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Abstract 
 

Quasielastic neutron spectroscopy will be used to examine the high temperature 
dynamics of the pyrazine ligand in the complex Mn[N(CN)2]2.pyrazine (manganese 
dicyanimide pyrazine). This experiment illustrates the important technique known as 
incoherent quasielastic neutron scattering. We shall discuss all aspects of the experiment, 
from sample preparation and the choice of instrumental setup through to data treatment 
and interpretation of results. 
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I. Introduction 
 
One of the major themes of solid state chemistry is the development of new molecular 
architectures with novel chemical and physical properties for applications such as 
chemical separation, catalysis and magnetic devices. One class of potentially useful 
materials is compounds consisting of transition metal ions linked together by polydentate 
(“multi-toothed”) organic ligands. The bonding motifs and magnetic properties of these 
materials can be substantially altered by changing the transition metal. For instance, 
Zn[N(CN)2]2 is a layered compound whereas its manganese analog, Mn[N(CN)2]2, is a 
three-dimensional “rutile” type material that is weakly ferromagnetic. Further 
modifications may be obtained by introducing ancillary π-conjugated ligands such as 
pyrazine (pyz), 4,4'-bipyridine and 2,2'-bipyridine. The molecular building blocks not 
only affect the spatial separation of the transition metal cations and the dimensionality of 
the crystal, but also modulate the super-exchange interactions. Of the Mn[N(CN)2]2L 
type materials that have been studied, L = pyz is the only one that exhibits long-range 
antiferromagnetic order above 2 K. 
 
Rietveld refinement of neutron powder diffraction (NPD) data for Mn[N(CN)2]2.pyz at 
1.35 K reveals a three-dimensional antiferromagnetic ordering that occurs below TN = 
2.53(2) K, in which the magnetic unit cell is doubled along the a- and c-axes as compared 
with the nuclear cell (Figure 1). Crystallographic studies as a function of temperature 

Figure 1. The low temperature crystal structure of Mn[N(CN)2]2.(pyz) is
characterized by two interpenetrating ReO3 type lattices. Manganese ions are
depicted as large spheres, while carbon atoms are small black spheres and nitrogen
atoms are small gray spheres. Hydrogen atoms are omitted for clarity. 

a 

c b 
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confirm the existence of a monoclinic to orthorhombic phase transition at ~200K. The 
transition is accompanied  by an increase (with increasing temperature) in the diffuse 
scattering (figure 2), as well as a significant increase in the deuterium Debye-Waller 
factors. A further transition is evidenced by differential scanning calorimetry at ~408 K. 
Our experiment with the Disk Chopper Spectrometer is designed to help us better 
understand what happens at the higher temperature transition. 

 
The neutron has several properties that enable scattering experiments to measure 
properties of materials that other techniques can measure with much less precision or not 
at all. Neutrons with wavelengths on the order of interatomic spacings also possess 
energies on the same order as those characteristic of phonons and intermolecular 
interactions; for example, a 1.8 Å neutron has an energy of ~25 meV (~200 cm-1). This 
means that structural and temporal information can be measured simultaneously. 
 
The reader is reminded that the scattering of neutrons is usually treated as the sum of two 
parts, known as coherent and incoherent scattering. To understand why such a separation 
is performed recall that the strength of the scattering from nuclei of the same element can 

Figure 2. Selected portion of the neutron powder diffraction patterns of 
Mn[N(CN)2]2.(pyz) taken at 5, 300 and 425 K, to highlight the increase in  
diffuse scattering with increasing temperature. 
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vary (and generally does vary) with spin and/or isotopic species. Hence when a neutron is 
scattered by a collection of nuclei the interference between the different scattered waves 
is normally neither complete nor completely absent. For this reason the double 
differential cross section 2[d / d d ]σ Ω ω , which describes the probability that neutrons are 
scattered into solid angle dΩ and energy transfer window d( ωh ), is normally separated 
into two terms. The first term is the coherent part which contains all of the interference 
effects such as Bragg scattering and small angle scattering. The second term is the 
incoherent scattering which represents the scattering from individual nuclei and is 
approximately isotropic. For a single element 2[d / d d ]σ Ω ω  can be expressed as  

 
2

f
coh inc inc

i

d 1 k [ S(Q, ) S (Q, )]
d d 4 k

σ
= σ ω +σ ω

Ω ω π
 (1) 

where Ω is the solid angle, ki and kf are the magnitudes of the initial and final neutron 
wavevectors, σcoh and σinc are the coherent and incoherent scattering cross sections, and 
S(Q, )ω and incS (Q, )ω  are the corresponding scattering functions which depend only on 
the momentum transfer Qh  (or wave vector transfer Q) and the energy transfer ωh . 
(Note that in general Q is a vector but since we shall be working with a powder, which 
has no preferred orientation, all that need concern us in this experiment is the magnitude 
of the vector.) The most important incoherent scatterer is hydrogen for which incσ = 79.9 
barns whereas σcoh is only 1.76 barns. Since the incoherent scattering cross section of 
hydrogen is much larger than those of almost all other nuclei, it is often reasonable (as a 
first approximation) to neglect the coherent scattering in systems that contain a relatively 
large fraction of hydrogen atoms.  

 
Elastic neutron scattering is scattering with no change in neutron energy, i.e. with 0ω=h  
and inelastic neutron scattering is scattering with a change in neutron energy, i.e. 
with 0ω≠h . On the other hand, quasielastic neutron scattering (QENS) involves the 
Doppler-like broadening of otherwise elastically scattered neutrons due to reorientational 
or diffusive motions of atoms in the target material. Thus QENS is a special kind of 
inelastic neutron scattering. In this experiment we shall use quasielastic neutron 
scattering to gain insights into the possible cause of the diffuse scattering observed in the 
powder diffraction data (figure 2), and to obtain a physical description of the dynamics of 
the pyrazine ligand in Mn[N(CN)2]2.pyz at 415 K or thereabouts.  
 
We shall first describe the samples to be used for the experiment, and the equipment that 
will be used to bring samples to the desired measurement temperature. The next section 
gives a brief discussion of the spectrometer as well as matters to be considered in 
choosing the incident wavelength for this experiment. We then describe the reduction of 
the data to obtain the incoherent scattering function incS (Q, )ω , and we follow with some 
words about the scattering that is expected for two possible models of the pyrazine ligand 

Can you explain the usefulness of deuteration, given that σcoh(deuterium) and 
σinc(deuterium) are 5.6 barns and 2 barns, respectively? 
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dynamics. This then sets the scene for the analysis and discussion of the experimentally 
measured scattering function. 
 
In what follows we shall drop the subscript “inc” from incS (Q, )ω  since the experiment is 
explicitly designed to measure the incoherent scattering function and the subscript is 
unnecessary. 
 

 
II. The sample 

 
Prior to the experiment approximately 4g of the protonated and deuterated samples will 
have been loaded into tall (10cm) annular aluminum cells (inner diameter 0.635 cm, outer 
diameter 1.27 cm) and press sealed with lead wire. At the start of the experiment the 
protonated sample will already be mounted inside a high temperature “displex” closed 
cycle helium refrigerator, sitting at some temperature (to be decided) between room 
temperature and 400 K; this is to save time heating it to the measurement temperature. 
We will demonstrate how the sample is heated to 425 K, taking great care to ensure that 
its temperature never exceeds ~435 K since it starts to decompose at about this 
temperature, in which case the next group will not be doing the experiment! 
 
To reduce the data we will need results from a run with the deuterated sample and from a 
normalization run using vanadium. These runs will have been performed before the start 
of the summer school since there will not be time to complete them the week of the 
school.  
 

 
 
 

III. The spectrometer 
 
We shall be performing this experiment using the Disk Chopper Spectrometer (DCS), 
which is a so-called “direct geometry” (fixed incident energy) time-of-flight 
spectrometer. In this type of instrument (figure 3) bursts of monochromatic neutrons 
strike the sample at equally spaced times. The energies of the scattered neutrons are 
determined from their arrival times at the detectors, since we know when the pulses were 
created as well as the distances DPS from the pulsing device to the sample and DSD from 
the sample to the detectors. There are two ways to produce a monochromatic pulsed 
beam at a steady state neutron source. One method is to use a single crystal to 
monochromate the white beam and a mechanical “chopper” to pulse it; the other method 
is to use multiple choppers, such as the seven (!) choppers of the DCS. 
 

Why do we typically use aluminum for sample containers and cryostat windows? 
What other materials might be used to seal sample containers? 
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Given the initial and final energies of the neutrons, Ei and Ef, the energy transfer 
i fE Eω= −h  is trivially obtained. Knowing the scattering angle 2θ we can also calculate 

the magnitude of the momentum transfer to the sample, Qh : 

 2
n i f i f( Q) 2m E E 2 E E cos 2 = + − θ h  (2) 

where mn is the mass of the neutron. (This follows from the definition i fQ k k= −
ur uur uur

 and 
the relationship between a neutron’s wave vector k and its energy E: 2 2

nE k / 2m= h .) 
 
The data acquisition system separately accumulates neutron counts for each of the 913 
DCS detectors. Furthermore the time between pulses, T, is normally divided into 1000 
time channels of equal width ∆t = 0.001T and each neutron event in a given detector is 
stored in one of these time channels according to its time of arrival at the detector. Thus 
the data acquisition system generates a two-dimensional array of counts Iij as a function 
of detector index i and time channel index j. This array is accumulated in a 
“histogramming memory” which is resident in the data acquisition computer and 
reflected to the instrument computer. At the end of each run cycle the array is saved, 
along with other pertinent information, to the hard disk of the instrument computer. 
 
At the DCS we shall first mount the sample on the sample table, taking care that it is 
correctly positioned with respect to the incoming beam. We shall bring the sample to its 
measurement temperature having connected the temperature controller to the instrument 
computer so that we can record the sample’s temperature throughout the experiment.  

Detector at scattering
angle 2θ

SP

known
distance DSD

known
distance DPS

2θ

D

Figure 3. A schematic
illustration of the
scattering geometry for a
direct geometry time-of-
flight spectrometer such
as the DCS. 

A monochromatic pulsed beam of neutrons can in principle be created using two 
choppers.  How does that work? Can you think why more than two choppers
might be needed at the DCS? 
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An incident wavelength will then be selected, together with other instrument parameters 
such as the “master speed” of the choppers. The choice of wavelength is critical and 
several factors must be considered. These include intensity at the sample (which peaks, 
remaining roughly constant, between ~2.5 and ~4.5 Å), the width of the elastic energy 
resolution function (which roughly varies as 1/λ3), the available Q range (which varies as 
1/λ), and concerns about “frame overlap” problems. A related consideration is the 
available range in sample energy gain (neutron energy loss). 

 
Once the sample is at temperature, with the choppers phased, we will be ready to define 
the measurements to be performed through the night. We shall define a “sequence” 
consisting of several “runs” plus at least one change of sample temperature. We shall also 
define the individual runs. (Each run comprises a set of “cycles”; at the end of each cycle 
the data is backed up to the disk). We shall then start the overnight sequence of 
measurements. Next day we shall stop the measurements and start the data reduction. 
 
In the experimental runs we shall collect intensity histograms Iij for the protonated 
version of the sample at at least two temperatures. Using previously acquired intensity 
histograms for the deuterated sample, for a vanadium metal sample and for a “dark 
count” run with the beam shutter closed, we shall reduce the data to obtain the double 
differential scattering cross section 2[d / d d ]σ Ω ω  and the scattering function S(Q, )ω .  
 

IV. Data reduction 
 
In this section we shall simply indicate some of the more important steps in the data 
reduction process.  We shall go into greater detail in our discussions at the time that the 
data reduction takes place. 
 
The measured scattering from the protonated sample comprises several components but 
we are only interested in one of these components: the incoherent quasielastic scattering 
from the hydrogen atoms. We shall therefore subtract the scattering from the deuterated 
sample, appropriately normalized, since to a good approximation it represents the elastic 
and quasielastic contributions from all the other atoms except hydrogen. 

 
Before doing this subtraction we shall subtract a time independent background from each 
of the runs. 

What are some possible origins of the contributions to the scattering from atoms
other than hydrogen? 

Where does the time independent background come from? 

What is the maximum theoretical sample energy gain that can be measured when
the incident energy is Ei, and how long would it take to measure the intensity of
neutrons scattered with this change in energy? 
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Neglecting effects such as self-shielding and multiple scattering the scattering in detector 
i and time channel j may be related to the corresponding double differential cross section  

2
ij[d / d dt]σ Ω  (note that this is per unit time, not energy) in the following fashion: 

 
2

ij m s ij
ij

dI t N
d dt
 σ

= ∆Ω∆ Φ η Ω 
 (3) 

where ∆Ω, the solid angle subtended by detector i, and ∆t, the width of time channel j, 
are presumed to be independent of i and j respectively, Nm is the number of sample 
molecules in the beam, Φs is the neutron flux at the sample, and ηij is the efficiency of 
detector i for neutrons detected in time channel j. 
 
Since we are not trying to extract an absolute cross section we can neglect the 
multiplicative constants in the above equation, but we should not ignore the detector 
efficiency function ηij. Since all of the detectors are to first order identical it is not 
unreasonable to treat ηij as the product of two terms, a function ηi0 which represents the 
efficiency of detector i for elastically scattered neutrons and a detector-independent 
function fj that describes the energy dependence of the efficiency of the detectors. The 
correction for differences in detector response, i.e. the determination of ηi0, is performed 
using the results of a measurement with a vanadium sample. 

 
The correction of the data for the energy dependence of the efficiency is achieved by 
calculation, knowing the various factors that affect the probability that a neutron is 
absorbed within a detector. 

 
To improve the statistics, recognizing that the incoherent scattering does not change 
rapidly with Q, we shall define 10-15 detector groups, each of which includes detectors 
within a specified range of angles. Since we are interested in the incoherent scattering we 
shall exclude detectors that contain significant contributions from coherent Bragg 
scattering. The differential cross section 2[d / d dt]σ Ω  for all detectors in a group will be 
summed and divided by the number of detectors in the group. 
 
Having obtained a quantity proportional to 2[d / d dt]σ Ω  we must now compute 

2[d / d d ]σ Ω ω  and finally S(Q, )ω . Since a neutron’s energy E is related to its time-of-
flight t over a fixed distance as 2E t−∝ , it follows that 3dE t dt−∝ . Hence 

2 2 2 2
3

f f

d d d dt d t
d d d dE d dt dE d dt

    σ σ σ σ
∝ = ∝    Ω ω Ω Ω Ω    

. 

To obtain S(Q, )ω we simply divide by kf (see eq. 1) . Equivalently we multiply by 
another factor of t. 

What are these factors? 

Why do we use vanadium for this purpose? 



 9

 
If a system in thermodynamic equilibrium can exist in a number of thermodynamic states 
and we consider two such states separated by an energy difference ωh , the probability 
that the system is in the lower energy state is greater by a factor exp( / kT)ωh than the 
probability that it is in the higher energy state.  From this it can be shown that for systems 
in thermodynamic equilibrium the scattering function S(Q, )ω  satisfies the so-called 
“detailed balance” relationship: S( Q, ) exp( / kT)S(Q, )− −ω = − ω ωh . Since we shall be 
fitting the data to a theoretical form that is symmetric in ωh  we shall first “symmetrize” 
the experimental S(Q, )ω  by multiplying it by exp( / 2kT)− ωh . 

 
Having reduced the experimental data to a symmetrized scattering function it is time to 
examine models that describe the motion of the hydrogen atoms in our sample, and 
corresponding predictions for the incoherent scattering function. 
 
 

V. Theory 
 
In this section we shall revert to using the subscript “inc” and we shall treat Q as a vector. 
 
Most quasielastic experiments are performed on systems that predominantly scatter 
neutrons incoherently. The incoherent scattering function is the space and time Fourier 
transform of the self-correlation function sG (r, t)r  which (classically) represents the 
probability that a particle that was at the origin at time t = 0 is at position rr at time t.  

 
A common way of expressing incS (Q, )ω

ur
 is in terms of the intermediate self scattering 

function sI (Q, t)
ur

, which is the space Fourier transform of  sG (r, t)r : 

 i t
inc s

1
S (Q, ) I (Q, t)e dt

2
− ωω =

π
∫

ur ur
 (4) 

 
An illustrative model for sG (r, t)r  (though inappropriate in the context of the present 
experiment) is that of simple Brownian diffusion, where times of observation are much 
longer than typical times between collisions. Fick’s Law governs this type of diffusion: 

 2
s sG (r, t) D G (r, t)

t
∂

= ∇
∂

r r
, (5) 

Use a similar definition to relate the coherent scattering function to a (different)
space-time correlation function. Why is it easier to formulate models of atomic
motion using incoherent scattering? 

Is symmetrization of S(Q, )ω  likely to be a large effect in this experiment? 
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where D is the diffusion constant. A solution to this equation is given by a self-
correlation function of the form 

 
2

3/ 2s

exp( r / 4Dt)
G (r, t)

(4 Dt)
−

=
π

r , (6) 

the space Fourier transform of which is 
 2

sI (Q, t) exp( Q Dt)= −
ur

. (7) 
Since this represents an exponential decay in time, the time Fourier transform yields a 
Lorentzian lineshape: 

 
2

2 2 2inc

1 DQ
S (Q, )

(DQ )
 

ω =  π +ω 

ur
 (8) 

that is centered at zero energy transfer and has a full width at half maximum height 
(FWHM), Γ, given by 

 22DQΓ = . (9) 
 
We shall now consider a quite different (and much more appropriate) model, representing 
the diffusional motion of hydrogen atoms among equivalent sites. As before we need 
only consider the motion of a single hydrogen atom. We consider the case of jump 
diffusion on a finite number of sites that lie on a circle. The rate equation that describes 
the real time motion of an atom is 

 i
i j

j i

df (t) 1 1
f (t) f (t)

dt ≠
= − +

τ τ ∑ , (10) 

where fi(t) is the probability that a particular atom is at site i at time t, τ is the time 
between jumps, and the sum is taken over all sites from which the molecule can jump 
directly to site i. Considering the particularly simple case of a proton undergoing jumps 
between just two equivalent sites, the rate equations are 
 

 1
1 2

df (t) 1 1
f (t) f (t)

dt
= − +

τ τ
  and   2

1 2

df (t) 1 1
f (t) f (t)

dt
= −
τ τ

. (11) 

 
Hence 

 1 2

d
f (t) f (t) 0

dt
 + =   (12) 

which also follows from the fact that 1 2f (t) f (t) 1+ =  (by definition). Assuming the 
particle is at site 1 initially (i.e. at t=0), the solutions are 
 

 1

1 2t
f 1 exp

2
 −

= + 
 τ

  and  2

1 2t
f 1 exp

2
 −

= − 
 τ

 (13) 

 
Writing 

 s 1 2G (r, t) f (t) (r) f (t) (r R)= δ + δ −
rr r r  (14) 
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where R
r

 is the vector between the two positions, the intermediate scattering function can 
be evaluated as 

 ( ) ( )s

1 1 2t
I (Q, t) 1 cos Q.R 1 cos Q.R exp

2 2
−   = + + −    τ

r r rr r
. (15) 

From this equation we see that the Fourier transform of the first term, which is time-
independent, gives a delta function in energy whereas the second term has an exponential 
time dependence that leads to a Lorentzian component in the quasielastic scattering. The 
result of performing a three-dimensional powder average and the final Fourier transform 
is as follows: 

 

 
[ ] ( ) [ ]

2 2inc

1 sin QR 1 sin QR 1 2
S (Q, ) 1 1

2 QR 2 QR 4
    τ

ω = + δ ω + −    π + τ ω    . (16) 

This is the basic equation that you will use to fit your data in the next section. 

 
The fractional intensity of the elastic component as a function of momentum transfer is 
termed the elastic incoherent structure factor (EISF). From the EISF one can learn 
something about the microscopic geometry of the motion. In figure 4 we illustrate the 
expected EISF for the uniaxial two-fold jump model described above and for the case 
where the number of jump sites is so large that it approximates uniaxial rotational 

What is the FWHM of the Lorentzian component, and how does it compare with the
width of the Lorentzian lineshape that we obtained for the case of long range
translational diffusion? 

Figure 4. The elastic incoherent structure factor for uniaxial two-fold
rotational diffusion (solid line) and for uniaxial rotational diffusion (dashed
line) as a function of QR. 
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diffusion. In principal it is possible to tell if a particle is undergoing rotational jumps or 
continuous diffusion on this basis alone. Practical limitations on maximum measurable Q 
values restrict this distinction to 6-fold jumps or less. 
 

 
 

VI. Data analysis 
 
Having reduced the data to the symmetrized form of the experimental scattering function 
S(Q, )ω , Q representing the average value of the elastic scattering vector for the detectors 

in each group, the next step is to fit the data to a model. We suggest that you try fitting 
each Q group to the two-fold jump model described in the previous section (i.e. an elastic 
delta function and a broader Lorentzian). In an actual experiment the scattering function 
is broadened with the instrumental resolution function so the model function must be 
numerically convoluted with the instrumental resolution function. 
 
Having fitted the experimental data to the two-fold jump model, the next step is to make 
plots of  the Lorentzian line width as a function of Q and of the EISF as functions of Q. It 
is then instructive to fit the EISF to its functional form (according to the model), in order 
to extract the jump distance R.  
 

 

VII. Concluding remarks 
 
In section V we discussed scattering functions that correspond to very simple models of 
diffusive motion. The situation is more complicated when a system displays more than 
one type of diffusive motion. If the various motions are uncoupled, the intermediate 
scattering function is a product of the individual intermediate scattering functions so that 
the scattering function is a convolution of the scattering functions for the individual 
motions. The situation simplifies considerably if the motions occur on very different time 
scales. Motions that are much slower than the time scale represented by the instrumental 
resolution show up as elastic scattering. On the other hand motions that are much faster 
give rise to an essentially flat background. Different instruments, with different 

What is the asymptotic value of the EISF for the two-fold jump model as Q→∞? 
What is it for rotational diffusion?  What would you expect the scattering function
to look like for a system where three-fold jumps occur among equivalent sites? 

(1) With what can the jump distance R be compared, and how does it compare? 
(2) What can you learn from the Q dependence of the widths of the Lorentzian

components? 
(3) Can you explain how the diffraction data (figure 2) and the QENS data (from

your experiment) relate to one another? 
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dynamical windows and different resolution capabilities, are needed to observe such 
motions. For example motions that are too slow to see using the DCS may well show up 
if the sample is put on the backscattering spectrometer. Conversely motions that are fast 
by DCS standards can usefully be studied using the FANS facility. 
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 Appendix A. Instrument Characteristics for the Disk Chopper Spectrometer 

(http://www.ncnr.nist.gov/instruments/dcs) 
 
The white beam from the cold neutron source is cleaned of contamination with high 
energy neutrons and gammas using an “optical filter”. This is basically a bent guide 
which ensures that there is no line of sight from the source to points beyond the local 
shutter.   
 
A cooled graphite filter removes short wavelength (~0.5 Å) neutrons that remain in the 
beam, permitting measurements at wavelengths down to almost 1.5 Å. 
 
The measured flux at the sample is reproduced below.  

 
A pulsed monochromatic neutron beam is produced using seven disk choppers. 
Chopper speeds may be varied from 1200 to 20000 rpm. Each of the pulsing and 
monochromating chopper pairs has three slots of different widths. In principle this 
permits three choices of resolution at a given wavelength and master chopper speed. The 

Why are there dips in the measured flux at wavelengths near 3.335 and 6.67 Å?
What’s going on around 2 Å? 



 15

resolution of the instrument is approximately triangular and essentially independent of 
beam height (10 cm) but depends on the width of the beam. Hence samples should ideally 
be tall and thin rather than short and fat. 
 
The calculated and measured elastic energy resolution of the DCS under a variety of 
conditions is shown in the figure below.              
 

 
An oscillating radial collimator, inside radius 200 mm, outside radius 300 mm, blade 
separation 2°, is used to reduce the scattering from sample environment structures. 
 

 
There are 913 six atmosphere 3He detectors covering an essentially continuous solid 
angle of ~0.65 steradians and arranged in three banks: 
� The middle bank detector scattering angles range from -30° to -5° and from +5° to 

+140° 
� The upper and lower bank detector scattering angles range from -30° to -10° and from 

+10° to +140° 
 

The flight distance from sample to detectors is 4010 mm. The flight chamber is purged 
with argon. 

Can you explain how the radial collimator works, and why it is 
oscillated? 

Why is the flight chamber purged with argon? 
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Appendix B. Possible Experiments on the Disk Chopper Spectrometer 
 
Phenomena that can be investigated include: 
� Translational and rotational diffusion processes, where scattering experiments 

provide information about time scales, length scales and geometrical constraints; the 
ability to access a wide range of wave vector transfers, with good energy resolution, 
is key to the success of such investigations 

� Low energy vibrational and magnetic excitations and densities of states 
� Tunneling phenomena 
� Low Q powder diffraction 

 
Research areas include: 
� Chemistry --- e.g. clathrates, molecular crystals, fullerenes 
� Polymers --- bound polymers, glass phenomenon, confinement effects 
� Biological systems --- protein folding, protein preservation, water dynamics in 

membranes  
� Physics --- adsorbate dynamics in mesoporous systems (zeolites and clays) and in 

confined geometries, metal-hydrogen systems, glasses 
� Materials --- negative thermal expansion materials, low conductivity materials, 

hydration of cement, carbon nanotubes, proton conductors, metal hydrides, magnetic 
systems, …. 

 

 

Appendix C. Some useful properties and relationships 
 
Neutron properties 
 
Mass:   1.675×10-24 g 
Electric charge: 0  
Spin:   ½ 
Magnetic moment: -1.913 nuclear magnetons 
 
Exact relationships 
 

h
mv

λ =   21
E mv

2
=   

2
k

π
=

λ
 

 
Approximate relationships 
 

2

81.8
E[meV]

( [ ])
=

λ Å
  

3.956
v[mm / s]

[ ]
µ =

λ Å
  2E[meV] 2.07(k[ ])= -1Å  
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Relevant scattering cross sections (in barns) 

 
For most elements the absorption cross section σabs is proportional to 1/v where v is the 
neutron velocity: note that mnv=h/λ. The values given in the table are for 2200 m/s 
neutrons. 
 
 

 
Appendix D. Spin Incoherence 

 
The strength of the scattering of a neutron by a nucleus, i.e. the neutron scattering length,  
depends on the spin of the compound nucleus. For an isotope with nuclear spin I the 
combined “nucleus + neutron” spin, I’, has two possible values, I+ = I+1/2 and I- = 
I-1/2,with which we associate two possible scattering lengths b+ and b-. Each of the 
possible values of the combined spin has 2I’+1 possible spin states, i.e. 2(I+1/2)+1 = 
2I+2 and 2(I-1/2) +1 = 2I states respectively, for a total of 4I+2 spin states. 
 
If the neutron and nuclear spins are randomly orientated, all states are equally probable, 
and the probabilities of the combined + and - spin states are p+ = (I+1)/(2I+1) and 
p-=I/(2I+1) respectively. 
 
The mean scattering length, <b>, and the mean of the scattering length squared, <b2>, 
 

           <b> = p+b+ + p-b-      and     <b2> = p+(b+)2 + p-(b-)2 

 
are used to calculate the coherent and incoherent bound cross sections. These cross 
sections are defined as follows: 

             2
coh 4 bσ = π   and ( )22

inc 4 b bσ = π − . 
Working through the numbers for hydrogen and deuterium is instructive. The relevant 
scattering lengths for hydrogen are b+ = 1.04×10-12 cm and b- = -4.74×10-12 cm, whereas 
the values for deuterium are b+ = 0.95×10-12 cm and b- = 0.10×10-12 cm.  
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1.9 0.5 11.0 N 

0.0035 0.001 5.55 C 
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