Time-of-flight measurements using

the Disk Chopper Spectrometer

- Useful relationships among $\lambda, \mathrm{k}, \mathrm{v}, \tau, \mathrm{E}$.
- How do we obtain (Q, ω) from $(2 \theta, \mathrm{t}): \mathrm{S}(\mathrm{Q}, \omega)$ from $\mathrm{I}(2 \theta, \mathrm{t})$?
- How do we determine values of t for each time channel?
- How do we decide what wavelength to use?
- Time-distance diagrams
- What are contaminant wavelengths and how do we remove them?
- What is frame overlap and how do we avoid it?
- Container scattering and background corrections
- Normalization and detector efficiency corrections

Useful relationships

$$
\begin{array}{cc}
\begin{array}{ll}
\mathrm{k}=2 \pi / \lambda \\
\mathrm{mv}=\mathrm{h} / \lambda \\
\tau=1 / \mathrm{v}
\end{array} & \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}=\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}} \\
\hline \tau[\mu \mathrm{~s} / \mathrm{mm}] \approx \frac{\lambda[\AA]}{4} \\
\mathrm{E}[\mathrm{meV}] \approx \frac{82}{(\lambda[\AA])^{2}} & \begin{array}{l}
\text { An example } \\
\text { If } \lambda=4 \AA(=0.4 \mathrm{~nm}), \\
\mathrm{k} \approx 1.57 \AA^{-1} \\
\mathrm{v} \approx 0.99 \mathrm{~mm} / \mu \mathrm{s} \\
\tau \approx 1.01 \mu \mathrm{~s} / \mathrm{mm} \\
\mathrm{E} \approx 5.1 \mathrm{meV}
\end{array} \\
\hline
\end{array}
$$

How do we obtain Q and ω given 2θ and t?

We know λ_{i}, hence $v_{i}, \overrightarrow{\mathrm{k}}_{\mathrm{i}}$, and E_{i}.
Given $\mathrm{t}\left(\equiv \mathrm{t}_{\mathrm{SD}}\right)$ and 2θ, and knowing
$D_{S D}$, we obtain $v_{f}, \overrightarrow{\mathrm{k}}_{\mathrm{f}}$ and E_{f}.

$$
\begin{gathered}
\hbar \omega=\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{f}} \\
\overrightarrow{\mathrm{Q}}=\overrightarrow{\mathrm{k}}_{\mathrm{i}}-\overrightarrow{\mathrm{k}}_{\mathrm{f}}
\end{gathered}
$$

$\binom{\mathrm{D}_{\mathrm{SD}}$ is the distance from sample to detector }{t_{SD} is the time-of-flight from sample to detector }

How do we obtain $\mathrm{S}(\mathbf{0}, \omega)$ from $\mathrm{I}(2 \theta, \mathrm{t})$? (part 1)

How do we obtain $\mathrm{S}(\mathbf{Q}, \omega)$ from $\mathrm{I}(2 \theta, \mathrm{t})$? (part 2)

Double differential scattering
cross section w.r.t. energy
Double differential scattering $\frac{d^{2} \sigma}{d \Omega \mathrm{dE}_{\mathrm{f}}}=\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dE}_{\mathrm{f}}}$
Since $E_{f} \propto 1 / t^{2}, \frac{\mathrm{dE}_{f}}{d t} \propto \frac{1}{t^{3}} ;$ hence $\frac{d^{2} \sigma}{d \Omega E_{f}} \propto \frac{d^{2} \sigma}{d \Omega d t} t^{3}$. $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega \mathrm{dE}_{\mathrm{f}}}=\frac{\sigma_{\mathrm{B}}}{4 \pi \hbar} \frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{i}}} \mathrm{S}(\mathrm{Q}, \omega) \longleftarrow \begin{aligned} & \text { Scattering } \\ & \text { function }\end{aligned}$ Thus $\mathrm{S}(\mathrm{Q}, \omega) \propto \mathrm{I}(2 \theta, \mathrm{t}) \cdot \mathrm{t}^{4}$

How do we determine values of t for each time channel?

Knowing when the choppers were open, and all required distances, we know when neutrons reach the sample $\left(\mathrm{t}_{\mathrm{S}}\right)$.

We define a delay time Δ (known as "tsd-min"). The time channel counter is reset at all times $\mathrm{t}_{\mathrm{S}}+\Delta$.

The time between pulses at the sample is T . The time channel width is $\delta t=0.001 \Delta$.

How do we decide what wavelength to use?

- Intensity $\mathrm{I}(\lambda)$ is highly structured at short λ. At long $\lambda, \mathrm{I}(\lambda)$ drops $\sim 50 \%$ for every $2 \AA$.
- Energy resolution varies roughly as $1 / \lambda^{3}$.
- Q range and Q resolution vary as $1 / \lambda$.
- Bragg peaks can be troublesome at short λ.

Dependence of intensity and resolution on wavelength

I(E)

Time-distance diagrams - multiple pulses

Removal of contaminant wavelengths

Container scattering and background corrections

$$
\begin{aligned}
\mathrm{C}_{\mathrm{S}}(2 \theta, \mathrm{t}) & =\left[\mathrm{C}_{\mathrm{SC}}^{\text {meas }}(2 \theta, \mathrm{t})-\mathrm{C}_{\mathrm{B}}^{\text {meas }}(2 \theta)\right] \\
& -\mathrm{f}(2 \theta) \cdot\left[\mathrm{C}_{\mathrm{C}}^{\text {meas }}(2 \theta, \mathrm{t})-\mathrm{C}_{\mathrm{B}}^{\text {meas }}(2 \theta)\right]
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{V}}(2 \theta, \mathrm{t})=\mathrm{C}_{\mathrm{V}}^{\text {meas }}(2 \theta, \mathrm{t})-\mathrm{C}_{\mathrm{B}}^{\text {meas }}(2 \theta)
$$

SC: sample plus container
B: background
C: container only
V: vanadium
$f(2 \theta)$: "self-shielding factor"

Normalization and detector efficiency corrections

