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Abstract

Small-angle neutron scattering (SANS) will be used to characterize the solution
structure of a water-soluble triblock copolymer. At low temperature, the
copolymer behaves as a polymer solution, but at higher temperature undergoes
a transition and forms micelles. These micelles are capable of solubilizing
hydrophobic materials and have found application in pharmaceuticals. You will
learn all aspects of collecting a complete set of SANS measurements, including
sample preparation, instrument setup, and the required measurements. After
collecting your raw SANS data, you will learn how to correct and reduce the
data into a form that can be analyzed. Data analysis will start with simple,
model-independent methods, becoming more detailed and more realistic
descriptions of the system. Guinier analysis, form factor scattering, and
interparticle interactions will be considered.

1. Introduction

Block copolymers are polymer chains that have been carefully synthesized to
have two or more “blocks” of repeating monomer units that are covalently
bonded together. These polymer blocks can have a distinctly different chemical
nature from each other, causing a competition of forces when the block
copolymers are dissolved in a solvent, or even in a melt. This interplay of forces
leads to a very rich array of microstructures that can form as dissimilar polymer
blocks try to avoid each other, but forced to remain together through a
covalent bond. Small-Angle Neutron Scattering (SANS) is a well-established
method for characterizing the microstructure in various materials, including
polymers. SANS measurements provide unique information that other
techniques often cannot access, and thus SANS has had a major impact on the
understanding of polymer conformations, morphology, rheology, and
thermodynamics.[1] In this experiment, we will use SANS to quantify the
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microstructural changes of a triblock copolymer in solution as the temperature
of the solvent is changed.

The triblock copolymer that will be used for this study is a commercially
available material, Pluronic P85.[2,3] These copolymers are block copolymers of
propylene oxide (PO) and ethylene oxide (EO). The propylene oxide block is
sandwiched between two ethylene oxide blocks. Typically, the ethylene oxide blocks
are the same length. The structure of the polymer is shown in Figure 1.

Figure 1: Structure of Pluronic copolymers

Pluronic P85 has an average structure of EO26PO40EO26, giving it an overall
molecular weight of 4600 g/mol. The polymer is very soluble in water, forming
gels at high concentrations (> 20 wt %) and temperatures above room
temperature.

The objectives of the experiment are to:
• Determine the dimensions of the free polymer chain in solution.

Is the polymer chain in a Gaussian coil conformation, as it would be in a
good solvent? This will be measured at low temperatures, where water is
still a good solvent for both EO and PO blocks.

• Determine the aggregation number of the micelles. At
temperatures greater than room temperature, P85 molecules aggregate,
as water becomes a poor solvent for the PO block. The size of the
aggregate can be determined in several ways. It may be estimated from
the radius of gyration, or from a more detailed model fit.

• Determine the presence or absence of interparticle interaction
effects.  This will be done by identifying and analyzing deviations in the
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q-dependence of the scattering from the scattering expected for a non-
interacting suspension of micelles.

2. Planning the Experiment

2.1 Scattering Contrast

In order for there to be small-angle scattering, there must be scattering
contrast between, in this case, the polymer and the surrounding water.  The
scattering is proportional to the scattering contrast, Dr, squared where

wp rrr -=D fl Scattering Contrast

and rp and rw are the scattering length densities (SLD) of the polymer and
the water, respectively.  Recall that SLD is defined as
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where V is the volume containing n atoms, and bi is the (bound coherent)
scattering length of the ith atom in the volume V.  V is usually the molecular
or molar volume for a homogenous phase in the system of interest. For a
polymer chain, the monomer is a convenient reference volume.

The SLDs for the two phases in the present case, polymer and water, can be
calculated from the above formula, using a table of the scattering lengths (such
as reference [4]) for the elements, or can be calculated using the interactive
SLD Calculator available at the NCNR’s Web pages
(http://www.ncnr.nist.gov/resources/index.html). From density measurements
of Pluronic polymers in solution,[5] the molecular volume of each of the blocks
can be calculated, and are found to be Vo = 69.5 Å3 and Vo = 82.4 Å3 for the EO
and PO blocks, respectively. The SLD’s for each of the polymer blocks and water
(both H2O and D2O) are given below in Table 1. The average SLD of the whole
Pluronic molecule is also calculated.
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Table 1.  The scattering length densities (SLD’s) for the average Pluronic, its
component blocks, and water.

Material Chemical Formula Mass Density
(g/ml)

SLD (Å-2)

Average P85 EO26PO40EO26 1.106 0.50 x 10-6

EO CH2CH2O (see Vo above) 0.59 x 10-6

PO CH(CH3)CH2O (see Vo above) 0.40 x 10-6

Light water H2O 1.00 -0.56 x 10-6

Heavy water D2O 1.105 6.36 x 10-6

From Table 1 we see that scattering contrast for P85 in H2O [proportional to
(0.50 –(-0.56))2 = 1.12] is 30 times smaller than in D2O [ (0.5 – 6.36)2 =
34.3].  However, this is not the only factor to consider.  One should also
consider the concomitant incoherent scattering from each phase1.  The
incoherent scattering contributes an isotropic background that can obscure
weak coherent scattering from the smaller structural features in a material.
Here we are interested in both small-scale structure, on the order of the single
polymer chain of ~ 1 nm, and much larger scale structure of the aggregates.
Since the incoherent scattering from H2O is about 30 times greater than that
from D2O, this also suggests that D2O is the right choice for the solvent.  The
contrast in D2O is much better and the lower incoherent scattering background
will make it easier to distinguish the q-dependent coherent signal from the q-
independent incoherent background.

2.2 Sample thickness to use

The next decision we face is: how thick should the sample be?  Recall that the
scattered intensity, Is(q), is proportional to the product of the sample thickness,
d, and the sample transmission, Ts, where Ts, the ratio of the transmitted beam
intensity to the incident beam intensity, is given by

† 

Ts = e-S t d ,      St = Sc + Si + Sa

where the total cross section per unit sample volume, St, is the sum of the
coherent, incoherent and absorption cross sections per unit volume.  The

                                      
1 Incoherent neutron scattering has no counterpart in x ray or light scattering. It arises from the interaction of the
neutron with the nucleus, which is described by a scattering length that depends on the particular nuclear isotope and
its nuclear spin state.  For more information, see, for example, Ref. [6]
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absorption, or neutron capture, cross section, Sa, can be computed accurately
from the tabulated absorption cross sections of the elements (and isotopes) if
the mass density and stoichiometry of the phase is known.  Sa is wavelength
dependent, being linearly proportional to l for nearly all elements.  The
incoherent cross section, Si, can be estimated from the cross section tables for
the elements as well, but not as accurately, because it depends somewhat on
the atomic motions and is, therefore, temperature dependent.  The coherent
cross section, Sc, can also only be estimated since it depends on the details of
both the structure and correlated motion of the atoms in the material.

The computations involved in estimating sample transmission are
straightforward but tedious. The task is made easier using the NCNR’s Web-
based SLD Calculator which computes not only scattering length density, but
also estimates the incoherent and absorption cross sections per unit volume.
Table 2 gives some of these results for P85, H2O and D2O.

Table 2.  Macroscopic cross sections (i.e. cross sections per unit volume)
computed with the SLD Calculator on the NCNR’s Web site for the solute and
solvents in the experiment. The values for the absorption cross sections are for
a wavelength of 6 Å.

Sc (cm-1) Si (cm-1) Sa (6 Å) (cm-1) St (cm-1) 1/St (cm)
Average P85 0.351 5.19 0.0721 5.61 0.178
H2O 0.260 5.37 0.0741 5.70 0.175
D2O 0.518 0.136 0.000135 0.654 1.53

The sample to be measured consists of 10 % P85 (by weight) in D2O, or
approximately 10 % P85 by volume.  Hence the total cross section per unit
volume for the suspension is 0.90 (0.654 cm-1) + 0.10 (5.61 cm-1) = 1.15 cm-1.
The scattered intensity is proportional to 

† 

d ⋅exp(-Std) which has a maximum at

† 

d = 1/ St . This suggests an optimal sample thickness of 1/St = 0.87 cm.
However, if Si and Sa are small compared with St, d should be chosen to make T
~ 0.9 rather than 1/e = 0.37 to avoid multiple scattering. This is the case for
our sample, so setting T = 0.9 corresponds to d = 0.09 cm. We will use a 1 mm
path length cell for the measurement.

2.3 Estimate the Q-range
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The basic building block of our sample is the polymer chain. Since we expect to
see free chains in solution, we need to estimate this length scale. We also need
an estimate of the micelle dimensions, so that we can measure over an
appropriate q-range. The radius of gyration of a Gaussian polymer chain made of
N monomer units is:

  

† 

Rg
2 =

Nl2
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with the statistical segment length, l. The statistical segment length is the
length for which the polymer chain follows a random walk. Typical values for l
are 3.6 Å to 5 Å, depending on the chemical nature of the polymer. Using an
estimated value of l = 4 Å, Rg ~ 16 Å. An appropriate instrumental q-range to
measure the polymer chains would have a qmin of approximately qmin ~ 1/Rg ~
0.06 Å-1 and a qmax of approximately qmax ~ 1/l ~ 0.25 Å-1

We expect at high temperatures, the polymer will aggregate and form
structures larger than the size of an individual coil, so we will want to measure
at smaller q-values to capture this larger length scale. Aggregation numbers
(Nagg) can be of the order of 40 to 50 chains per micelle, or a corresponding
spherical radius of 

† 

Nagg3 ª 4  times larger. So we will also configure the SANS
instrument to measure at a minimum q of qmin < 1/(4Rg )< 0.012 Å-1. Your
mileage may vary. For unknown samples, you will need to look critically at the
scattering (try a few samples), and make some judgment about whether this is
really the right q-range for your samples. Additionally, we want to measure to
as large of a q-value as practical, to have a clear measure of the incoherent
background, which becomes q-independent at “large enough” q-values.

If we plot the expected scattering from these structures, (using the Web tools
or the Igor Analysis models) we have some idea of what to expect in the actual
data. A plot of these structures is shown in Figure 2. The aggregate has been
simplistically approximated as a sphere. An incoherent background of 0.06 cm-1

from the D2O has been added to the model calculations to make a more realistic
prediction of what the scattering might look like. Using H2O as the solvent
would add an incoherent background of approximately 1 cm-1, and provide much
poorer scattering contrast.
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Figure 2: Predicted scattered intensity from a polymer chain and from a
spherical particle. The thick model lines have an added incoherent background
level that approximates D2O.

3. Collecting the Data

3.1 Configuring the SANS instrument

Now that we know what q-range we would like to measure, we must decide how
to configure the SANS instrument to do so efficiently.  Here again we can use a
computational tool, called SASCALC, as a guide.  A schematic of the NCNR’s 30-
m SANS instrument is shown in Fig. 2, and the instrument configuration
parameters, and their allowed range for the NG-3 30-m SANS instrument, are
listed in Table 3.
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Table 3. Instrument configuration parameters and their range of allowed
values for the NG-3 30-m SANS instrument.[7]

Variable Allowed Range
Source: neutron guide (NG3), 6 x 6 cm2

Monochromator: mechanical velocity selector with variable
speed

Wavelength Range: 5 to 20 Å
Wavelength Resolution (FWHM): 10 to 30% wavelength spread
Source-to-Sample Distance: 3.5 to 15 m in 1.5 m steps via insertion of

neutron guide segments
Sample-to-Detector Distance: 1.3 to 13.2 m continuously variable
Detector Offset: 0 – 25 cm (translation perpendicular to beam

to extend the q-range covered at a given
SDD)

Beam stop diameter: 2.54, 5.08, 7.62 or 10.16 cm
Beam Attenuator: 10 thicknesses to reduce beam intensity
Collimation: circular pinhole collimation
Sample Size: 0.5 to 2.5 cm diameter
q range: 0.015 to 6 nm-1

Size Regime: 1 to 600 nm
Detector: 64 x 64 cm2 He-3 position-sensitive

proportional counter (0.5 x 0.5 cm2

resolution)
Unique feature: neutron polarization
New Feature: focusing lenses and gravity correction prisms

Figure 3. Schematic diagram of the components of the NCNR’s 30-m SANS
instruments.

For a given set of allowed parameters, SASCALC computes the corresponding q-
range and the beam intensity (n/sec) on the sample.  The q-range for a
particular configuration is determined by the choice of wavelength, detector
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distance and detector offset.  To reach the large-q limit of the instrument, we
must use the shortest available wavelength, 6 A, the shortest sample-to-
detector distance, 133 cm, and the maximum detector offset, 25 cm.  The
number of neutrons guides affects primarily the beam intensity on the sample.
In general, we choose the largest number of guides, to maximize the beam
intensity on the sample, consistent with the desired q-range.  For this large-q
configuration, we can insert all 8 guides and still reach our desired qmin of 0.06
Å-1. In this case, we have chosen to use 7 guides to avoid an excessive count
rate on the detector, since this is a strongly scattering sample. The results from
SASCALC for these choices are as follows:

Source Aperture Diameter =   5.00 cm
Source to Sample =    542 cm
Sample Aperture to Detector =    138 cm
Beam diameter =   3.01 cm
Beamstop diameter =   2.00 inches
Minimum Q-value = 0.0239 1/Å (sigQ/Q = 19.1 %)
Maximum Horizontal Q-value = 0.4211 1/Å
Maximum Vertical Q-value = 0.2467 1/Å
Maximum Q-value = 0.4742 1/Å (sigQ/Q = 6.2 %)
Beam Intensity = 5038230 counts/s
Figure of Merit = 1.81e+08 Å^2/s
Attenuator transmission = 0.000286 = Atten # 8
***************** NG 3 *****************
Sample Aperture Diameter = 1.27 cm
Number of Guides = 7
Sample Chamber to Detector = 133.0 cm
Sample Position is Chamber
Detector Offset = 25.0 cm
Neutron Wavelength = 6.00 Å
Wavelength Spread, FWHM = 0.150
Sample Aperture to Sample Position = 5.00 cm

Next, we consider how to configure the instrument to reach the low-q end of
the desired measurement range. We want to reach qmin < 0.01 Å-1 to measure
the overall size of the micelles. We also want the q-range to overlap with the
high-q configuration. The q-range and other parameters for this configuration is
as follows, meeting our qmin requirement and providing good overlap with the
high-q configuration in the q-range 0.024 Å-1 to 0.042 Å-1:

Source Aperture Diameter =   5.00 cm
Source to Sample =   1472 cm
Sample Aperture to Detector =   1305 cm
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Beam diameter =   7.17 cm
Beamstop diameter =   3.00 inches
Minimum Q-value = 0.0035 1/Å (sigQ/Q = 30.3 %)
Maximum Horizontal Q-value = 0.0419 1/Å
Maximum Vertical Q-value = 0.0258 1/Å
Maximum Q-value = 0.0491 1/Å (sigQ/Q = 6.5 %)
Beam Intensity = 929371 counts/s
Figure of Merit = 3.35e+07 Å^2/s
Attenuator transmission = 0.00602 = Atten # 6
***************** NG 3 *****************
Sample Aperture Diameter = 1.27 cm
Number of Guides = 1
Sample Chamber to Detector = 1300.0 cm
Sample Position is Chamber
Detector Offset = 20.0 cm
Neutron Wavelength = 6.00 Å
Wavelength Spread, FWHM = 0.150
Sample Aperture to Sample Position = 5.00 cm

3.2 What Measurements to Make

In addition to measuring the scattering from the sample for the two instrument
configurations described in the previous section, additional measurements are
needed to correct for “background.” Counts recorded by the detector with the
sample in place can come from 3 sources (see Figure 4): 1) neutrons scattered
by the sample itself (the scattering we are interested in); 2) neutrons
scattering from something other than the sample, but which pass through the
sample; and, 3) everything else, including neutrons that reach the detector
without passing through the sample (stray neutrons or so-called room
background) and electronic noise in the detector itself.  To separate these
three contributions, we need three measurements:

i) Scattering measured with the sample in place (which contains contribution
from all 3 sources listed above), denoted Isam;

ii) Scattering measured with the empty sample holder in place (which contains
contributions from the 2nd and 3rd sources listed above), denoted Iemp; and,

iii) Counts measured with a complete neutron absorber at the sample position
(which contains only the contribution from the 3rd source listed above),
denoted Ibdg.
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Figure 4: Sources of neutrons measured at the detector. Additional
measurements must be made to correct the raw sample scattering to obtain
data that represents scattering from only the sample.[8]

In addition to these three ‘scattering’ measurements, the transmission (the
fraction of the incident beam intensity that passes through the sample without
being scattered or absorbed) of the sample and the sample cell must also be
measured in order to correctly subtract the contributions to the background
and to calibrate the scattering on an absolute cross section scale (the
procedure is discussed in Section 4, Data Reduction). The transmission is
measured by inserting a calibrated attenuator in the incident beam (to reduce
the direct beam intensity to an accurately measurable level) and measuring the
direct beam intensity with and without the sample (or the sample cell) in
position. The ratio of these two short measurements (typically 2-3 minutes
each) is the sample (or sample cell) transmission.

How the scattering and transmission measurements are used to reduce the data
to a quantity called the differential scattering cross section, which is intrinsic to
the sample is described in Section 4, Data Reduction.

3.3 How long to count

A SANS experiment is an example of the type of counting experiment where the
uncertainty, or more precisely the standard deviation, s, in the number of
counts recorded in time, I(t), is s = √ I(t).  If the scattering is roughly evenly
distributed over the SANS detector, then a good rule of thumb is that one
should accumulate about 500,000 total detector counts per sample
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measurement. If the accumulated counts are circularly averaged, one obtains
about 50 data points when plotting I(q) versus q.  This amounts to about
10,000 counts per data point with a standard deviation of √10,000 ~ 100 or
an uncertainty of about 1 %, which is good enough for most purposes.
A related question is how long should the background and empty cell
measurements be counted relative to the sample measurement. The same s =
√ I(t) relationship leads to the following approximate result for the optimal
relative counting times

† 

tbackground

tsample
=

Count Ratebackground

Count Ratesample
.

Hence if the scattering from the sample is weak, the background should be
counted for as long (but no longer!) as the sample scattering. However, if the
sample scattering count rate is, say, 4 times greater than the background rate,
the background should be counted only half as long as the sample scattering.

4. Data Reduction

The scattered intensity I(q) is related to the absolute cross-section dS(q)/dW
by the expression:

I(q) = f A d T (dS(q)/dW) DW e t

where f = flux on the sample,
A = sample area,
d = sample thickness,
T = measured sample transmission,
DW = solid angle subtended by one pixel of the detector,
e = detector efficiency, and
t = effective counting time, which is renormalized to give 108
monitor counts.

From this expression, one can observe that increasing either the sample area or
sample thickness increases the scattered intensity.

The three measurements needed to determine the scattering from the sample
are the sample, empty beam and blocked beam. These three raw data
measurements are defined as follows:
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† 

ISAM = CO Tsample+cell 
dS(q)
dW
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+

dS(q)
dW
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Empty Beam
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˜ ˜   +  IBlocked Beam,

† 

IEMP = CO Tcell 
dS(q)

dW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

EmptyBeam
 +  IBlocked Beam, and

† 

IBGD = IBlocked Beam

where I is the measured intensity and T is the measured transmission.  Co is
given by 

† 

CO = f A dDW e t .

The raw SANS data are corrected for the empty beam and blocked beam
contributions using

† 

ICOR = (ISAM - IBGD ) -
Tsample+cell

Tcell

Ê 

Ë 
Á 

ˆ 

¯ 
˜ IEMP - IBGD( )

to obtain the scattering contribution arising only from the sample.  This
corrected sample scattering is further corrected to account for any differences
in detector sensitivity (~1%) from pixel to pixel. The instrument scientists
measure the detector sensitivity each reactor cycle using an isotropic
scattering material such as Plexiglas or water. The correction is made by
dividing the corrected sample scattering by the detector sensitivity, normalized
to 1.0 count per pixel, on a pixel-by-pixel basis. This can be written as

† 

ICAL =  ICOR

Normalized Detector Sensitivity
 =  f A d Tsample+cell 

dS(q)
dW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

sample
 DW e t 

The data represents the number of neutron counts scattered from the sample,
and depends on the instrumental conditions. In order to obtain the differential

scattering cross-section of the sample,

† 

dS(q)
dW

, in absolute units of cm-1, the data

must be put on an absolute scale by one of two methods: 1) the direct beam
flux method or 2) the standard sample method.  To use the direct beam flux
method, measure a direct beam with nothing in the beam except an attenuator.
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Then, tTAI attenDirect      eDWf= . . The data are then put on an absolute scale using
the relation:

† 

dS(q)
dW

Ê 

Ë 
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ˆ 

¯ 
˜ 

sample
=

I (q)CAL

IDirect
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ˆ 
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˜ 

1
d

Ê 
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ˆ 

¯ 
˜ 

Tatten.

Tsample+cell

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ .

Alternatively, to use the standard sample method, a sample with known

absolute scattering cross-section at q=0, 

† 

dS(q = 0)
dW

, must be measured in

exactly the same instrument configuration as used for the experiment.

Instrument scientists have previously determined 

† 

dS(q = 0)
dW

 for several standard

samples that are available for use.  The measured intensity at q=0 for the
standard sample given by

† 

I (q = 0)STD = f A dSTD TSTD+cell  
dS(q = 0)

dW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

STD
 DW e t . The data are then put on

an absolute scale using the relation:

† 

dS(q)
dW
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sample
=

I (q)CAL

I (q = 0)STD
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dS(q = 0)
dW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

STD
.

These corrections and absolute scaling are made within the user-friendly data
reduction software package that uses IGOR.

5. Data Analysis

5.1 Guinier Approximation
The reduced SANS data will be modeled by progressively more realistic (and
more complex) models.[5,9] The greatest benefits from the simple models are
that they are easy to do, and require no assumptions about the actual shape of
the object. The scattering from dilute objects, at small enough q-values, can be
approximated by a simple exponential decay:

† 

I (q) ª I (0) exp -
1
3

q2Rg
2Ê 

Ë 
Á 

ˆ 

¯ 
˜ 



15

So a plot of ln[I(q)] vs. q2 will be linear, and the slope will be negative, and
proportional to the radius of gyration of the object. This type of plot is called a
Guinier plot, and works for any shape object. It is valid in a q-range of
approximately 

† 

qRg £ 1.

To Do: Fit the data from a dilute solution to the Guinier approximation (data
from micelles of 1 % by weight P85 in D2O will be provided for you to use).
Determine the Rg of the polymer in solution, and the Rg of the aggregate at a
function of temperature. How does the Rg of the micelle change with
temperature? What happens when you measure the Rg of the 10 % P85
micelles?

5.2 Gaussian chains in solution
The polymer chains in solution should behave like Gaussian coils, and their
scattering should be well-described by a Debye function:

† 

I (q) = f(Dr)2 Z vm
2(e-x + x -1)

x2

Z is the degree of polymerization, vm is the specific volume of the monomer,
and x = (qRg)2.

To Do: Fit the pre-micellar data (at low temperatures) with both the Debye
function and a Guinier fit. Compare the results to our rough estimate of the
polymer size. If there are differences, what could be the reasons?

5.3 Core – Shell Micelles
For a more detailed analysis of the scattering, we need to postulate a structure
for the aggregate. The structure of the P85 micelles is expected to be like
Figure 5, where the insoluble PPO blocks cluster together and are surrounded by
a shell of the soluble PEO chains, much like a polymer brush. From a distance,
the aggregate is simply a sphere. Closer up, it is a spherical core, with a shell on
the surface. We will consider our solution to contain some concentration of
these micellar structures, with a “dry” core that contains only polymer, and a
shell that contains extended chains and some quantity of solvent.
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Figure 5: Schematic structure of a P85 micelle. The insoluble PPO blocks are
expected to be in the core, surrounded by extended PEO chains that remain
soluble in water.

The scattered intensity from a collection of monodisperse particles can be
written as:

† 

I (q) = npP(q)S(q)

where np is the number density of particles, 

† 

P(q) = f 2(q)  is the form factor,
and S(q) is the structure factor. The scattering amplitude is defined as a Fourier
integral of the scattering length density difference between any point in the
particle and the solvent:

  

† 

fk
r q ( ) = rk

r r ( ) - rsolv[ ]eir q ⋅ r r dr r 
particle k

Ú

For the case of a core-shell sphere:

† 

P(q) =
3Vc(rc - rs) j1(qRc)

qRc
+

3Vs(rs - rsolv) j1(qRs)
qRs

È 

Î 
Í 

˘ 

˚ 
˙ 

2
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where Rc is the core radius, Rs is the outer radius of the shell (the total radius of
the sphere), 

† 

j1(x) = (sin x - x cos x) / x2 , and 

† 

Vi = (4p / 3)Ri
3. Note that the form

factor contains all of the information about the shape and scattering contrast
of the particle. The structure factor, S(q), describes the relative positions of
the micelles in solution. If the solution is dilute, the micelles do not interact with
each other (think of an ideal gas of micelles), then the structure factor, S(q) =
1 for all q-values. As the solution becomes more concentrated, the micelles
“feel” the presence of each other, excluding the volume of solution that other
micelles can occupy. This is reflected in the relative positions of the micelles in
the solution. S(q) is related to the pair correlation function, g(r), which
becomes more oscillatory in nature as the micelles become more concentrated
and more constrained to be in a particular location in the solution (think of the
extreme case of a crystal). Our system is between these extremes of
concentration. We will use the simplest S(q), calculated for a hard-sphere
fluid.[10,11]

We expect from thermodynamics that the aggregation number will not be a
single value, but rather a distribution. This polydispersity in micelle size has
been incorporated into the model calculation by integrating the form factor
over a distribution of core radius. The distribution used here is a Schulz
distribution, very similar to a Gaussian. Calculating the scattered intensity for
polydisperse, interacting particles, is in general a difficult problem. The simple
form for the scattered intensity I(q) = n P(q) S(q) relies on the assumption that
all of the particles are identical. In a polydisperse system, this is not the case –
each particle size (and the unknown size of the neighboring particle) must be
explicitly taken into account. The mathematics quickly becomes tedious, if not
intractable. See the references and Appendix C for all of the details [8,9]. For
this model, the form factor is averaged over the size distribution, while the
structure factor is approximated as calculated for the mean size. This
approximation is very good for the particle density and interactions between
the micelles.

To Do: Fit the scattered intensity from 10 % P85 to a model of core-shell
spheres with hard sphere interactions. If the fit is not good at some
temperatures, what part of the physical structure of the micelles has not been
incorporated in the model? How would the model compare to the data if there
were no interparticle interactions? If the fit is good, what do the parameters
mean? Do they make any physical sense? How could the model be improved?
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Appendix A: Dry Core - Shell Model of micelles

The dry core and shell model we are using to fit the data gives us several
parameters:

1) The core radius, Rc

2) The shell thickness, t
3) The core scattering length density, rc

4) The shell scattering length density rs

5) The polydispersity of the core radius
6) The effective volume fraction of micelles

So what do all of these parameters mean?
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Let’s start with (5), the polydispersity. This is defined as 

† 

p = s Ravg , or the
standard deviation of the distribution divided by the mean radius. Values of
p=0.1 to p=0.5 are quite typical for colloidal systems. For the calculations that
follow, we will use only the average core radius. A more accurate calculation

must account for the size distribution (

† 

Vavg ≠
4p
3

Ravg
3 ). See [Chen and Lin] for

an example.

The effective volume fraction, (6), is the volume fraction of micelles in the
sample as they interact with each other as hard spheres. This is not the same
as the physical volume fraction. For 10 wt % P85, this is very close to a volume
fraction of 0.10. The effective spherical radius of each micelle is larger than just
the polymer content, since the shells are swollen with water. So the volume
fraction of the solution that the micelles exclude from each other, is
significantly larger than 10%.

The physical dimensions (1-2) and the scattering lengths (3-4) are intertwined.
They must be connected through a complete material balance. We can work out
this accounting to determine the (average) aggregation number of the micelles.
For the diagram above of our “dry core” micelle:

• Each micelle contains some number of chains, Nagg

• Each micelle contains some number of water molecules
• The core contains all of the PO, and no water
• The core may contain some fraction of the EO (f)
• The shell contains EO and some D2O (y = moles D2O /moles EO)

The following material balances must then hold true:

† 

Vcore =
4p
3

Rc
3 = N agg ⋅ 40 ⋅ vPO + N agg ⋅ 52 ⋅ f ⋅ vEO

† 

Vshell =
4p
3

(Rc + t)3 - Rc
3[ ]

= N agg ⋅ 52 ⋅ (1- f ) ⋅ vEO + N agg ⋅ 52 ⋅ (1- f ) ⋅ y ⋅ vD2O

These equations state that the core is made up of the volume of all 40 of the
PO segments on each of Nagg chains, plus some fraction, f, of the (2*26=52) EO
segments. The shell volume is the fraction of EO (1-f) that is not in the core,
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plus some molar ratio of D2O that completes the volume. VD2O is the molar
volume of D2O. The SLD of the core was held fixed during the fitting at the
value calculated for PO (which is hardly different than EO). The shell SLD was
allowed to vary, and (should have) arrived at an optimal SLD somewhere
between the SLD of the core and the SLD of D2O. The SLD of the shell is an
average over all of the EO and D2O in the shell volume, or more simply, the sum
of the scattering lengths of everything in the shell divided by the volume they
occupy:

† 

rshell =
N agg ⋅ 52 ⋅ (1- f ) ⋅ bEOÂ + N agg ⋅ 52 ⋅ (1- f ) ⋅ y ⋅ bD2OÂ

N agg ⋅ 52 ⋅ (1- f ) ⋅ vEO + N agg ⋅ 52 ⋅ (1- f ) ⋅ y ⋅ vD2O

Where 

† 

bEOÂ is the sum of scattering lengths of the EO unit:

† 

bEOÂ = [2(6.646) + 4(-3.739) + 5.803] fm ⋅
Å

105 fm
= 4.139 ⋅10-5 Å

 and 

† 

bD2OÂ is the sum for D2O:

† 

bD2OÂ = [2(6.67) + 5.803] fm ⋅
Å

105 fm
= 19.14 ⋅10-5 Å.

Since the SLD of the shell is a fitted parameter, and everything else in the
equation is known, y can be solved for directly as:

† 

y =
bEOÂ - rshell ⋅ vEO

rshell ⋅ vD2O - bD2OÂ

As an example, the 10 % P85 sample at 40 C should yield values of:
Rc = 40.4 Å
t = 30.1 Å
SLD shell = 5.78E-6 Å-2

y is directly calculated as y = 22, meaning that there are 22 D2O
molecules per EO unit in the shell. The two material balances can be solved for
Nagg and f:

† 

N agg =
Vshell

52(vEO + y ⋅ vD2O )
+

Vcore

52vEO

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 1+

40vPO

52vEO

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
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and

† 

f =

4p
3

Rc
3 - Nagg ⋅40vPO

Nagg ⋅52vEO

with the volumes:

† 

Vshell =
4p
3

(Rc + t)3 - Rc
3[ ]

† 

Vcore =
4p
3

Rc
3

Plugging in the values gives:
Nagg = 56
f = 0.44

indicating that there are about 56 P85 molecules per micelles and that there is
a significant fraction of EO units in the “dry” core of the micelle.

• For each of the temperatures, does the aggregation number change at the
same rate as the overall radius of the micelle? What does this say about the
water content of the micelle as a function of temperature?

• What if we change the assumption that the core is "dry" and instead contains
some D2O? Why would there be D2O in the core with EO and PO? How many
additional parameters do we need, and how would we solve for them? How
could we determine which set of assumptions is more correct?

As a final note, the core-shell model could be written such that the aggregation
number and EO fraction are the “fitting” parameters, and the radii are calculated
internally with volumes specific to P85. The core-shell model is then more
convenient for determining the parameters we want, but with a loss of
generality. Also, the details of the assumptions and material accounting are
hidden, and not subject to critical thought.



23

Appendix B: A Sphere with “Whiskers”

The core-shell model we used is not very realistic, since the SLD’s are not
uniform slabs, but made of Gaussian chains. A more realistic approach is to
treat the micelles as aggregates of polymer chains, with all of the PPO confined
to the core of the micelle. To calculate the form factor of such a structure,
several terms must be determined:

1) The self-correlation of the sphere
2) The self-correlation of the chains
3) The cross correlation between the sphere and the chains
4) The cross correlation between different chains

The scattering from a single micelle, its form factor, is thus a sum of four
terms. The explanation of each of the terms closely follows work in the
literature.[12] The self-correlation of the spherical core of radius R is given by:

† 

Fs (q,R) = F2 (q,R) =
3[sin(qR) - qRcos(qR)]

(qR)3

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

2

and is also a function of the magnitude of the scattering vector, q.
The PEO chains of the shell obey Gaussian statistics, and so their self-
correlation is given by the Debye function:

† 

Fc (q,L,b) =
2[exp(-x) -1+ x]

x2

Where 

† 

x = Rg
2q2 and 

† 

Rg is the radius of gyration of the polymer chain. A
polymer chain of contour length, L, and Kuhn length, b, has a radius of gyration,

† 

Rg
2 = Lb 6. The contour length of a chain is the total extended length of the

chain. The Kuhn length, or the statistical segment length is related to the
flexibility of the monomer units of the chain. The cross term between the
sphere and the Gaussian chains at the surface of the sphere is:

† 

Ssc (q) = F(q,R)y(q,L,b) sin(qR)
qR
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where the function 

† 

y(q,L,b) is the form factor amplitude of a single chain:

† 

y(q,L,b) =
1- exp(-x)

x

where 

† 

x = Rg
2q2 as before. The final term is the interference between chains,

calculated as integrations over two chains and over the distance distribution of
the starting points of the two chains:

† 

Scc (q) = y 2 (q,L,b) sin(qR)
qR

È 

Î 
Í 

˘ 

˚ 
˙ 

2

Now the total forma factor of one micelle can be calculated. For a micelle with
aggregation number 

† 

N agg, and total excess scattering length of the polymer
blocks are 

† 

rs in the spherical core and 

† 

rc  in the surrounding chains, then adding
up the four terms gives:

† 

Fmic (q) = N agg
2 rs

2Fs (q,R) + N aggrc
2Fc (q,L,b) +

N agg (N agg -1)rc
2Scc (q) + 2N agg

2 rsrcSsc (q)

The forward scattering (q = 0) has a particularly simple form:

† 

Fmic (q = 0) = N agg
2 (rs + rc )2

The model can be made more realistic by including more features, with an
according increase in the complexity of the calculation and increase in the
number of fitting parameters.[13]. Other “improvements” that can be added to
the “whisker” model are:

1) Polydispersity of the aggregation number
2) Interparticle interference from micelle-micelle interactions
3) Rough interface between PO core and EO shell
4) Prevent EO chains from freely penetrating the PO core

You will have to judge whether these additions are appropriate (physically), and
whether there is a significant gain in understanding of the system derived from
the increased complexity.
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Appendix C: Polydisperse Dispersions

C.1 Basic Equations

In a colloidal dispersion, there are typically discrete particles of

different atomic composition from the surrounding solvent.  It is then

convenient to divide the scattering volume into Np cells, each containing one

particle and structureless solvent.

The scattered intensity from a collection of discrete particles can be

written as:[14]

  

† 

dS
dW

r q ( ) =
1
V

fk
r q ( )

2
+

1
V

 fk
r q ( ) f j

* r q ( )eir q ⋅ r r k -
r r j( )

j=1
j≠k

N p

Â
k=1

N p

Â
k=1

N p

Â

(C.1)
where   

† 

r r k and   

† 

r r j  are the centers of mass of cells k and j respectively.  The

scattering amplitude is given as a Fourier integral of the distribution of

scattering centers within each cell,

  

† 

fk
r q ( ) = rk

r r ( ) - rsolv[ ]eir q ⋅ r r dr r 
particle k

Ú (C.2)

The scattering amplitude of a cell depends only on the spatial

arrangement of nuclei in the cell, and on the relative scattering length

difference between particle and solvent.  For the special case of monodisperse
spherical particles,   

† 

fk
r q ( ) = f j

* r q ( ) = f q( ), and Equation C.1 can be factored into

the form:

  

† 

dS
dW

(r q ) = n p f (q) 2 1+  eir q ⋅( r r k -
r r j )

j=1
j≠k

N p

Â
k=1

N p

Â
Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

(C.3)

where np is the number density of particles.  This is compactly represented as
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† 

dS
dW

(r q ) = n pP(q) ⋅ S(r q )
(C.4)

by identifying the bracketed term as the form factor, P(q), and the term in

parentheses as the structure factor,   

† 

S(r q ).

The structure factor contains all of the information about the spatial

arrangement of the particles relative to an arbitrary origin.  For the case of an

isotropic solution (which will be the only one of interest in this Appendix), the

average can be calculated around a centrally located sphere.  The orientational

average can be calculated as:

† 

S(q) = 1+ 4p n p g(r) -1[ ] sin qr
qr

r2dr
0

•

Û 
ı 
Ù 

(C.5)

The pair correlation function, g(r), can be calculated using liquid state theory,

and thus the structure factor can be calculated.  The pair correlation function

can be related to thermodynamic properties of the fluid such as pressure or

compressibility.[15]

To obtain information from systems of interacting colloids, it is

necessary to model the scattered intensity by calculating the form and

structure factors.  This is easily done for monodisperse, spherical particles.

However, real colloidal dispersions are not monodisperse, and not always

spherical.  The following sections describe the approximations that can be used

to treat the scattering from polydisperse populations, and special cases that

can be treated without approximation.

C.2 Structure Factors

The effect of interactions between particles - even excluded volume

interactions - must be taken into account when interpreting the scattered
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intensity.  For particles of known morphology, it is often desirable to determine

the unknown interparticle potential.  This is done by proposing an interaction

potential, using statistical mechanics to calculate S(q), and fitting the model to

the data.

The interparticle potential determines the equilibrium arrangement of

particles, g(r), from which S(q) can be calculated.  For a homogeneous,

isotropic fluid of spheres, the Ornstein-Zernicke equation is:[15]

  

† 

h(r) = g(r) -1= c(r) + n c r r - r x ( )h(x)dr x Ú (C.6)

and states that the total correlation, h(r), between two particles is the sum of

the direct correlations, c(r), and the sum of all other correlations which are felt

indirectly through all other particles.  The structure factor S(q) depends directly

on c(r) (compare Equations C.5 and C.6).  Unfortunately, c(r) and h(r) are both

unknown functions, and the Ornstein-Zernicke equation can only be solved if

there is available an additional relation between them.  This additional equation

is an approximation, called a closure relation, which relates h(r) and c(r).

The simplest of these closure relations is the Percus-Yevick

closure,[16]

† 

c r( ) = g r( ) 1- ebu r( )[ ] (C.7)

which provides a good description of fluids with very short ranged interactions.

For the simplest case of hard sphere interactions:

† 

U(r) =
• r £ s

0 r > s

Ï 
Ì 
Ó 

(C.8)

c(r) is identically zero for 

† 

r > s .  In this case, an analytic solution for the

structure factor can be found.[17,18]
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C.3 Polydisperse Colloids

Up to this point, the discussion of form and structure factors has

been limited to the simplest, but unrealistic, case of monodisperse particles.

Real colloidal dispersions are polydisperse, and contain p different-sized

components.  To properly treat a general p-component mixture greatly

complicates the analysis of SANS data, and can quickly make the problem

intractable if simplifying approximations are not made.  Care must be taken that

any approximations are appropriate.

For a p-component mixture of spheres, the scattered intensity takes a

slightly more complicated form than Equation C.4:[19]

† 

dS
dS

q( ) = nin j( )
1
2 fi q( ) f j q( )Sij q( )

j

p

Â
i

p

Â
(C.9)

but still retains the same essential features as the monodisperse form.  The

scattered intensity is proportional to the concentration of scatterers, ni, the

scattering amplitudes, fi(q), and now also the partial structure factors, defined

by:

† 

Sij q( ) = dij + 4p nin j( )
1
2 gij r( ) -1[ ] sin qr

qr
r2dr

Û 
ı 
Ù (C.10)

which are the Fourier representation of the arrangement of spheres of type j

around a centrally located i particle.  dij is the Kronecker delta, and equals one if

i = j, and is zero otherwise.  For p components, 

† 

p p +1( ) 2 independent partial

structure factors are necessary to describe the microstructure.  These are

related to the partial pair correlation functions, gij(r) through the set of

multicomponent Ornstein-Zernicke equations:[22]

  

† 

hij r( ) = cij r( ) + nk cik
r r - r x ( )hkj x( )d

r x Ú
k

p

Â (C.11)
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which now require a set of closure relations to relate the hij(r) to the cij(r).  This

set of equations has only been solved in closed form for hard sphere mixtures.

It has been solved for continuous Schulz-distributed spheres in the PY

approximation.[21,22] Interaction potentials other than hard spheres require

different, more appropriate closure relations, and the set of Ornstein-Zernicke

equations must be solved numerically for the partial structure factors. Particles

that are not spherical add a further level of complexity since the spherical

symmetry is lost. In these systems, the relative position and orientation of the

particles is necessary to fully specify the state of the dispersion.
C.4 Approximations

If the particle sizes and orientations are uncorrelated, the scattered

intensity can be written in a familiar form,[23,24]

† 

dS
dW

q( ) = npP q( )S' q( ) (C.12)

with the following definitions for the average form factor:

† 

P q( ) = f 2 q( ) (C.13)

and the effective structure factor:

† 

S' q( ) = 1+
f q( )

2

f 2 q( )

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ S q( ) -1[ ] = 1+ b q( ) S q( ) -1[ ] (C.14)

where S(q) is the one component structure factor for the average radius.  The

horizontal bars represent an average over the size distribution.  This

“decoupling” approximation is appropriate for repulsive interaction and

moderate polydispersity (<20%).  For hard sphere or attractive interactions,

there are significant deviations from the exact solution, especially at low

q.[14,22]   A second, better approximation is the average structure factor

approximation,[25]  where the scattered intensity is factored into the form:
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† 

dS
dW

q( ) = np f 2(q) ⋅S q( ) (C.15)

where 

† 

S q( )  is the effective single component structure factor.  In practice,

† 

S q( )  is calculated using the monodisperse structure factor at the average

sphere radius, but is strictly defined by appropriate matching with the exact

multicomponent expression, Equation C.9.  This approximation is superior to the

decoupling approximation for hard sphere interactions and moderate

polydispersity (<20%).
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