<u>Time-of-flight measurements using</u> <u>the Disk Chopper Spectrometer</u>

- Useful relationships among λ , k, v, τ , E.
- How do we obtain (Q,ω) from $(2\theta,t)$: $S(Q,\omega)$ from $I(2\theta,t)$?
- How do we determine values of t for each time channel?
- How do we decide what wavelength to use?
- Time-distance diagrams
- What are contaminant wavelengths and how do we remove them?
- What is frame overlap and how do we avoid it?
- Container scattering and background corrections
- Normalization and detector efficiency corrections

