T g 💌

CODATA Value: mol	ar Planck constant - Windows Internet Explorer		
	physics.nist.gov/cgi-bin/cuu/Value?nah search_for=molar+planck+constant	Google	P -
😭 🏟 📲 CODATA Va	alue: molar Planck constant	🏠 🔹 🗟 🕤 🖶 T 📴 Bage 🕶 🍏	Tools + »
Constar	NIST Reference on hts, Units, and Uncertainty		
	Fundamental Physical Constants		
Constants Topics: <u>Values</u>	molar Planck constant $N_{\rm A}h$		
<u>Energy</u> Equivalents	Value 3.990 312 6821 x 10 ⁻¹⁰ J s mol ⁻¹		
Searchable	Standard uncertainty 0.000 000 0057 x 10^{-10} J s mol ⁻¹		
Background	Relative standard uncertainty 1.4×10^{-9}		
Construction of the	Concise form 3.990 312 6821(57) x 10^{-10} J s mol ⁻¹		
Bibliography Constants, Units & Uncertainty home page	Click here for correlation coefficient of this constant with other constants Source: 2006 CODATA Definition of Correlation coefficient with recommended values uncertainty any other constant		
Done		😌 Local intranet 🔍 1/	00%

Piège de Penning

Exemples de résultat

Wavelength Determination Principle

Wavelength Determination Principle

$$n\lambda = 2d\sin\theta_n$$

Two Crystal Geometry

NIST-ILL Gamma-ray Facility

Gamma-ray Sources

Activity depends upon:

- Neutron flux
- Capture cross section
- Density of source material Typical total activities: 10¹³-10¹⁵ Bq (s⁻¹) kilo-curies

Collimation

Two Crystal Spectrometer

- Radiation beam
- Crystals
- Angle interferometers
- Optical polygon (angle calibration)

GAMS4 Diffraction Crystal

GAMS4 Diffraction Crystals

Angle Interferometer And Polygon

GAMS4 Spectrometer

Interferometer Calibration

Interferometer Calibration

$$f = K \sin \theta + f_0$$
$$360^\circ = \sum_{i=1}^{24} \arcsin\left\{\frac{f_{i+1} - f_0}{K}\right\} - \arcsin\left\{\frac{f_i - f_0}{K}\right\}$$

GAMS4 Calibration Fit

Binding Energy Measurements

Representative ³³S Profiles

Binding Energy Results

Nuclide	λ _{be} £10 ¹² (m)	S _n £ 10 ³ (u)	u _r £ 10 ⁶ total
²⁹ Si	0.146318275(86)	9.0967793(53)	0.59
³³ S	0.143472991(54)	9.2771820(35)	0.38
³⁶ Cl	0.144507180(80)	9.2107883(51)	0.55
² H	0.557341007(98)	2.38816996(42)	0.18

Uncertainty Sources

╢

Source	Relative σ £ 10 ⁶	Comments
statistics	~0.4	two weeks measuring time
calibration	0.4	interferometer instability
crystal temperature	0.1	$\Delta T_{crystal} = 0.05^{\circ} \text{ K}$
vertical divergence	0.06	§5 mm over 15 m; γ-beam vs. plane of dispersion
crystal lattice spacing	0.05	conservative figure

Mass-Energy Comparison

A+1 X	∆m from Penning trap (u)	∆m from GAMS4 (u)	Rel. Diff. £ 10 ⁷
²⁹ Si	0.00670861569 <mark>(47)</mark>	0.00670860929 <mark>(536)</mark>	-9.5(8.0)
³³ S	0.00688901053 <mark>(50)</mark>	0.00688901206 <mark>(351)</mark>	2.2(5.1)
weighted average relative difference			-1.2(4.3)

Mass Difference Comparison

Special Relativity Test $\frac{E - \Delta mc^2}{E} = (-1.2 \pm 4.3) \times 10^{-7}$

- The most precise direct test of $E = mc^2$
- This result is 55 times more accurate than the previous best direct test performed by comparing the electron and positron masses to the energy released in their annihilation
- Doesn't require the assumption of the existence of a preferred frame of reference in order to place constraints on proposed Lorentz-violating parameters

Towards 10⁻⁸ precision

- **Statistics:** longer measuring times, greater source density, reduce spectrometer drift, concentrate on sulfur and chlorine and radioactive isotopes
- **Calibration:** redesign interferometer, remove nonlinearities, reduce sensitivity to environment
- Crystal temperature: more sensors on crystal, 3-4 mK absolute accuracy required
- Vertical divergence: need to rethink the way the beam and spectrometer are aligned with respect to each other
- **Crystal lattice spacing:** 10⁻⁸ precision possible

Progress on the GAMS-6 Double Crystal γ-Spectrometer

J. Krempel^{1,2}, M. Jentschel¹, P. Mutti¹, G. Mana³, B. Lauss⁴, P. Becker²

Institut Laue-Langevin, Grenoble (F), ²Physikalisch-Technische Bundesanstalt, Braunschweig (D), ³Istituto Nazionale di Ricerca Metrologica, Torino (I), ⁴Paul Scherrer Institut, 5232 Villingen (CH)

Performa	nce				
Interferometer properties	1 Fringe 360° 1 ''	Radian 633×10* 6.3 4.8×10*	Degree 36×10* 360 0.3 10*	ArcSec 0.13 1.3×10 ⁴ 1	Fringes 1 9.9×10' 7.7
Smallest Angle (interesting energy	0.2* /)	3.5×10°	0.2	720	5500
Accuracy	1/14000 F	45×10 ⁴²	2.6×10*	9.3×10*	7.1×10 ⁴
Resolution limit (by electronics)	1/36000 F	18 10°	1 10*	3.6 10*	2.8 10°

The working prototype of the interferometer on GAMS5 at ILL

Stability test of the new interferometer: A 182keV was measured in (1,1) and (1-1) Crystal order the angle difference varies not much over time, although there is no correction for temperature, pressure or humidity stall. The fit error for each point is about 4.6-10⁷. The standard deviation of all points in 4.2×10⁷. Thus the 54 points yield a tatal relative uncertainty of 5-10⁴.

Drift of the old GAMS4 interferometer at ILL

due to a humidity sensitive glue

 \square

FOR SCIENCE

Liftle of the old GAMIS 4 interferommeter, Here the interferometer am was fixed to 7.5° by the calibration unit. Despite the large diff of 0° (its possible to obtain a calibration constant with an uncertainty of 10° as only the drift own 30 minutes (one calibration step) is important.

only first of 7 Adms

Thus, reducing the interferometer instability, as well as reducing the calibration/acquisition time will improve the result.

30

PB

Historical Highlights

- 1969 the first combined x-ray and optical interferometer (XROI) is realized at the NBS by Deslattes and collaborators
- 1973 "X-Ray to Visible Wavelength Ratios" links the optical "standard" to x-ray transition wavelengths for the first time
- 1978 a double crystal spectrometer is used at NBS to measure reactor-produced, non-prompt Au and Ir gamma-ray reference lines (675 keV maximum energy)

Historical Highlights

- **1982** spectrometer moves to ILL in search of prompt lines having higher energies
- **1984** instrument "aiming" difficulties lead to a major upgrade that includes a new platform, position and vibration stabilization, and new collimators
- 1986-present GAMS4 becomes a scheduled ILL instrument used to measure binding energies, reference lines, lifetimes of nuclear excited states in the subpicosecond range, and interatomic potentials in the 10 eV to 100 eV range
- 1998 GAMS5 becomes operational

Useful References

- The deuteron binding energy and the neutron mass
 - Kessler, E. G. et al. Phys. Lett. A 255, 221-229 (1999).
- Precision measurement of fundamental constants using GAMS4
 - Dewey, M. S. et al. J. Res. Natl. Inst. Stand. Technol. 105, 11-23 (2000).
- The GAMS4 flat crystal facility
 - Kessler, E. G. et al. Nucl. Instrum. Meth. Phys. Res. A 457, 187-202 (2001).
- Precision measurement of the ²⁹Si, ³³S, and ³⁶Cl binding energies
 - Dewey, M. S. et al. Phys. Rev. C 73, 044303-1 044303-11 (2006).
- A direct test of E=mc²
 - Thompson, J. K. et al. Nature 430, 58-61 (2005).