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    GP theory assumes that random fluctuations of a response follow a 
process that can be described by a normal distribution. If the statistical 
uncertainties for all responses of interest (say the group fluxes 
everywhere in the domain) can be treated as GPs, one could describe 
the correlations between these uncertainties via a covariance matrix. If 
this matrix is dense and ill-conditioned as most of practical physics 
problems yield, one could in principle reduce the computational overhead 
required to reduce the uncertainties everywhere by taking advantage of 
their correlations. The lower the effective rank of the covariance matrix, 
the more correlations between the responses, and the lower the 
computational overhead needed to reduce the variances globally.
    Let                                       represent a vector of the n responses of 
interest representing n random Gaussian processes. Denote 
                                   as N realizations of these random processes. The 
covariance between the two responses     and     is given by:

                                                                                      
                                                                                       .
The covariance information between all pairs of n responses may also be 
represented by a symmetric covariance matrix 
such that:                        . The singular value decomposition (SVD) form 
of this matrix is:

                                                                         .
    To provide a basis for comparison, we contrast the GP method to the 
FW-CADIS method2. In both of these methods, the weight windows-
based biasing is determined by solving an adjoint equation of the form 
(demonstrated first for a single response) :

                                                                  .

CASE STUDY #2: PWR Core Model

CASE STUDY #1: BWR Assembly Model

METHODOLOGY

     Variance reduction techniques are employed to accelerate the 
convergence of Monte Carlo (MC) simulation. Hybrid deterministic-MC 
methods utilize deterministic models (both forward and adjoint) to bias 
source particles and assign appropriate importance map to MC models. If 
done properly, hybrid methods have been shown to accelerate the 
convergence of MC simulation - that is obtaining acceptable reduction in 
the statistical uncertainties for the responses of interest with less 
computational overhead.
    Under the assumption that the statistical uncertainties resulting from 
the radiation transport may be treated as a Gaussian Process1, a new 
hybrid method for global variance reduction (GVR) is presented. The 
principle behind this method is recalled here along with a comparison to 
FW-CADIS method2, which is currently implemented in the SCALE 
package. The construction of the covariance matrix as needed by the GP 
method is implemented in the MAVRIC sequence of SCALE to facilitate 
the comparison of the GP and the FW-CADIS methods. In this work the 
GP method is applied two study cases - a simplified BWR assembly 
model and a higher dimensional problem representing a prototypical 
PWR core model – to demonstrate the efficiency of this method.

    The left figure is the X-Y view of 
the core loading pattern with 
details assembly described on the 
side, There are total 193 fuel 
assemblies (blue region) laid out a 
17x17 grid scheme and 
surrounded by light water (red 
region) and two types of fuel 
assemblies are designed:  UO2 
fuel assembly and a UO2-Gd2O3 
fuel assembly.
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CONCLUSIONS

Ø  GP provides one approach to take advantage of responses 
uncertainties correlations
Ø  Number of independent correlations are much smaller than number of 
responses, when responses are required everywhere in phase space
Ø  Deterministic models could be employed to identify correlations
Ø  Idea could be extended to other hybrid deterministic-MC techniques 
and to find correlations between responses sensitivities and eigenvalue 
sensitivities

    The relative uncertainty comparison of thermal flux for different 
methods are presented in figures as follows:

Pseudo Response
Ø FW-CADIS:

Ø GP:

GP vs. FW-CADIS

Coupled GP+FW-CADIS
 vs. FW-CADIS

    The relative uncertainty comparison of spatial thermal flux for different 
methods are depicted as the bar plots in the figures below; the metric 
employed for the comparison is presented on the right.

Pseudo Response
Ø FW-CADIS:

Ø Coupled GP + FW-CADIS:

    The simplified BWR assembly 
model is developed with 
MAVRIC sequences in SCALE 
package (see right figure). It 
consists of 7x7 array of fuel pins 
with various enrichments. A fixed 
source subcritical system is 
presented and a data library with 
total 27 neutron and 19 photon 
energy group is applied.

GP vs. FW-CADIS Coupled GP+FW-CADIS
 vs. FW-CADIS
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    To achieve GVR, the FW-CADIS method formulates a single pseudo 
response of the form:     

                                                              .
In this method, more MC particles are sent to regions in the phase space 
where the flux is low. In contrast, the GP method forms pseudo response 
as follows:

                                                                    .
They are calculated from the singular vectors of the covariance matrix 
and executed based on the effective subspace of the matrix rather than 
the whole space to save computational overheads.

1

r
T T

i i i
i

w wσ
=

= =∑C WΣW v v

x-index

y-
in

de
x

Reduced Percentage of Uncertainty (%)

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7 25

30

35

40

45

50

55

x-index

y-
in

de
x

Reduced Percentage of Uncertainty (%)

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7 10

15

20

25

30

35

40

45

50

55

x-index

y-
in

de
x

Reduced Percentage of Uncertainty (%)

 

 

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
56

58

60

62

64

66

68

70

72

74

x-index

y-
in

de
x

Reduced Percentage of Uncertainty (%)

 

 

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
54

56

58

60

62

64

66

68

70

72

74


