

Gravity Tests with Quantum Objects

Hartmut Abele Summer School on Fundamental Neutron Physics 2009

Hartmut Abele, Vienna University of Technology

Impressions about gravity

Gravity is weak

Hartmut Abele, Vienna University of Technology

... But incomplete!

Unsolved problems

- 3 particle families (A, B, C, cn)
- 12 masses (n mass: NIST + ILL)
- 4 Phases of Quark mixing (A, B, C, cn, ucn)
- 4 Phases Lepton mixing
- Parity violation (A B, cn, ucn)
- Gravitation (ucn)

- CP-Violation and Baryon-Asymmetry of the universe (D, R, cn, ucn)
- Dark energy, mass density of the universe (A, ucn, cn)
- Question: Does a universal solution to all these problems exist?
- If the answer is yes: ...

... where shall we search?

Hartmut Abele, Technische Universität München

Reasons for new interest

New experimental devices

- Ultrastable cavities
- Lasers
- Frequency comb
- SQUIDs
- Space experiments (GP-B, MICROSCOPE, ACES, SUMO, PARCS, RACE, STEP, OPTIS)
- New space related techniques (drag free, grav. sensors)
- Violations predicted by quantum gravity
 - Modification of Maxwell equations
 - Modification of Dirac equation
 - Yukawa modification of Newton potental

Lämmerzahl, graduate days, Heidelberg

<u>Motivation for modern gravity tests</u> <u>with neutrons</u>

- Neutral
- Small polarizability

- Very sensitive:
- example search for edm:
- Delta E < 0. 000 000 000 000 000 000 000 eV</p>

Fazit: at low energies, precision is highest

... good statistics

Neutrons are abundant: 1/7 of the baryonic mass of the universe are neutrons

New neutron sources

Hartmut Abele, Vienna University of Technology

What is the aim?

- To derive the basic law of physics
- based on simple symmetry principles

Standardmodel of Particle Physics

Input: Principia:

- Gauge principle U(1) x SU(2) x SU(3)
- Lorentz invariance : x' = Lx
- CPT, ...Invariance

Output:

- Interactions
- Equation of motion Maxwell, Schrödinger, Dirac
- Existence of Photons, Gluons, W[±], Z⁰
 - (carriers of interaction)
- Charge conservation (Source of interaction)

Conclusion: SM very successful

D. Dubbers 2007

- e.g. as basis for technology, chemistry, biology, mol.biologie

General Relativity

Input: Principia:

- Einstein equation
- Geodesic equation
- A metric space
- cosmological constant

$$\begin{aligned} R_{\mu\nu} &- \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} \\ \frac{d^2 x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\rho\sigma} \frac{dx^{\rho}}{d\lambda} \frac{dx^{\sigma}}{d\lambda} = 0 \end{aligned}$$

1

Gravity and Space Time

- SM, Electromagnetism
 - Forces are represented by fields defined on spacetime
- Gravity
 - gravity is inherent in spacetime itself,
 - gravity is a manifestation of the curvature of spacetime

Unification of before disconnected Phenomena:

17th/18th	19th century	20th century	21th
Celestial Mechanics	Magnetism	QM	Particles+
	Electricity	EDynamics	Cosmology
Mechanics	Optics	QED	
Acoustics	Heat radiation		SM
Mechanics	Elektrodynamics	QED	GR
		Weak interaction	
	Mechanics	QCD	???
	Themodynamics	Standardmodell	
	Stat. Mechanics	of particles	

General Relativity

Nomenclatura Distance *a* Velocity v = $\frac{a}{T} = \frac{da}{dT} = \dot{a}$ Acceleration $\ddot{a} = \frac{dv}{dv} = \dot{v}$ dT Hubble Constant $H = \frac{a}{-}$ П Accelerated Universe $\frac{\ddot{a}}{-} > 0$

a

Measurement of Ω and Λ from supernovae

redshift z

The accelerating expansion

Acceleration of the Universe

accelerated universe:
$$\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3}(\rho - 2\rho_\Lambda)$$

Friedman DGL

Hubble parameter: $H \equiv \frac{a}{2}$ Dark Matter unser dreidimensionales $H^2 + \ldots = \frac{8\pi}{3}G_N\rho + \ldots$ Friedman Eq.: Extra-Dimensione Axions \uparrow → 0.2 μm < λ < 2 cm new Gravity Vacuum Energy **B&C '05: Cosmological** accelerated universe: $\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3} (\rho - 2\rho_\Lambda)$ **Constant universe:** $\frac{\ddot{a}}{a} = -\frac{4\pi G_N}{3} (\rho - 2\rho_\Lambda)$ **Size of extra dimensions** $\rightarrow \lambda \sim 5\mu m, \alpha < 10^6$ $V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$ **ADD '99: Repulsive forces** gauge fields in the bulk

 \rightarrow Strength α = 10⁶ – 10⁹, range λ < 40 µm,

Newton potential + additional terms

- <mark>α:</mark> Strenth
- **λ**: Range
- ADD 99: repulsive forces in the bulk
- $\alpha = 10^6 10^9$
- <mark>λ</mark> < 30 µm

B&C: Cosmological constant, size of extra dimensions

- $\alpha < 10^6$
- <mark>λ</mark> ~ 5 μm

Axion dark matter

- α < ...
- 0.2 µm < λ < 5 µm

Neutrons test Newton

Experiments

Hartmut Abele, Vienna University of Technology

Newton used Neutrons for gravity test

- Half of Newton's apple is made out of neutrons
- 48% neutrons
- 52 % protons
- 2x10⁻⁴ electrons

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

[&]quot;Nothing yet. ... How about you, Newton?"

Hartmut Abele, Vienna University of Technology

2. Newton's gravitational r⁻² law

Newton's law appears to be valid from the millimeter scale up to the galactic scale. $m_{\star} \cdot m_{\star}$

Hartm

Reference: Coy, Fischbach, Hellings, Standish & Talmadge (2003)

Tower Gravity Experiment: Evidence for Non-Newtonian Gravity

Donald H. Eckhardt, Christopher Jekeli, Andrew R. Lazarewicz, Anestis J. Romaides, and Roger W. Sands

Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01731 (Received 18 April 1988)

We tested Newton's inverse-square law of gravitation by comparing gravity measured on a 600-m tower with gravity calculated from ground measurements. A significant departure from the law was detected, approaching $(-500 \pm 35) \times 10^{-8}$ m s⁻² at the top of the tower and suggestive of a rapidly attenuating non-Newtonian attractive force. These results are marginally consistent with a one-term Yukawa-type attractive force, but they are fully consistent with two Yukawa-type forces, attractive and repulsive, and then also with Airy and Cavendish experiments.

FIG. 1. Scalar Yukawa model fitted to RET experimental results and error bars.

$$V(r) = G \frac{m_1 \cdot m_2}{r} (1 + \alpha \cdot e^{-r/\lambda})$$

Neutrons test Newton

Tool: Ultra-Cold Neutrons

Pragmatic Definition UCN reflect from surfaces at all angles

Strong Interaction: V ~ 100 neV

Kinetic Energy: 100 neV

50neV < E < 2.1 μ eV 132nm > λ > 20nm 3m/s < v < 20m/s

Magnetism, Zeeman splitting : 120 neV/T

Energy in the earth's gravitational field: E = mgh 100neV/m

Neutron Production at the ILL Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K**

Neutron Production Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K** ultra cold: 100 neV, 1mK

Neutron Production Fission: 2 MeV Thermal: 25meV, 300K **Cold: 4 meV, 40K** ultra cold: 100 neV, 1mK Gravity Experiment: 1 pico-eV

Classical description

Synopsis of Bound Quantum States

Hydrogen Atom

- Electron bound in proton potential
- Bohr radius <r> = 1 A
- Ground state energy of 13 eV
- 3 dim.
- Schrödinger Equ.
 - Legrendre Polynomials

System Neutron & Earth

- Neutron bound in the gravity potential of the earth
- <r> = 6 μm
- Ground state energy of 1.4 peV
- 1 dim.
- Schrödinger Equ.
 - Airy Functions

Hartmut Abele, Technische Universität München

Schrödinger Equation

$$-\frac{\hbar^2}{2m}\nabla\psi + V(z)\psi = E\psi$$

V(z) = mgz for $z \ge 0$ and $V(z) = \infty$ for z < 0

Scale with length scale z₀

$$\zeta = \frac{z}{z_0}$$

$$\psi_n(\zeta) = Ai(\zeta - \xi_n)$$

• Turning Points: $z_1 = 13.7 \mu m, z_2 = 24.1 \mu m$ Neutron

Mirror

Ζ

2002: Observation of Bound Quantum States

Trapping UCN's in the earth's gravitational field

Schrödinger equation:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + mgz\right)\varphi_n(z) = E_n\varphi_n(z)$$

boundary conditions:

$$\varphi_n(0) = 0$$

with 2nd mirror at height l

$$\varphi_n(l)=0$$

solutions: Airy-functions

scales:

energies: peVlength: μm

neutron mirror

	E _n	E _n
1 st state	1.41peV	1.41peV
2 nd state	2.46peV	2.56peV

3.32peV

3.97peV

3rd state

Loss mechanism

$$d\langle\psi_n|\psi_n\rangle = -\langle\psi_n|\psi_n\rangle\cdot\Gamma_n(l)\cdot dt$$

Overlapp with absorber

$$\Gamma_n(l) = \alpha_{\text{loss,n}} \cdot \int_{l-2\sigma}^l dz |\psi_n(z)|^2$$

Effect of hypothetical Yukawa-type Forces arising from higher-dimensional gravity, gauge forces or massive scalar fields U(z)Yukawa force deforms the wave function Changes the energy classical turning point $V(r) = G \frac{m_1 \cdot m_2}{(1 + \alpha \cdot e^{-r/\lambda})}$ Mirror Absorber $e^{-(h-z)/\lambda}$ $V(z) = g \cdot z + 2\pi \cdot \alpha \cdot \lambda^2 \cdot G \cdot \rho(e^{-z/\lambda})$

2.1 Limits on Axions/CP-Violation

- SM: $\mathbf{0} < \mathbf{\theta} < 2\pi$ $\mathcal{L}_{QCD} = -\frac{1}{2} \operatorname{tr}(G_{\mu\nu} G^{\mu\nu}) + \bar{q}(i\mathcal{P} \mathcal{M})q + \frac{\theta}{16\pi^2} \operatorname{tr}(\tilde{G}_{\mu\nu} G^{\mu\nu})$ • EDM neutron $\rightarrow \mathbf{\theta} < \mathbf{10^{-10}}$
- Axion: Spin-Mass coupling $g_s g_p/\hbar c$: $\theta = 0$

$$V(\vec{r}) = \hbar g_s g_p \frac{\vec{\sigma} \cdot \vec{n}}{8\pi mc} \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

Science week TU Munich 08, Georg Raffelt:

Lee-Weinberg Curve for Neutrinos and Axions

Axion Limits

Baeßler et al., PRD 2007 Westphal, Baeßler, H.A.

arXiv:hep-ph/0703108

Heckel et al., 2006:

O. Zimmer UCN09

1. GRANIT Collaboration

Resonant Transitions

the dynamics of ultra-cold neutrons in the gravity potential

Julio Gea-Banacloche, Am. J. Phys. 1999

Quantum interference: sensitivity to fifth forces

Hartmut Abele, Atominstitut, TU Wien

Limits

$$V(z,\lambda) = 2\pi m_n \rho \alpha \lambda^2 G e^{-2|z|/\lambda} = \alpha \times 2 \times 10^{-12} \text{ peV}$$

$$\Delta \phi \times \Delta N = 2\pi$$

$$N = 10^6 \rightarrow \Delta \phi = 10^{-3}$$

$$\phi = \omega \times t = E \cdot t/\hbar$$

$$\Delta \phi = \Delta E \cdot t/\hbar$$

$$\Delta \phi = \Delta E \cdot t/\hbar$$

$$\Delta E = \Delta \phi \hbar/T = 0.33\hbar/s = 6 \times 10^{-6} \text{ peV}$$
Count rate: 0.5s⁻¹ N = 10⁶ after 25 days
N = 10⁶

$$\Delta E = 6 \times 10^{-6} \text{ peV}$$

$$\alpha = 3 \times 10^6 \rightarrow 10^5 \rightarrow 10^2$$

$$\Psi(z, t) = \sum C_n e^{-iE_n t/\hbar} \psi_n(z)$$

The Quantum Bouncer

Q-Bounce: The Neutron Mirror Setup

Q-Bounce: The Neutron Mirror Setup

x [cm]

High-resolution track detector

CR39-plastic with 200n¹⁰*B* coating spatial resolution: $< 2 \mu m$ ¹⁰*B* efficiency: $\approx 93\%$ detector efficiency $\approx 62\%$

Process:

- Cleaning
- Coating
- Exposure with UCN
- Boron removal
- Etching
- Optical readout
- Data correction
- Data processing

- ~4500 neutrons in total
- distance from step x = 0cm

Hartmut Abele, Technische Universität München

T. Jenke, 2008 57

Simultaneous fit of TE2 and TE5

Simulation T. Jenke

Stability

Vibrations

Inclinometers

Hartmut Abele, Technische Universität München

D. Stadler, Diploma thesis, 2009⁶⁰

- Mirror system
- Micrometer screws
- Linear gauges 0.1µm
- Inclinometers 0.1 μrad

Measurement principle

Ramsey method of Separated Oscillating Fields

B

prepare a sample of polarized neutrons

- make a $\pi/2$ spin flip ("start clock")
- allow free spin precession in parallel **B** and *E* static fields
- make a $\pi/2$ spin flip ("stop clock") ٠
- analyze direction of neutron spin
- look at energy (frequency) shift under field inversion:

 $\Delta \varepsilon = h |\Delta v| = 4 E d_n$

Measuring the edm

Sensitivity

EDM-Phase shift: $\Delta \varphi = \Delta \omega \cdot t$ Heisenberg: $\Delta \varphi \times \Delta N = 1$ Energy of dipole: $E = \vec{d}_n \cdot \vec{E}_{al}$ and E = hv \rightarrow EDM-Phase shift: $\Delta \omega \cdot t = \frac{1}{\sqrt{N}}$

N = 18000

 $d_n = \frac{h}{E \cdot t \cdot \sqrt{N} \cdot 2\alpha}$

- t=130 s
- E_{el}=11kV/cm
- alpha = 0.85 (P = 92%)
- d < 1.5 x 10⁻²⁴ ecm

Application of Ramsey's Method to a 2 state system in the gravity potential coupled to a resonator

How can we generalize Ramsey's method?

Hartmut Abele, Technische Universität München

Ramsey's Method for Neutrons

Ε

2 state system (gravity potential) coupled to a resonator

Phase Modulation for MomentumTransfer Δp $(p + \Delta p)^2 / 2m_n = p^2 / 2m_n + hv$ (Felber, Gähler) Magnetic Modulation: $\vec{F} = \vec{\mu} \cdot \vec{\nabla} \vec{B}$ or modulated mirror $\omega_0 = \omega_{1\rightarrow 2} = 2\pi \cdot 256 \text{ Hz}$

<u>An application of Ramsey's Method</u> to a system of quantum states in the gravity potential coupled to a resonator.</u>

<u>Ramsey's Method of Oscillating Fields</u></u>

 ω_0

$$\pi/2$$
 $H = \begin{pmatrix} rac{\hbar\omega_0}{2} & \Omega_R e^{i\omega t/2} \\ \Omega_R e^{i\omega t/2} & -\hbar\omega_0 2 \end{pmatrix}$

$$\Omega_R = \sqrt{\Omega_R^2 + (\omega_0 - \omega)^2} = \sqrt{\Omega_R^2 + \delta^2}$$

Ramsey-Fringes

Hartmut Abele, Technische Universität München

<u>Limits</u>

$$V(z,\lambda) = 2\pi m_n \rho \alpha \lambda^2 G e^{-2|z|/\lambda} = \alpha \times 2 \times 10^{-12} \,\mathrm{peV}$$

$$\Delta \varphi \times \Delta N = 2\pi$$

$$N = 10^{6} \rightarrow \Delta \varphi = 10^{-3}$$

$$\varphi = \omega \times t = E \cdot t / \hbar$$

$$\Delta \varphi = \Delta E \cdot t / \hbar$$

$$\Delta E = \Delta \varphi \hbar / T = 0.33 \hbar / s = 6 \times 10^{-6} \text{ peV}$$

Count rate: 0.1s⁻¹ N = 4x10⁵ after 25 days

• Observation time T = 130ms $N = 4 \times 10^5$: $\Delta E = 5 \times 10^{-5} \text{ peV}$, $\alpha = 3 \times 10^7$

• Observation time T = 100s – New sources $\alpha = 3 \times 10^4$ $\alpha = 3 \times 10^3, \Delta E = 6 \times 10^{-21} \text{eV}$

The Experimental Team: ATI, Wien:

- T. Jenke, H. Lemmel, H.A.
- TUM: PI, HD:

- G. Kessler, T. Lins, H. Saul
- H. Filter, D. Stadler

ILL:

P. Geltenbort

Summary: Galileo in Quantum Land

Observation of quantum states, Nature 2002 Limits on hypothetical fifth forces: **Best axion limits Development** of spatial resolution detectors (1.5µm) **Observation of qBounce** Phase measurements

Neutron Interferometry

Rauch, Treimann, Bonse:

- Test of a Single Crystal Neutron Interferometer", Physics Letters 47 A (1974) 369-371

COW-Experiments

VOLUME 34, NUMBER 23

PHYSICAL REVIEW LETTERS

Observation of Gravitationally Induced Quantum Interference*

R. Colella and A. W. Overhauser Department of Physics, Purdue University, West Lafayette, Indiana 47907

and

S. A. Werner Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121 (Received 14 April 1975)

We have used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field.

Hartmut Abele

COW-Experiment

 $E_0 = \frac{\hbar^2 k_0^2}{2m_n} = \frac{\hbar^2 k^2}{2m_n} + m_n g H(\alpha)$

COW-Experiment

theoretical prediction $q_{\rm grav} = 59.2 \pm 0.1$ rad

83

Table 12

History of gravity-induced interference experiments with symmetric (sym.) and skew-symmetric silicon interferometers

Ref.	Interferomete	r λ (nm)	A_0 (cm ²)	Θ_B (deg)	<i>q</i> _{COW} (theory) (rad)	<i>q</i> _{COW} (exp) (rad)	<i>q</i> bend (rad)	Agreement with theory (%)
[380]	Sym.#1	1.445(2)	10.52(2)	22.10(5)	59.8(1)	54.3(2.0)		12
[386]	Sym.#2	1.419(2)	10.152(4)	21.68(1)	56.7(1)	54.2(1)	3.30(5)	4.4
	-	1.060(2)	7.332(4)	16.02(1)	30.6(1)	28.4(1)	2.48(5)	7.3
[382]	Sym. #2	1.417(1)	10.132(4)	21.65(1)	56.50(5)	56.03(3)	1.41(1)	0.8
[383]	Skew-sym.							
(440)	Full range	1.078(6)	12.016(3)	34.15(1)	50.97(5)	49.45(5)	2.15(4)	3.0
	Rest. range	1.078(6)	12.016(3)	34.15(1)	50.97(5)	50.18(5)	2.03(4)	1.5
(220)	Full range	2.1440(4)	11.921(3)	33.94(1)	100.57(10)	97.58(10)	1.07(2)	3
	Rest. range	2.1440(4)	11.921(3)	33.94(1)	100.57(10)	99.02(10)	1.01(2)	1.5
[383]	Large Sym.							
(440)	Full range	1.8796(10)	30.26(1)	29.30(1)	223.80(10)	223.38(30)	4.02(3)	0.6
(220)	Rest. range	1.8796(10)	30.26(1)	29.30(1)	223.80(10)	221.85(30)	4.15(3)	0.9

The restricted (rest.) range data means that the tilt angle $|\alpha| = 11^{\circ}$. The two wavelengths of [383] are diffracted by the (220) or (440) lattice planes. The table is based on [21].

New Plans

A1

A2

Α

αn

αn

an

some key features of the new setup at ILL-S18 (France) :

- Larger areas, higher sensitivity (gain factor ≥ 5 at 2.72Å to previous experiments)
- Small rotations reduce bending effects
- Thick base + rotation along an axis of elastic symmetry reduce crystal bending
- Three different areas selectable without changing the setup
- By comparison of the phase shift gained by A1 and A2 diffraction corrections within the crystal lamellas cancel out to first order
- Several harmonics (2.72, 1.36, 0.91Å) available with identical beam geometry
- Narrow wavelength distribution 5x10⁻³
- Nearly perfect symmetric lattice orientation, no offset in αrotation and simplification of the dynamical diffraction model

Measurement of a confinement induced neutron phase

H. Rauch*, H. Lemmel*, M. Baron*† & R. Loidl*†

Thermal neutronsslit size 22µm

Y. Hasegawa et al.:

Violation of a Bell-like inequality

- by correlating spin and energy degrees of freedom of polarized neutron beams
- Classically expected quantity S≤2
- S=2.555±0.005

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|\downarrow\rangle \otimes |I\rangle - |\uparrow\rangle \otimes |II\rangle)$$

Courtesy of S. Sponar, Vienna University of Technology

Vienna University of Technology

Vienna Impressions

Neutron & Quantum Physics

Neutron Interferometry Gravit

Gravity tests with neutrons

Neutron Alphabet & Beta-decay

Neutron Tomography

BMW40fps.avi

Unification of Forces?

Quests in Fundamental Physics

Lämmerzahl, Graduiertentage Heidelberg 2003 Hartmut Abele, Vienna University of Technology