Radiation Safety – Health Physics

Neutron Spectroscopy Summer School

Training Outline

- Radiation, Ionization, & Radioactivity
- Radiation Protection & Safety
- Radiation Dose
- Questions ??

Electromagnetic Radiation

THE ELECTROMAGNETIC SPECTRUM

Definitions

- Radiation: Energy (electromagnetic waves or particulates)
- Ionization: The removal of electrons from an atom
- Ionizing Radiation: Particles or rays with sufficient energy to remove electrons from atoms

Ionization

electron knocked out

The ionized atom causes changes which **MAY** damage cells, which **MAY** cause health effects

Ionizing Radiation

Atoms & Radioactivity

Most atoms are stable, but some may emit excess energy (radiation) and are called radioactive.

Radiation Sources

Radiation Exposure

SOURCE GEOMETRY

There are two ways that you can be exposed to a radiation source:

- 1. If the source is outside the body, you will receive an external exposure.
- 2. If the source gets into the body, you will receive an internal exposure.

Both kinds of exposure are of equal concern, despite subjective feelings to the contrary by many workers.

Reducing External Exposure

Time

PROTECTION METHODS

Always remember that the longer the exposure, the greater the dose, which leads to a greater amount of damage. Thus, your **first protective measure** should be to **minimize the time** of exposure.

Distance – Inverse Square Law

Shielding

Increasing the amount of shielding will decrease your amount of exposure.

Internal Exposure

Campfire Analogy

Activity

Airborne

Radiation

Radioactive Material

Radiation Dose Units

Dose Units are known as the rad and rem

rad = the amount of energy absorbed in tissue

rem = relates the amount of ionization in air (R) or the amount of absorbed energy (rad) to the degree of biological damage

Radiation Type	Quality Factor (QF)
X-ray	1
Gamma rays	1
Beta particles	1
Neutrons	3-10
Alpha particles	20

Average Background Dose

Health Physics Labels/Signs

Radiation Dosimetry

Real-Time Dose Readout

General Public Dose Limit = 100 mrem/yr

Occupational Dose Limit = 5,000 mrem/yr

Radiation Dose and Risk

Radiation Risk Comparisons

Activity*

Smoking 1 cigarette Travel 50 miles by car Drinking 30 cans of diet soda Eating 100 grilled steaks Chest X-ray (10 mrem)

Cause of Death

Cancer, Heart Disease Fatal Accident Cancer (saccharin) Cancer (benzopyrene) Cancer

*Performing this activity increases your chance of dying by one in a million (1 x 10⁻⁶)

Loss of Life Expectancy

Cause

Life Lost (time)

Smoking 20 cigarettes a day 6 years Alcohol consumption (U.S. average) 1 year Agricultural accidents 320 days Construction accidents 227 days Auto accidents 207 days Home accidents 74 days Occupational radiation dose (1 rem/y) 51 days

Ionizing Radiation - Overview

Can not see it, feel it, or smell it

- we must rely on training and equipment to protect ourselves

Relatively simple to detect and measure

- unlike chemical and biological hazards
- we can quickly assess and take action

Biological effects have been intensely studied for 50 years