
Landau analysis of the symmetry of magneti
 stru
ture and magnetoele
tri
intera
tions in multiferroi
sA. B. HarrisDepartment of Physi
s and Astronomy, University of Pennsylvania, Philadelphia, PA 19104(Dated: July 9, 2007)This paper represents a detailed instru
tion manual for 
onstru
ting the Landau expansion formagnetoele
tri
 
oupling in in
ommensurate ferroele
tri
 magnets, in
luding Ni3V2O8, TbMnO3,MnWO4, TbMn2O5, YMn2O5, CuFeO2, and RbFe(MO4)2. The �rst step is to des
ribe the mag-neti
 ordering in terms of symmetry adapted 
oordinates whi
h serve as 
omplex valued magneti
order parameters whose transformation properties are displayed. In so doing we use the previouslyproposed te
hnique to exploit inversion symmetry, sin
e this symmetry has seemingly been uni-versally overlooked. Inversion symmetry severely redu
es the number of �tting parameters neededto des
ribe the spin stru
ture, usually by �xing the relative phases of the 
omplex �tting param-eters. By introdu
ing order parameters of known symmetry to des
ribe the magneti
 ordering,we are able to 
onstru
t the trilinear magneto-ele
tri
 intera
tion whi
h 
ouples in
ommensuratemagneti
 order to the uniform polarization and thereby we treat many of the multiferroi
 systemsso far investigated. In most 
ases the symmetry of the magneto-ele
tri
 intera
tion determines thedire
tion of the magneti
ally indu
ed spontaneous polarization. We use the Landau des
ription ofthe magneto-ele
tri
 phase transition to dis
uss the qualitative behavior of various sus
eptibiltiesnear the phase transition. The 
onsequen
es of symmetry for opti
al properties su
h as polarizationindu
ed mixing of Raman and infra-red phonons and ele
tromagnons are analyzed. The impli
ationof this theory for mi
ros
opi
 models is dis
ussed.PACS numbers: 75.25.+z, 75.10.Jm, 75.40.GbI. INTRODUCTIONRe
ently there has been in
reasing interest in sys-tems (multiferroi
s) whi
h exhibit an observable intera
-tion between magneti
 and ele
tri
 degrees of freedom.1Mu
h interest has 
entered on a family of multifer-roi
s whi
h display a phase transition in whi
h uni-form ferroele
tri
 order appears simultaneously with in-
ommensurate magneti
 ordering. Early examples ofsu
h a system whose ferroele
tri
 behavior and mag-neti
 stru
ture have been thoroughly studied are TerbiumManganate, TbMnO3 (TMO).2,3 and Ni
kel Vanadate,Ni3V2O8 (NVO)4{7. A similar 
omprehensive analysishas re
ently been given for the triangular latti
e 
om-pound RbFe(MoO4)2 (RFMO).8 A number of other sys-tems have been shown to have 
ombined magneti
 andferroele
tri
 transitions,9{14 but the investigation of theirmagneti
 stru
ture has been less systemati
. Initiallythis 
ombined transition was somewhat mysterious, butsoon a Landau expansion was developed4 to provide aphenomenologi
al explanation of this phenomenon. Analternative pi
ture, similar to an earlier result15 basedon the 
on
ept of a \spin-
urrent," and whi
h we referto as the \spiral formulation,"16 has gained popularitydue to its simpli
ity, but as we will dis
uss, the Landautheory is more universally appli
able and has a numberof advantages. The purpose of the present paper is todes
ribe the Landau formulation in the simplest possi-ble terms and to apply it to a large number of 
urrentlystudied multiferroi
s. In this way we hope to demystifythis formulation.It should be noted that this phenomenon (whi
h we


all \magneti
ally indu
ed ferroele
tri
ity") is 
loselyrelated to the similar behavior of so-
alled \improperferroele
tri
s," whi
h are 
ommonly understood to bethe analogous systems in whi
h uniform magneti
order (ferromagnetism or antiferromagnetism) driveferroele
tri
ity.17 Several de
ades ago su
h systems werestudied18 and reviewed17,19 and present many parallelswith the re
ent developments.One of the problems one en
ounters at the outset ishow to properly des
ribe the magneti
 stru
ture of sys-tems with 
ompli
ated unit 
ells. This, of 
ourse, is avery old subje
t,20{22 but surprisingly, as will be do
-umented below, the full rami�
ations of symmetry arenot widely known. A

ordingly, we feel it ne
essary torepeat the des
ription of the symmetry analysis of mag-neti
 stru
tures. While the �rst part of this symmetryanalysis is well known to experts, we review it here, espe-
ially be
ause our approa
h is often far simpler and lesste
hni
al than the standard one. However, either ap-proa
h lays the groundwork for in
orporating the e�e
tsof inversion symmetry, whi
h, in the re
ent literature,have often been overlooked until our analysis of NVO3{7and TMO.3 Inversion symmetry was also addressed byS
hweizer with a subsequent 
orre
tion.23 Very re
entlya more formal approa
h to this problem has been givenby Radaelli and Chapon24 and by S
hweizer et al.25 But,at least in the simplest 
ases, the approa
h initially pro-posed by us and used here seems easiest. We here applythis formalism to a number of 
urrently studied multifer-roi
s, su
h as DyMnO3 (DMO),9 MnWO4 (MWO)13,14,TbMn2O5 (TMO25),11,12 YMn2O5 (YMO25)12, CuFeO2(CFO),10 and RFMO.8 As was the 
ase for NVO4{7 andTMO,3 on
e one has in hand the symmetry properties



2of the magneti
 order parameters, one is then able to
onstru
t the trilinear magnetoele
tri
 
oupling term inthe free energy whi
h provides a phenomenologi
al expla-nation of the 
ombined magneti
 and ferroele
tri
 phasetransition.This paper is organized in 
onformity with the aboveplan. In Se
. II we review a simpli�ed version of thesymmetry analysis known as representation theory. Herewe also review the re
ently proposed3{7 te
hnique to in-
orporate the 
onsequen
es of inversion symmetry. InSe
. III we apply this formalism to develop magneti
order parameters for a number of multiferroi
 systemsand in Eq. (126) we give a simple example to show howinversion symmetry in
uen
es the symmetry of the al-lowed spin distribution. Then in Se
. IV, we use thesymmetry of the order parameters to 
onstru
t a magne-toele
tri
 
oupling free energy, whose symmetry proper-ties are manifested. We give an analysis of the Landaudes
ription of the magneto-ele
tri
 phase transition. Inparti
ular we dis
uss the behavior of various sus
eptibil-ities near the phase transition. In Se
. V we dis
uss howthe magneto-ele
tri
 intera
tion leads to mixing of infra-red a
tive and Raman a
tive phonon modes and to themixing of magnons with phonons. Finally, in Se
. VI wesummarize the results of these 
al
ulations and dis
usstheir relation to 
al
ulations based on the spin 
urrentmodel15 or the phenomenology of 
ontinuum theory.16II. REVIEW OF REPRESENTATION THEORYAs we shall see, to understand the phenomenology ofthe magnetoele
tri
 
oupling whi
h gives rise to the 
om-bined magneti
 and ferroele
tri
 phase transition, it is es-sential to 
hara
terize and properly understand the sym-metry of the magneti
 ordering. In addition, as we shallsee, to fully in
lude symmetry restri
tions on possiblemagneti
 stru
tures that 
an be a

essed via a 
ontinu-ous phase transition is an extremely powerful aid in themagneti
 stru
ture analysis, A

ordingly in this se
tionwe review how symmetry 
onsiderations restri
t the pos-sible magneti
 stru
tures whi
h 
an appear at an order-ing transition. The full symmetry analysis has previouslybeen presented elsewhere,3{7, but it is useful to repeat ithere both to �x the notation and to give the reader 
on-venient a

ess to this analysis whi
h is so essential tothe present dis
ussion. To avoid the 
omplexities of themost general form of this analysis (
alled representationtheory),23{25 we will limit dis
ussion to systems havingsome 
ru
ial simplifying features. First, we limit 
on-sideration to systems in whi
h the magneti
 ordering isin
ommensurate. In the examples we 
hoose k will usu-ally lie along a symmetry dire
tion of the 
rystal. Se
-ond, we only 
onsider systems whi
h have a 
enter ofinversion symmetry, be
ause it is only su
h systems thathave a sharp phase transition at whi
h long-range ferro-ele
tri
 order appears. Thirdly, we restri
t attention to
rystals having relatively simple symmetry. (What this

means is that ex
ept for our dis
ussion of TbMn2O5 wewill 
onsider systems where we do not need the full ap-paratus of group theory, but 
an get away with simplylabeling the spin fun
tions whi
h des
ribe magneti
 orderby their eigenvalue under various symmetry operations.)By avoiding the 
omplexities of the most general situ-ations, it is hoped that this paper will be a

essible tomore readers. Finally, as we will see, it is 
ru
ial thatthe phase transitions we analyze are either 
ontinuousor very nearly so. In many of the examples we dis
uss,our simple approa
h6 is vastly simpler than that of stan-dard representation theory26{28 augmented by spe
ial-ized te
hniques to expli
itly exploit inversion symmetry.A. Symmetry Analysis of the Magneti
 FreeEnergyIn this subse
tion we give a review of the formalismused previously3,4 and presented in detail in Refs. 6,7.Sin
e we are mainly interested in symmetry properties,we will des
ribe the magneti
 ordering by a version ofmean-�eld theory in whi
h one writes the magneti
 freeenergy FM asFM = 12 Xr;�;r0� ��1��(r; r0)S�(r)S�(r0)+O �S4� ; (1)where S�(r) is the thermally averaged �-
omponent ofthe spin at position r. In a moment, we will give anexpli
it approximation for the inverse sus
eptibility �.We now introdu
e Fourier transforms in either of twoequivalent formulations. In the �rst formulation (whi
hwe refer to as \a
tual position") one writes the Fouriertransform asS�(q; �) = N�1XR S�(R+ � )eiq�(R+� ) (2)whereas in the se
ond (whi
h we refer to as \unit 
ell")one writesS�(q; �) = N�1XR S�(R+ � )eiq�R ; (3)where N is the number of unit 
ells in the system, �is the lo
ation of the �th site within the unit 
ell, andR is a latti
e ve
tor. Note that in Eq. (2) the phasefa
tor in the Fourier transform is de�ned in terms of thea
tual position of the spin rather than in terms of theorigin of the unit 
ell, as is done in Eq. (3). In some
ases (viz. NVO) the results are simpler in the a
tualposition formulation whereas for others (viz. TMO) theunit 
ell formulation is simpler. We will use whi
heverformulation is simpler. In either 
ase the fa
t that S�has to be real indi
ates thatS�(�q; �) = S�(q; �)� : (4)



3We thus haveFM = 12 Xq;�;� 0;�;� ��1��(q; �; � 0)S�(q; �)�S�(q; � 0)+O �S4� ; (5)where, for the \a
tual position" formulation,��1��(q; �; � 0) = XR ��1��(�;R+ � 0)eiq�(R+� 0�� ) (6)and for the \unit 
ell" formulation��1��(q; �; � 0) = XR ��1��(�;R+ � 0)eiq�R : (7)To make our dis
ussion more 
on
rete we 
ite the sim-plest approximation for a system of spins on a orthorhom-bi
 Bravais latti
e with general anisotropi
 ex
hange 
ou-pling, so that the Hamiltonian isH = X�;�;r;r0 J��(r; r0)s�(r)s�(r0) +X�r K�s�(r)2 ;(8)where s�(r) is the �-
omponent of the spin operator atr and we have in
luded a single ion anisotropy energyassuming three inequivalent axes, so that the K� are alldi�erent. One has that��1��(r; r0) = J��(r; r0) + [K� + 
kT ℄Æ�;�Ær;r0 ; (9)where Æa;b is unity if a = b and is zero otherwise and 
 isa spin-dependent 
onstant of order unity, so that 
kT isthe entropy asso
iated with a spin S. Then��1��(q) = Æ���2J1 [
os(a�qx) + 
os(a�qy)+ 
os(a�qz)℄ + akT +K�� ; (10)where a� is the latti
e 
onstant in the �-dire
tion29 andwe assume that Kx < Ky < Kz. Graphs of ��1(q) areshown in Fig. 1 for both the ferromagneti
 (J1 < 0) andantiferromagneti
 (J1 > 0) 
ases. For the ferromagneti

ase we now introdu
e a 
ompeting antiferromagneti
next-nearest neighbor (nnn) intera
tion J2 > 0 along thex-axis, so that��1��(qx; qy = 0; qz = 0) = [4J1 + 2J1 
os(axqx)+2J2 
os(2axqx) + akT +K�℄ ; (11)and this is also shown in Fig. 1. As T is lowered onerea
hes a 
riti
al temperature where one of the eigen-values of the inverse sus
eptibility matrix be
omes zero.This indi
ates that the paramagneti
 phase is unstablewith respe
t to order 
orresponding to the 
riti
al eigen-ve
tor asso
iated with the zero eigenvalue. For the fer-romagnet this happens for zero waveve
tor and for theantiferromagnet for a zone boundary waveve
tor in agree-ment with our obvious expe
tation. For 
ompeting in-tera
tions we see that the values of the J 's determine

a waveve
tor at whi
h an eigenvalue of ��1 is minimal.This is the phenomenon 
alled \waveve
tor sele
tion,"and in this 
ase the sele
ted value of q is determined byextremizing ��1 to be30
os(axq) = J1=(4J2) ; (12)providing J2 > �J1=4. (Otherwise the system is ferro-magneti
.) Note also, that 
rystal symmetry may sele
ta set of symmetry-related waveve
tors, whi
h 
omprisewhat is known as the star of q. (For instan
e, if the sys-tem were tetragonal, then 
rystal symmetry would implythat one has the same nnn intera
tions along the y-axis,in whi
h 
ase the system sele
ts a waveve
tor along thex-axis and one of equal magnitude along the y-axis.From the above dis
ussion it should be 
lear that ifwe assume a 
ontinuous transition so that the transi-tion is asso
iated with the instability in the terms in thefree energy quadrati
 in the spin amplitudes, then thenature of the ordered phase is determined by the 
rit-i
al eigenve
tor of the inverse sus
eptibility, i. e. theeigenve
tor asso
iated with the eigenvalue of inverse sus-
eptibility whi
h �rst goes to zero as the temperature isredu
ed. A

ordingly, the aim of this paper is to analyzehow 
rystal symmetry a�e
ts the possible forms of the
riti
al eigenve
tor.When the unit 
ell 
ontains n > 1 spins, the inversesus
eptibility for ea
h waveve
tor q is a 3n� 3n matrix.The ordering transition o

urs when, for some sele
tedwaveve
tor(s), an eigenvalue �rst be
omes zero as thetemperature is redu
ed. In the above simple examplesinvolving isotropi
 ex
hange intera
tions, the inverse sus-
eptibility was 3� 3 diagonal matrix, so that ea
h eigen-ve
tor trivially has only one nonzero 
omponent. The
riti
al eigenve
tor has spin oriented along the easiestaxis, i. e. the one for whi
h K� is minimal. In thepresent more general 
ase n > 1 and arbitrary intera
-tions 
onsistent with 
rystal symmetry are allowed. Toavoid the te
hni
alities of group theory, we use as ourguiding prin
iple the fa
t that the free energy, being anexpansion in powers of the magnetizations relative to thethe paramagneti
 state, must be invariant under all thesymmetry operations of the 
rystal.26,31 This is the sameprin
iple that one uses in dis
ussing the symmetry of theele
trostati
 potential in a 
rystal.32 We now fo
us ourattention on the 
riti
ally sele
ted waveve
tor q whi
hhas an eigenvalue whi
h �rst be
omes zero as the tem-perature is lowered. This value of q is determined bythe intera
tions and we will 
onsider it to be an experi-mentally determined parameter. Operations whi
h leavethe quadrati
 free energy invariant must leave invariantthe term in the free energy F2(q) whi
h involves only thesele
ted waveve
tor q, namelyF2(q) � 12 X�;� 0;�;� ��1��(q; �; � 0)S�(q; �)�S�(q; � 0) :(13)Any symmetry operation takes the original variables be-fore transformation, S�(q; �), into new ones indi
ated by
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FIG. 1: Inverse sus
eptibility ��1(q; 0; 0). a) Ferromagneti
 model (J1 < 0), b) Antiferromagneti
 model (J1 < 0), and 
)Model with 
ompeting intera
tions (the nn intera
tion is antiferromagneti
). In ea
h panel one sees three groups of 
urves.Ea
h group 
onsists of the three 
urves for ���(q) whi
h depend on the 
omponent label � due to the anisotropy. The x axisis the easiest axis and the z axis is the hardest. (If the system is orthorhombi
 the three axes must all be inequivalent. Thesolid 
urves are for the highest temperature, the dashed 
urves are for an intermediate temperature, and the dash-dot 
urvesare for T = T
, the 
riti
al temperature for magneti
 ordering. Panel 
) illustrates the nontrivial waveve
tor sele
tion whi
ho

urs when one has 
ompeting intera
tions.primes. We write this transformation asS0�(q; � ) =X�0� U�� ;�0� 0S�0(q; � 0) : (14)A

ording to a well known statement of elementary quan-tum me
hani
s, if a set of 
ommuting operators T1; T2 : : :also 
ommute with ��1(q), then the eigenve
tors of��1(q) are simultaneously eigenve
tors of ea
h of theTi's. (This mu
h reprodu
es a well known analysis.20{22We will later 
onsider the e�e
t of inversion, the analysisof whi
h seems to have been universally overlooked). Wewill apply this simple 
ondition to a number of multi-ferroi
 systems 
urrently under investigation. (This ap-proa
h 
an be mu
h more straightforward than the stan-dard one when the operations whi
h 
onserve waveve
torunavoidably involve translations.) As a �rst example we
onsider the 
ase of NVO and use the \a
tual position"Fourier transforms. In Table I we give the general posi-tions (this set of positions is the so-
alled Wy
ko� orbit)for the spa
e group Cm
a (#64 in Ref. 33) of NVOand this table de�nes the operations of the spa
e groupof Cm
a. In Table II we list the positions of the twotypes of sites o

upied by the magneti
 (Ni) ions, whi
hare 
alled \spine" and \
ross-tie" sites in re
ognition oftheir distin
tive 
oordination in the latti
e, as 
an be seenfrom Fig. 3, where we show the 
onventional unit 
ell ofNVO. Experiments6,38 indi
ate that as the temperatureis lowered, the system �rst develops in
ommensurate or-der with q along the a-dire
tion with q � 0:28.39 In Fig.2 we show the phase diagram in the T -H plane for Halong the 
 axis, for T > 2K.6The group of operations whi
h 
onserve waveve
tor aregenerated by a) the two-fold rotation 2x and b) the glideoperation mz, both of whi
h are de�ned in Table I. Wenow dis
uss how the Fourier spin 
omponents transformunder various symmetry operations. Here primed quan-tities denote the value of the quantity after transforma-tion. Let O � OsOr be a symmetry operation whi
hwe de
ompose into operations on the spin Os and on theposition Or. The e�e
t of transforming a spin by su
h
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FIG. 2: S
hemati
 phase diagram for NVO for a magneti
�eld applied along the 
 dire
tion, taken from Ref. 6. HereAF is an antiferromagneti
 phase with a weak ferromagneti
moment, P is the paramagneti
 phase, HTI is the \`high tem-perature in
ommensurate" phase in whi
h the moments areessentially aligned along the a axis with a sinusoidally mod-ulated amplitude (a

ording to irrep �4) and LTI is the \lowtemperature in
ommensurate" phase in whi
h transverse or-der along the b axis appears to make an ellipti
ally polarizedorder parameter wave (a

ording to irreps �4 and �1). Aspontaneous polarization P appears only in the LTI phasewith P along b.Er = (x; y; z) 2
r = (x; y + 1=2; z + 1=2)2br = (x; y + 1=2; z + 1=2) 2ar = (x; y; z)Ir = (x; y; z) m
r = (x; y + 1=2; z + 1=2)mbr = (x; y + 1=2; z + 1=2) mar = (x; y; z)TABLE I: General positions33,34 within the primitive unit 
ellfor Cm
a whi
h des
ribe the symmetry operations36 of thisspa
e group. 2� is a two-fold rotation (or s
rew) axis and m�is a mirror (or glide) whi
h takes r� into �r�.an operator is to repla
e the spin at the \�nal" positionRf by the transformed spin whi
h initially was at theposition O�1r Rf . So we writeS0�(Rf ; � f ) = OsS�(O�1r [Rf ; � f ℄)



5rs1 = (0:25;�0:13; 0:25)rs2 = (0:25; 0:13; 0:75)rs3 = (0:75; 0:13; 0:75)rs4 = (0:75;�0:13; 0:25)r
1 = (0; 0; 0)r
2 = (0:5; 0; 0:5)TABLE II: Positions34,35 of Ni2+ 
arrying S=1 within theprimitive unit 
ell illustrated in Fig. 3. Here rsn denotes theposition of the nth spine site and r
n that of the nth 
ross-tiesite. NVO orders in spa
e group Cm
a, so there are six moreatoms in the 
onventional orthorhombi
 unit 
ell whi
h areobtained by a translation through (0:5a; 0:5b; 0).= ��(Os)S�(Ri; � i) ; (15)where the subs
ripts \i" and \f" denote initial and �nalvalues and ��(Os) is the fa
tor introdu
ed by Os for apseudove
tor, namely�x(2x) = 1 ; �y(2x) = �z(2x) = �1 ;�x(mz) = �y(mz) = �1 ; �z(mz) = 1 : (16)Note that OS�(R; � ) is not the result of applying O tomove and reorient the spin at R + � , but instead is thevalue of the spin at R + � after the spin distributionis a
ted upon by O. Thus, for a
tual position Fouriertransforms we haveS0�(q; � f ) = N�1XR S0�(Rf ; � f )eiq�(Rf+� f )= ��(Os)N�1XR S�(Ri; � i)eiq�(Rf+� f )= ��(Os)S�(q; � i)eiq�[Rf+� f�Ri�� i℄ :(17)We may write this asOS�(q; � f ) = ��(Os)S�(q; � i)eiq�[Rf+� f�Ri�� i℄ :(18)This formulation may not be totally intuitive, be
auseone is tempted to regard the operation O a
ting on aspin at an initial lo
ation and taking it (and perhapsreorienting it) to another lo
ation. Here, instead, we
onsider the spin distribution and how the transformeddistribution at a lo
ation is related to the distribution atthe initial lo
ation.Similarly, the result for unit 
ell Fourier transforms isS0�(q; � f ) = ��(Os)S0�(q; � i)eiq�[Rf�Ri℄ : (19)As before, we may write this asOS�(q; � f ) = ��(Os)S�(q; � i)eiq�[Rf�Ri℄ : (20)Under transformation by inversion, ��(I) = 1 andS0�(q; � f )� = N�1XR S�(Ri; � i)e�iq�(Rf+� f )= S�(q; � i)eiq�[�Rf�� f�Ri�� i℄= S�(q; � i) (21)
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FIG. 3: (Color online). Ni sites in the 
onventional unit 
ell ofNVO. The primitive translation ve
tors vn are v1 = (a=2)â+(b=2)b̂, v2 = (a=2)â � (b=2)b̂, and v3 = 

̂. The \
ross-tie"sites (on-line=blue) 
1 and 
2 lie in a plane with b = 0. The\spine" sites (on-line=red) are labeled s1, s2, s3, and s4 andthey may be visualized as forming 
hains parallel to the a-axis. These 
hains are in the bu
kled plane with b = �Æ,where Æ = 0:13b as is indi
ated. Cross-tie sites in adja
entplanes (displa
ed by (�b=2)b̂) are indi
ated by open 
ir
les.Spine sites in adja
ent planes are lo
ated dire
tly above (orbelow) the sites in the plane shown. In the in
ommensuratephases the waveve
tor des
ribing magneti
 ordering lies alongthe a axis. The axis of the two-fold rotation about the x-axisis shown. The glide plane is indi
ated by the mirror plane atz = 34 and the arrow above mz indi
ates that a translation ofb=2 in the y-dire
tion is involved.for a
tual position Fourier transforms. For unit 
elltransforms we getS0�(q; � f )� = S�(q; � i)eiq�[�Rf�Ri℄= S�(q; � i)eiq�[� f+� i℄ : (22)Now we apply this formalism to �nd the a
tual positionFourier 
oeÆ
ients whi
h are eigenfun
tions of the twooperators 2x and mz . In so doing note the simpli
ity ofEq. (17): sin
e, for NVO, the operations 2x and mz donot 
hange the x 
oordinate, we simply haveS0�(q; � f ) = ��S0�(q; � i) : (23)Thus the eigenvalue 
onditions for 2x a
ting on the spinesites (#1-#4) areS�(q; 1)0 = ��(2x)S�(q; 2) = �(2x)S�(q; 1)S�(q; 2)0 = ��(2x)S�(q; 1) = �(2x)S�(q; 2)S�(q; 3)0 = ��(2x)S�(q; 4) = �(2x)S�(q; 3)S�(q; 4)0 = ��(2x)S�(q; 3) = �(2x)S�(q; 4) ; (24)
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s nas�nbs�n
s �nasnbsn
s �nasnbsn
sS(q; s3) �nasnbs�n
s nas�nbsn
s �nasnbs�n
s nas�nbsn
sS(q; s4) �nas�nbsn
s nasnbs�n
s nasnbs�n
s �nas�nbsn
sS(q; 
1) na
00 na
00 0nb
n

 0nb
n

S(q; 
2) �na
00 na
00 0nb
�n

 0�nb
n

TABLE III: Allowed spin fun
tions (i. e. a
tual positionFourier 
oeÆ
ients) within the unit 
ell of NVO for waveve
-tor (q; 0; 0) whi
h are eigenve
tors of 2x and mz with theeigenvalues � listed. Inversion symmetry is not yet taken intoa

ount. Ea
h of the four 
ombinations of eigenvalues rep-resents a di�erent symmetry, whi
h we identify with a sym-metry label �n. In group theoreti
al language �n is referedto as an irredu
ible representation (irrep), fow whi
h we usethe notation of Ref. 6. n(�) is the number of independentstru
ture parameters in the wavefun
tion having the symme-try label �. Group theory indi
ates that n(�) is the number oftimes the irrep � is 
ontained in the original (18-dimensional)representation 
orresponding to the S�(q; �). The labeling ofthe sites, � is as in Table II and Fig. 3. Here n�p (p =s or 
,� = a; b; 
) denotes the 
omplex quantity n�p (q).from whi
h we see that �(2x) = �1 andS�(q; 2) = [��(2x)=�(2x)℄S�(q; 1) ;S�(q; 3) = [��(2x)=�(2x)℄S�(q; 4) : (25)The eigenvalue 
onditions formz a
ting on the spine sitesare S�(q; 1)0 = ��(mz)S�(q; 4) = �(mz)S�(q; 1)S�(q; 4)0 = ��(mz)S�(q; 1) = �(mz)S�(q; 4)S�(q; 2)0 = ��(mz)S�(q; 3) = �(mz)S�(q; 2)S�(q; 3)0 = ��(mz)S�(q; 2) = �(mz)S�(q; 3) ; (26)from whi
h we see that �(mz) = �1 andS�(q; 4) = [��(mz)=�(mz)℄S�(q; 1) : (27)We thereby 
onstru
t the wavefun
tions for the spinesites whi
h are simultaneously eigenve
tors of 2x and mzand these are given in Table III. The results for the
ross-tie sites are obtained in the same way and are also

given in the table. Ea
h set of eigenvalues 
orresponds
orresponds to a di�erent symmetry label (irrep), heredenoted �n. Sin
e ea
h operator 
an have either of twoeigenvalues, we have four symmetry labels to 
onsider.Note that these spin fun
tions, sin
e they are a
tuallyFourier 
oeÆ
ients, are 
omplex-valued quantities. [Thespin itself is real be
ause F (�q) = F (q)�.℄ Ea
h 
olumnof Table III gives the most general form of an allowedeigenve
tor for whi
h one has n(�) = 4 or n(�) = 5 (de-pending on the irrep) independent 
omplex 
onstants. Interms of the amplitude X(m)� (q) of themth eigenfun
tionof irrep � (at waveve
tor q) and the 
orresponding eigen-value �(m)� (q) the free energy is diagonal:F2 = 12Xq X� n(�)Xm=1�(m)� (q)jX(m)� (q)j2 ; (28)These eigenvalues 
an be identi�ed as the inverse sus
ep-tibility asso
iated with \normal modes" of spin 
on�gu-rations. To further illustrate the meaning of this tablewe expli
itly write, in Eq. (48), below, the spin distri-bution arising from one irrep, �4. These spin fun
tionsare s
hemati
ally shown for the spine sites in Fig. 15,below. Here our main interest is in the mode whi
h �rstbe
omes unstable as the temperature is lowered.So far, the present analysis reprodu
es the standardresults and indeed 
omputer programs exist to 
onstru
tsu
h tables. But for multiferroi
s it may be qui
ker toobtain and understand how to 
onstru
t the possible spinfun
tions by hand rather than to understand how to usethe program! Usually these programs give the resultsin terms of unit 
ell Fourier transforms, whi
h we 
laimare not as natural a representation in 
ases like NVO. Interms of unit 
ell Fourier transforms the eigenvalue 
on-ditions for 2x a
ting on the spine sites (#1-#4) are thesame as Eq. (24) for a
tual position Fourier transformsbe
ause the operation 2x does not 
hange the unit 
ell.However, for the glide operation mz this is not the 
ase.If we start from site #1 or site #2 the translation alongthe y axis takes the spin to a �nal unit 
ell displa
edby (�a=2)̂i+ (b=2)ĵ, whereas if we start from site #3 orsite #4 the translation along the y axis takes the spinto a �nal unit 
ell displa
ed by (a=2)̂i + (b=2)ĵ. Nowthe eigenvalue 
onditions for mz a
ting on the spine sites(#1-#4) areS�(q; 1)0 = ��(mz)S�(q; 4)� = �(mz)S�(q; 1)S�(q; 4)0 = ��(mz)S�(q; 1)�� = �(mz)S�(q; 4)S�(q; 2)0 = ��(mz)S�(q; 3)� = �(mz)S�(q; 2)S�(q; 3)0 = ��(mz)S�(q; 2)�� = �(mz)S�(q; 3) ;(29)where � = exp(i�q). One �nds that all entries forS(q; s3), S(q; s4), and S(q; 
2) now 
arry the phase fa
-tor �� = exp(�i�q). But this is just the fa
tor to makethe unit 
ell resultS(R; � ) = S(q; � )e�iq�R (30)



7be the same (to within an overall phase fa
tor) as thea
tual position resultS(R; � ) = S(q; � )e�iq�(R+� ) : (31)We should emphasize that in su
h a simple 
ase as NVO,it is a
tually not ne
essary to invoke any group theo-reti
al 
on
epts to arrive at the results of Table III forthe most general spin distribution 
onsistent with 
rystalsymmetry.More importantly, it is not 
ommonly understood20{22that one 
an also extra
t information using the sym-metry of an operation (inversion) whi
h does not 
on-serve waveve
tor.3{7,23,25 Sin
e what we are about to saymay be unfamiliar, we start from �rst prin
iples. Thequadrati
 free energy may be written asF2 = Xq X�;� 0;�� F �� 0�� S�(q; �)�S�(q; � 0) ; (32)where we restri
t the sum over waveve
tors to the star ofthe waveve
tor of interest. One term of this sum isF2(q0) = X�;� 0;�� F �� 0�� S�(q0; �)�S�(q0; � 0) : (33)It should be 
lear that the quadrati
 free energy, F2 isinvariant under all the symmetry operations of the para-magneti
 spa
e group (i. e. what one 
alls the spa
egroup of the 
rystal).26,31 For 
entrosymmetri
 
rystalsthere are three 
lasses of su
h symmetry operations. The�rst 
lass 
onsists of those operations whi
h leave q0 in-variant and these are the symmetries taken into a

ountin the usual formulation.20{22 The se
ond 
lass 
onsistsof operations whi
h take q0 into another waveve
tor ofthe star (
all it q1), where q1 6= �q0. Use of these sym-metries allows one to 
ompletely 
hara
terize the wave-fun
tion at waveve
tor q1 in terms of the wavefun
tionfor q0. These relations are needed if one is to dis
ussthe possibility of simultaneously 
ondensing more thanone waveve
tor in the star of q.28,40 Finally, the third
lass 
onsists of spatial inversion (unless the waveve
torand its negative di�er by a re
ipro
al latti
e ve
tor, inwhi
h 
ase inversion belongs in 
lass #1). The role of in-version symmetry is almost universally overlooked,20{22as is evident from examination of a number of re
entpapers. Unlike the operations of 
lass #1 whi
h takesSn(q) into an Sn0(q) (for irreps of dimension one whi
his true for most 
ases 
onsidered in this paper), inver-sion takes Sn(q) into an Sn0(�q). Nevertheless it doestake the free energy written in Eq. (33) into itself andrestri
ts the possible form of the wavefun
tions. So wenow 
onsider the 
onsequen
es of invarian
e of F2 underinversion.3{7 For this purpose we write Eq. (13) in termsof the spin 
oordinates n of Table III. (The result will, of
ourse, depend on whi
h symmetry label � we 
onsider.)In any 
ase, the part of F2 whi
h depends on q0 
an bewritten asF2(q0) = X�;� 0;�� F �� 0�� S�(q0; �)�S�(q0; � 0)

= XN;�;N 0;�;�GN;�;N 0;� [n�N(�)℄�[n�N 0(�)℄ ;(34)where N and N 0 assume the values "s" for spin and "
"for 
ross-tie and � and � label 
omponents, and the sumsover N and � (and similarly N 0 and �) are over the n(
)variables needed to spe
ify the wavefun
tion asso
iatedwith the symmetry label (irrep) �. From now on wekeep only the terms belonging to the irrep whi
h is a
tiveand for notational simpli
ity we leave the 
orrespondingargument � of n impli
it. Then we see that invarian
eunder inversion implies thatF2(q) = XN;�;N 0;�GN;�;N 0;�[n�N ℄�n�N 0= XN;�;N 0;�GN;�;N 0;�[In�N ℄�[In�N 0 ℄ : (35)Now we need to understand the e�e
t of I on the spinFourier 
oeÆ
ients listed in Table III. Sin
e we use a
tualposition Fourier 
oeÆ
ients, we apply Eq. (21). Forthe 
ross-tie variables (whi
h sit at a 
enter of inversionsymmetry) inversion takes the spin 
oordinates of onespine sublatti
e into the 
omplex 
onjugate of itself:IS(q; 
n) = [S(q; 
n)℄� : (36)Thus in terms of the n's this givesIn�
 = [n�
 ℄� ; � = x; y; z : (37)The e�e
t of inversion on the spine variables again fol-lows from Eq. (21). Sin
e inversion inter
hanges sublat-ti
e #1 and #3, we have[S(q; s3)℄0 = [S(q; s1)℄� : (38)For �(2x) = �(mz) = +1 (i. e. for irrep �1), we substi-tute the values of the spin ve
tors from the �rst 
olumnof Table III to getI[�nas ℄ = [nas ℄� ; I[nbs℄ = [nbs℄� ;I[�n
s℄ = [n
s℄� : (39)Note that some 
omponents introdu
e a fa
tor �1 underinversion and others do not. (Whi
h ones have the minussigns depends on whi
h irrep we 
onsider.) If we make a
hange of variable by repla
ing n�s in 
olumn #1 of TableIII by i~n�s for those 
omponents for whi
h I introdu
esa minus sign and repla
ing the other n�s by ~n�s , then wemay rewrite the �rst 
olumn of Table III in the formgiven in Table IV. We repla
e all the 
ross tie variablesn�x by ~n�x . In terms of these new tilde variables one hasI[~n�s ℄ = [~n�s ℄� : (40)(It is 
onvenient to de�ne the spin Fourier 
oeÆ
ientsso that they all transform in the same way under inver-sion. Otherwise one would have to keep tra
k of variables



8Irrep= �1 �2 �3 �4�(2x) = +1 +1 �1 �1�(mz) = +1 �1 �1 +1S(q; s1) inasnbsin
s nasinbsn
s inasnbsin
s nasinbsn
sS(q; s2) inas�nbs�in
s nas�inbs�n
s �inasnbsin
s �nasinbsn
sS(q; s3) �inasnbs�in
s nas�inbsn
s �inasnbs�in
s nas�inbsn
sS(q; s4) �inas�nbsin
s nasinbs�n
s inasnbs�in
s �nas�inbsn
sS(q; 
1) na
00 na
00 0nb
n

 0nb
n

S(q; 
2) �na
00 na
00 0nb
�n

 0�nb
n

TABLE IV: As Table III (for NVO) ex
ept that now the e�e
tof inversion symmetry is taken into a

ount, as a result ofwhi
h, apart from an overall phase fa
tor all the n's in thistable 
an be taken to be real-valued.whi
h transform with a plus sign and those whi
h trans-form with a minus sign.) Repeating this pro
ess for allthe other irreps we write the possible spin fun
tions asthose of Table IV. We give an expli
it formula for thespin distribution for one irrep in Eq. (48) below.Now we implement Eq. (35), where the spin fun
tionsare taken to be the variables listed in Table IV. Firstnote that the matrix G in Eq. (35) has to be Hermitianto ensure that F2 be real:GM;�;N;� = [GN;�;M;�℄� : (41)Then, using Eq. (40), we �nd that Eq. (35) isF2(q0) = XM;�;N;�[~n�M ℄�GM;�;N;�~n�N= XM;�;N;�[I~n�M ℄�GM;�;N;�[I~n�N ℄= XM;�;N;� ~n�MGM;�;N;�[~n�N ℄�= XM;�;N;�[~n�M ℄�GN;�;M;�[~n�N ℄ ; (42)where, in the last line, we inter
hanged the roles of thedummy indi
es M;� and N; �. By 
omparing the �rstand last lines, one sees that the matrix G is symmetri
.Sin
e this matrix is also Hermitian, all its elements mustbe real valued. Thus all its eigenve
tors 
an be takento have only real-valued 
omponents. But the m's are

allowed to be 
omplex valued. So, the 
on
lusion is thatfor ea
h irrep, we may write~n�N (�) = ei�� [r�N (�)℄ ; (43)where the r's are all real valued and �� is an overall phasewhi
h 
an be 
hosen arbitrarily for ea
h �. When onlya single irrep is a
tive, it is likely that the phase will be�xed by high-order Umklapp terms in the free energy,but the e�e
ts of su
h phase lo
king may be beyond therange of experiments.41It is worth noting how these results should be (and ina few 
ases3,4,6 have been) used in the stru
ture determi-nations. One should 
hoose the best �t to the di�ra
tiondata using, in turn, ea
h irrep (i. e. ea
h set of eigenval-ues of 2x and mz). Within ea
h irrep one parametrizesthe spin stru
ture by 
hoosing the Fourier 
oeÆ
ients asin the relevant 
olumn of Table IV. Note that insteadof having 4 or 5 
omplex 
oeÆ
ients to des
ribe the sixsites within the unit 
ell (see Table III), one has only 4or 5 (depending on the representation) real-valued 
oeÆ-
ients to determine. The relative phases of the 
omplex
oeÆ
ients have all been �xed by invoking inversion sym-metry. This is 
learly a signi�
ant step in in
reasing thepre
ision of the determination of the magneti
 stru
turefrom experimental data.B. Order ParametersWe now review how the above symmetry 
lassi�
ationin
uen
es the introdu
tion of order parameters whi
h al-low the 
onstru
tion of Landau expansions.4,6 The formof the order parameter should be su
h that it has the po-tential to des
ribe all ordering whi
h are allowed by thequadrati
 free energy F2. Thus, for an isotropi
 Heisen-berg model on a 
ubi
 latti
e, the order parameter hasthree 
omponents (i. e. it involves a three dimensionalirrep) be
ause although the fourth order terms will re-stri
t order to o

ur only along 
ertain dire
tions, as faras the quadrati
 terms are 
on
erned, all dire
tions areequivalent. The analogy here is that the overall phaseof the spin fun
tion �(�) is not �xed by the quadrati
free energy and a

ordingly the order parameter mustbe a 
omplex variable whi
h in
ludes su
h a phase. Onealso re
ognizes that although the amplitude of the 
riti
aleigenve
tor is not �xed by the quadrati
 terms in the freeenergy, the ratios of its 
omponents are �xed by the spe-
i�
 form of the inverse sus
eptibility matrix. Althoughwe do not wish to dis
uss the expli
it form of this matrix,what should be 
lear is that the 
omponents of the spinswhi
h order must be proportional to the 
omponents ofthe 
riti
al eigenve
tor. The a
tual amplitude of the spinordering is determined by the 
ompetition between thequadrati
 and fourth order terms in the free energy. If �pis the irrep whi
h is 
riti
al, then just below the orderingtemperature we write~n�N (q) = �p(q)r�N (�p) ; (44)



9where the r's are real 
omponents of the 
riti
al eigenve
-tor (asso
iated with the 
riti
al eigenvalue of irrep �p) ofthe matrix G of Eq. (35) and are now normalized byX�N [r�N ℄2 = 1 : (45)Here the order parameter for irrep �(q), �p(q) is a 
om-plex variable, sin
e it has to in
orporate the arbitrary
omplex phase �p asso
iated with irrep �p:�p(�jqj) = �pe�i�p : (46)The order parameter transforms as indi
ated in the tablesby its listed eigenvalues under the symmetry operations2x andmz. Sin
e the 
omponents of the 
riti
al eigenve
-tor are dominantly determined by the quadrati
 terms,42one 
an say that just below the ordering temperature thedes
ription in terms of an order parameter 
ontinues tohold but �p � jT
 � T j�p ; (47)where mean-�eld theory gives � = 1=2 but 
orre
tionsdue to 
u
tuation are expe
ted.43To summarize and illustrate the use of Table IV wewrite an expli
it expression for the magnetizations ofthe #1 spine sublatti
e and the #1 
ross-tie sublat-ti
e assuming te a
tive irrep to be �4 [�(2x) = �1 and�(mz) = +1℄. We use the de�nition of the order param-eter and sum over both signs of the waveve
tor to getSx(r; s1) = 2�4rxs 
os(qx+ �4)Sy(r; s1) = 2�4rys sin(qx+ �4)Sz(r; s1) = 2�4rzs 
os(qx+ �4)Sx(r; s2) = �2�4rxs 
os(qx+ �4)Sy(r; s2) = 2�4rys sin(qx+ �4)Sz(r; s2) = 2�4rzs 
os(qx+ �4)Sx(r; s3) = 2�4rxs 
os(qx+ �4)Sy(r; s3) = �2�4rys sin(qx+ �4)Sz(r; s3) = 2�4rzs 
os(qx+ �4)Sx(r; s4) = �2�4rxs 
os(qx+ �4)Sy(r; s4) = �2�4rys sin(qx+ �4)Sz(r; s4) = 2�4rzs 
os(qx+ �4)Sx(r; 
1) = 0Sy(r; 
1) = 2�4ry
 
os(qx + �4)Sz(r; 
1) = 2�4rz
 
os(qx+ �4)Sx(r; 
1) = 0Sy(r; 
2) = �2�4ry
 
os(qx+ �4)Sz(r; 
2) = 2�4rz
 
os(qx+ �4) (48)and similarly for the other irreps. (The observed mag-neti
 stru
tures are des
ribed qualitatiely in the 
aptionto Fig. 2. The a
tual values of the stru
ture parametersr�x in Eq. (48) and its analog for irrep �1 are given in Ref.

6.) Here r � (x; y; z) is the a
tual lo
ation of the spin.Using expli
it expressions like the above (or more dire
tlyfrom Table IV), one 
an verify that the order parameters(�p for irrep �p) have the transformation properties:2x�1(q) = +�1(q) ; mz�1(q) = +�1(q) ;2x�2(q) = +�2(q) ; mz�2(q) = ��2(q) ;2x�3(q) = ��3(q) ; mz�3(q) = ��3(q) ;2x�4(q) = ��4(q) ; mz�4(q) = +�4(q) (49)and I�n(q) = [�n(q)℄�: (50)Note that even when more than a single irrep is present,the introdu
tion of order parameters, as done here, pro-vides a framework within whi
h one 
an represent thespin distribution as a linear 
ombination of distributionsea
h having a 
hara
teristi
 symmetry, as expressed byEq. (49). When the stru
ture of the unit 
ell is ignored16that information is not readily a

essible. Also note thatthe phase of ea
h irrep �n is de�ned so that when �n = 0,the wave is inversion-symmetri
 about r = 0. When �nis nonzero, it is possible to invoke the in
ommensurabil-ity to �nd a latti
e site whi
h is arbitrarily 
lose to a
enter of inversion symmetry of the mathemati
al spinfun
tion. Thus ea
h irrep has a 
enter of inversion sym-metry whose lo
ation is impli
itly de�ned by the value of�n. When only a single irrep is a
tive, the spe
i�
ationof �n is not important. However, when one has two ir-reps, then inversion symmetry is only maintained if the
enters of inversion symmetry of the two irreps 
oin
ide,i. e. if their phases are equal.In many systems, the initial in
ommensurate orderthat �rst o

urs as the temperature is lowered be
omesunstable as the temperature is further lowered.30 Typi-
ally, the initial order involves spins oriented along theireasy axis with sinusoidally varying magnitude. How-ever, the fourth order terms in the Landau expansion(whi
h we have not written expli
itly) favor �xed lengthspins. As the temperature is lowered the �xed length
onstraint be
omes progressively more important and ata se
ond, lower, 
riti
al temperature a transition o

ursin whi
h transverse 
omponents be
ome nonzero. Al-though the situation is more 
ompli
ated when there areseveral spins per unit 
ell, the result is similar: the �xedlength 
onstraint is best realized when more than a singleirrep has 
ondensed. So, for NVO and TMO as the tem-perature is lowered one en
ounters a se
ond phase transi-tion in whi
h a se
ond irrep appears. Within a low-orderLandau expansion this phenomenon is des
ribed by a freeenergy of the form6F = 12(T � T>)�2> + 12(T � T<)�2< + u>�4>+u<�4< + w�2>�2< ; (51)where T> > T<. This system has been studied in de-tail by Bru
e and Aharony.44 For our purposes, the most



10Er = (x; y; z) myr = (x; y; z + 12 )Ir = (x; y; z) 2yr = (x; y; z + 12 )TABLE V: General Positions for spa
e group P2/
.important result is that for suitable values of the param-eters ordering in �> o

urs at T> and at a lower temper-ature (when T �T<+2w�2> = 0) order in �< may o

ur.The appli
ation of this theory to the present situationis simple: we 
an (and usually do) have two magneti
phase transitions in whi
h �rst one irrep and then at alower temperature a se
ond irrep 
ondense. A questionarises as to whether the 
ondensation of one irrep 
anindu
e the 
ondensation of a se
ond irrep. This is notpossible be
ause the two irreps have di�erent symmetry.But 
ould the presen
e of two irreps, �> and �< indu
ethe appearan
e of a third irrep �3 at the temperature atwhi
h �< �rst appears? For that to happen would re-quire that �n> 
�m< 
 �3 
ontain the unit representationfor some values of n and m. This or any higher 
om-bination of representations is not allowed for the simplefour irreps system like NVO. In more 
omplex systemsone might have to allow for su
h a phenomenon.III. APPLICATIONSIn this se
tion we apply the above formalism to a num-ber of multiferroi
s of 
urrent interest.A. MnWO4MnWO4 (MWO) 
rystallizes in the spa
e group P2/
(#14 in Ref. 33) whose general positions are given inTable V. The two magneti
 Mn ions per unit 
ell are atpositions� 1 = (12 ; y; 14) ; � 2 = (12 ; 1� y; 34) : (52)The waveve
tor of in
ommensurate magneti
 orderingis45 q = (qx; 1=2; qz) with qx � �0:21 and qz � 0:46)and is left invariant by the identity and my. We start by
onstru
ting the eigenve
tors of the quadrati
 free energy(i. e. the inverse sus
eptibility matrix). Here we use unit
ell Fourier transforms to fa
ilitate 
omparison with Ref.45. BelowX , Y , and Z denote integers (in units of latti
e
onstants). WhenRf + � f = (X;Y; Z) + � 1= (X + 12 ; Y + y; Z + 14) (53)and Ri + � i = [my℄�1(Rf + � f )

Irrep �1 �2�(my) = ei�qz �ei�qzS(q; 1) a�nxa�nya�nz a�nxa�nya�nzS(q; 2) anx�anyanz �anxany�anzTABLE VI: Allowed spin eigenfun
tions for MWO (apartfrom an overall phase fa
tor) before inversion symmetry istaken into a

ount, where a = exp(�i�qz=2). Here the n(q)'sare 
omplex and we have taken the liberty to adjust the overallphase to give a symmetri
al looking result. But these resultsare equivalent to Table II of Ref. 45.= (X + 12 ;�Y � y; Z 14 )= (X;�Y � 1; Z � 1) + � 2 : (54)Then Eq. (19) gives the eigenvalue 
ondition to beS0�(q; �1) = ��(my)S�(q; � 2)e2�iq�[(2Y+1)ĵ+k̂℄= ��(my)S�(q; �2)e�i+2�iqz= �S�(q; �1) ; (55)where �x(my) = ��y(my) = �z(my) = �1. WhenRf + � f = (X;Y; Z) + � 2= (X + 12 ; Y + 1� y; Z + 34) ; (56)then Ri + � i = (X + 12 ;�Y � 1� y; Z + 14)= (X;�Y � 1; Z) + � 1 ; (57)and Eq. (19) gives the eigenvalue 
ondition to beS0�(q; �2) = ��(my)S�(q; � 1)e2�iq�(2Y+1)ĵ= ��(my)S�(q; �1)[�1℄ = �S�(q; �2) :(58)From Eqs. (55) and (58) we get � = �ei�qz andS�(q; �2) = �[��(my)=�℄S�(q; �1) : (59)So we get the results listed in Table VI.So far the analysis is essentially the 
ompletely stan-dard one. Now we use the fa
t that the free energy isinvariant under spatial inversion, even though that oper-ation does not 
onserve waveve
tor.3,4,6,7 We now deter-mine the e�e
t of inversion on the n's. As will be
omeapparent use of unit 
ell Fourier transforms makes thisanalysis more 
ompli
ated than if we had used a
tualposition transforms. We use Eq. (22) to writeIS(q; � = 1) = S(q; � = 2)�e�2�iq�(̂i+ĵ+k̂)� bS(q; 2)� ; (60)



11where b = � exp[�2�i(qx + qz)℄. For �2 we getI[nx; ny; nz℄ = [�nx; ny;�nz℄�b ; (61)whi
h we 
an write asIn� = b��(my)n�� : (62)Now the free energy is quadrati
 in the Fourier spin 
oef-�
ients, whi
h are linearly related to the n's. So the freeenergy 
an be written asF2 = nyGn ; (63)where n = (nx; ny; nz) is a 
olumn ve
tor andG is a 3�3matrix whi
h we write asG = 264 A � ��� B 
�� 
� C 375 ; (64)where, for Hermiti
ity the Roman letters are real andthe Greek ones 
omplex. Now we use the fa
t that alsowe must have invarian
e with respe
t to inversion, whi
hafter all is a 
rystal symmetry. ThusF2 = [In℄yG[In℄ : (65)This 
an be written asF2 = X�� b��(my)n�G��b�a���(my)n��= X�� ��(my)n�G����(my)n�� : (66)Thus we may writeF2 = ntr 264 A �� ���� B �
�� �
� C 375n�= ny 264 A ��� ���� B �
�� �
 C 375n ; (67)where "tr" indi
ates transpose (so ntr is a row ve
tor).Sin
e the two expressions for F2, Eqs. (63) and (67),must be equal we see that � = ia, � = b, and 
 = i
,where a, b, and 
 must be real. Thus G is of the formG = 264 A ia b�ia B i
b �i
 C 375 ; (68)where all the letters are real. This means that the 
riti
aleigenve
tor des
ribing the long range order has to be ofthe form (nx; ny; nz) = ei�(r; is; t) ; (69)

Irrep �1 �2�(my) = ei�qz �ei�qzS(q; 1) a�ria�sa�t �ia�ra�s�ia�tS(q; 2) ar�iasat iarasiatTABLE VII: As Table VI (for TMO), ex
ept that here in-version symmetry is taken into a

ount. Here r, s, and t arereal. All six 
omponents 
an be multiplied by an overall phasefa
tor whi
h we have not expli
itly written.where r, s, and t are real. For �2 we set ei� = �i. For �1a similar 
al
ulation again yields Eq. (69), but here weset ei� = 1. (These 
hoi
es are not essential. They justmake the symmetry more obvious.) Thus we obtain the�nal results given in Table VII. Lautens
hlager et al45say (just above Table II) \Depending on the 
hoi
e of theamplitudes and phases ..." What we see here is that in-version symmetry �xes the phases without the possibilityof a 
hoi
e (just as it did for NVO). Note again that wehave about half the variables to �x in a stru
ture deter-mination when we take advantage of inversion invarian
eto �x the phase of the 
omplex stru
ture 
onstants.1. Order ParameterNow we dis
uss the de�nition of the order parameterfor this system. For this purpose we repla
e r by �r, sby �s. et
., with the normalization thatr2 + s2 + t2 = 1 : (70)Here the order parameter � is 
omplex be
ause we al-ways have the freedom to multiply the wavefun
tion bya phase fa
tor. (This phase fa
tor might be \lo
ked" byhigher order terms in the free energy, but we do not 
on-sider that phenomenon here.46) We re
ord the symmetryproperties of the order parameter. With our 
hoi
e ofphases we have I�n(q) = [�n(q)℄� ;my�n(q) = �(�n)�n(q)my�n(�q) = �(�n)��n(�q) ; (71)where �n(q) is the 
omplex-valued order parameter forordering of irrep �n and �(�n) is the eigenvalue of mygiven in Table VII. Now we write an expli
it formula forthe spin distribution in terms of the order parameters ofthe two irreps:S(R; � = 1) = 2�1 h(r1 î+ t1k̂) 
os(q �R+ �1 � �qz=2)



12Er = (x; y; z) 2xr = (x+ 12 ; y + 12 ; z)2z = (x; y; z + 12 ) 2y = (x+ 12 ; y + 12 ; z + 12 )Ir = (x; y; z) mxr = (x+ 12 ; y + 12 ; z)mzr = (x; y; z + 12 ) myr = (x+ 12 ; y + 12 ; z + 12 )TABLE VIII: General Positions for Pbnm. Notation as inTable I.Mn (1) = (0; 12 ; 0) (2) = ( 12 ; 0; 0)(3) = (0; 12 ; 12 ) (4) = ( 12 ; 0; 12 )Tb (5) = (x; y; 14 ) (6) = (x+ 12 ; y + 12 ; 34 )(7) = (x; y; 34 ) (8) = (x+ 12 ; y + 12 ; 14 )TABLE IX: Positions of the Magneti
 Ions in the Pbnm Stru
-ture of TbMnO3, with x = 0:9836 and y = 0:0810.47+s1ĵ sin(q �R+ �1 � �qz=2)i+2�2 h(�r2 î� t2k̂) sin(q �R+ �2 � �qz=2)+s2ĵ 
os(q �R+ �2 � �qz=2)i ; (72)S(R; � = 2) = 2�1 h(r1 î+ t1k̂) 
os(q �R+ �1 + �qz=2)� s1ĵ sin(q �R+ �1 + �qz=2)i+2�2 h(r2 î+ t2k̂) sin(q �R+ �2 + �qz=2)+s2ĵ 
os(q �R+ �2 + �qz=2)i : (73)One 
an expli
itly verify that these expressions are 
on-sistent with Eq. (71). Note that when only one of theorder parameters (say �n) is nonzero, we have inver-sion symmetry with respe
t to a rede�ned origin where�n = 0. For ea
h irrep we have to spe
ify three realparameters, �rn, �sn, and �tn and one overall phase �nrather than three 
omplex-valued parameters had we notinvoked inversion symmetry.B. TbMnO3Here we give the full details of the 
al
ulations forTbMnO3 des
ribed in Ref. 3. The presentation heredi�ers 
osmeti
ally from that in Ref. 5. The spa
e groupof TbMnO3 is Pbnm whi
h is #62 in Ref. 33 (althoughthe positions are listed there for the Pnma setting). Thespa
e group operations for a general Wy
ko� orbit isgiven in Table VIII. In Table IX we list the positionsof the Mn and Tb ions within the unit 
ell and these arealso shown in Fig. 4. The phase diagram for magneti
�elds up to 14T along the a axs is shown in Fig. 5.
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FIG. 4: (Color online). Mn sites (smaller 
ir
les, on-line red)and Tb sites (larger 
ir
les, on-line blue) in the primitive unit
ell of TbMnO3. The Tb sites are in the shaded planes atz = n� 14 and the Mn sites are in planes z = n or z = n+ 12 ,where n is an integer. The in
ommensurate waveve
tor isalong the b axis. The mirror plane at z = 1=4 is indi
atedand the glide plane mx is indi
ated by the mirror plane atx = 3=4 followed by a translation (indi
ated by the arrow) ofb=2 along the y-axis.To start we study the operations that leave invariantthe waveve
tor of the in
ommensurate phase whi
h �rstorders as the temperature is lowered. Experimentally49this waveve
tor is found to be (0; q; 0), with39 q � 0:28.These relevant operators (see Table VIII) mx and mz.We follow the approa
h used for MWO, but use \a
tuallo
ation" Fourier transforms. We set Rf + � f � r inorder to use Eq. (17) and we need to evaluate� � exp�2�iq � [r� [mx℄�1r�= exp�2�iqĵ � [yĵ � [mx℄�1yĵ℄� = ei�q (74)and �0 � exp�2�iq � [r� [mz℄�1r℄�= exp�2�qĵ � [yĵ � [mz ℄�1yĵ℄� = 1 : (75)We list, in Table X the transformation table of sublatti
eindi
es of TMO.Therefore the eigenvalue 
ondition for transformationby mx isS0�(q; �f ) = ��(mx)S�(q; �i)� = �(mx)S�(q; �f )(76)and that for transformation by z isS0�(q; �f ) = ��(mz)S�(q; �i) = �(mz)S�(q; �f ) ;(77)
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FIG. 5: S
hemati
 phase diagram for TMO for magneti
 �eldsup to 14T applied along the a dire
tion, taken from Ref. 48.Here P is the paramagneti
 phase, HTI is the \high tem-perature" in
ommensurate phase in whi
h3 the moments areessentially aligned along the b axis with a sinusoidally mod-ulated amplitude a

ording to irrep �3 and LTI is the \lowtemperature" in
ommensurate phase in whi
h3 transverse or-der along the 
 axis appears to make an ellipti
ally polarizedorder parameter wave a

ording to irreps �3 and �2. A spon-taneous polarization P appears only in the LTI phase with Palong the
 axis for low magneti
 �eld.3�i �f (mx) �f (mz) �f (I)1 2 3 12 1 4 23 4 1 34 3 2 45 8 5 76 7 6 87 6 7 58 5 8 6TABLE X: Transformation table for sublatti
e indi
es ofTMO under various operations.where �x(mx) = ��y(mx) = ��z(mx) = 1 and ��(mz)was de�ned in Eq. (16). From these equations we seethat �(mx) assumes the values �� and �(mz) the values�1. Then solving the above equations leads to the resultsgiven in Table XI. (These results look di�erent thanthose in Ref. 3 be
ause here the Fourier transforms arede�ned relative to the a
tual positions, whereas in Ref.3 there they are de�ned relative to the origin of the unit
ell.)Now, sin
e the 
rystal is 
entrosymmetri
, we takesymmetry with respe
t to spatial inversion, I, into a
-
ount. As before, re
all that I transports the spin to itsspatially inverted position without 
hanging the orienta-tion of the spin (a pseudove
tor). The 
hange of positionis equivalent to 
hanging the sign of the waveve
tor in theFourier transform and this is a

omplished by 
omplex
onjugation. Sin
e the Mn ions sit at 
enters of inversion

Irrep �1 �2 �3 �4�(mx) = +� �� �� +��(mz) = +1 �1 +1 �1S(q;M1) naM�nbM�n
M �naMnbMn
M �naMnbMn
M naM�nbM�n
MS(q;M2) naMnbMn
M naMnbMn
M naMnbMn
M naMnbMn
MS(q;M3) �naMnbM�n
s �naMnbM�n
M naM�nbMn
M naM�nbMn
MS(q;M4) �naM�nbMn
M naMnbM�n
M �naM�nbMn
M naMnbM�n
MS(q; T1) 00n
T1 naT1nbT10 00n
T1 naT1nbT10S(q; T2) 00�n
T2 �naT2nbT20 00n
T2 naT2�nbT20S(q; T3) 00n
T2 naT2nbT20 00n
T2 naT2nbT20S(q; T4) 00�n
T1 �naT1nbT10 00n
T1 naT1�nbT10TABLE XI: Spin fun
tions (i. e. a
tual position Fourier 
o-eÆ
ients) within the unit 
ell of TMO for waveve
tor (0; q; 0)whi
h are eigenve
tors of mx and mz with the eigenvalueslisted, with � = exp(i�q). All the parameters are 
omplex-valued. The irredu
ible representation (irrep) is labeled as inRef. 3. Inversion symmetry is not yet taken into a

ount.Note that the two Tb orbits, (T1-T4) and (T2-T3), have in-dependent 
omplex amplitudes.symmetry, one has, for the Mn sublatti
es,IS(q; n) = S(q; n)� ; (78)where the se
ond argument spe
i�es the sublatti
e, asin Table IX. In order to dis
uss the symmetry of the
oordinates we de�ne x1 = naM , x2 = nbM , x3 = n
M andfor irreps �1 and �3, x4 = n
T1 and x5 = n
T2, whereasfor irreps �2 and �4, x4 = naT1, x5 = naT2, x6 = nbT1, andx7 = nbT2. Thus Eq. (78) givesIxn = x�n ; n = 1; 2; 3 : (79)For the Tb ions I inter
hanges sublatti
es #5 and #7and inter
hanges sublatti
es #6 and #8. So we haveIS(q; 5) = S(q; 7)�IS(q; 6) = S(q; 8)� : (80)Therefore we haveIx4 = x�5 ; Ix6 = x�7 : (81)



14Now we use the invarian
e of the free energy under Ito write F2 = XX;�;Y;� S�(q; X)�FnmS�(q; Y )= Xm;nx�nGnmxm= Xm;n[Ix�n℄Gnm[Ixm℄ ; (82)where the matrix G is Hermitian and we have impli
itlylimited 
onsideration to whi
hever irrep is a
tive.For irreps �1 and �3 the matrix G in Eq. (82) 
ou-ples �ve variables, x1 : : : x5. Equation (79) implies thatthe upper left 3� 3 submatrix of G (whi
h involves thevariables x1 : : : x3) is real. Equations (79) and (81) implythat Gn;4 = G5;n for n = 1; 2; 3. We thus �nd that Gassumes the formG = 2666664 a b 
 � ��b d e � ��
 e f 
 
��� �� 
� g Æ� � 
 Æ� g
3777775 ; (83)where the Roman letters are real valued and the Greekare 
omplex valued. As shown in the appendix, the formof this matrix ensures that the 
riti
al eigenve
tor 
an betaken to be of the form = (naM ; nbM ; n
M ; n
T1; n
T1�) � (r; s; t; �; ��) ; (84)where the Roman letters are real and the Greek ones
omplex. Of 
ourse, be
ause the ve
tor 
an be 
omplex,we should in
lude an overall phase fa
tor (whi
h amountsto arbitrarily pla
ing the origin of the in
ommensuratestru
ture), so that more generally = ei�(r; s; t; �; ��) : (85)For irreps �2 and �4 the matrix G in Eq. (82) 
ouplesthe seven variables, x1 : : : x7 listed just above Eq. (79).Equations (79) and (81) imply that Gn;4 = G5;n andGn;6 = G7;n for n = 1; 2; 3. Also Eq. (81) implies similarrelations within the lower right 4�4 submatrix involvingthe variables x4 : : : x7. Therefore G assumes the form

G = 266666666664
a b 
 � �� � ��b d e � �� � ��
 e f 
 
� � ���� �� 
� g Æ � �� � 
 Æ� g �� ���� �� �� �� � h �� � � �� � �� h

377777777775 ; (86)
where Roman letters are real and Greek are 
omplex.As shown in the appendix, this form ensures that the

Irrep �1 �2 �3 �4�(mx) = +� �� �� +��(mz) = +1 �1 +1 �1S(q;M1) r�s�t �rst �rst r�s�tS(q;M2) rst rst rst rstS(q;M3) �rs�t �rs�t r�st r�stS(q;M4) �r�st rs�t �r�st rs�tS(q; T1) 00� ��0 00� ��0S(q; T2) 00��� �����0 00�� �����0S(q; T3) 00�� ����0 00�� ����0S(q; T4) 00�� ���0 00� ���0TABLE XII: As Table XI. Apart from an overall phase ��for ea
h irrep, inversion symmetry restri
ts all the manganeseFourier 
oeÆ
ients to be real and all the Tb 
oeÆ
ients tohave the indi
ated phase relations.eigenve
tors are of the form = (naM ; nbM ; n
M ; naT1; naT2;mbT1; nbT2)= ei�(r; s; t; �; ��; �; ��) : (87)These results are summarized in Table XII. Note thatthe use of inversion symmetry �xes most of the phasesand relates the amplitudes of the two Tb orbits, therebyeliminating almost half the �tting parameters.31. Order ParametersWe now introdu
e order parameters �n(q) � �nei�nfor irrep �n in terms of whi
h we 
an write the spin dis-tribution. For instan
e under �3 one hasSx(r;M1) = �2r�3 
os(qy + �3)Sy(r;M1) = 2s�3 
os(qy + �3)Sz(r;M1) = 2t�3 
os(qy + �3)Sx(r;M2) = 2r�3 
os(qy + �3)Sy(r;M2) = 2s�3 
os(qy + �3)Sz(r;M2) = 2t�3 
os(qy + �3)Sx(r; T1) = Sy(r; T1) = 0



15Sz(r; T1) = 2��3 
os(qy + �3 + ��)Sx(r; T2) = Sy(r; T2) = 0Sz(r; T2) = 2��3 
os(qy + �3 � ��) ; (88)where we set � = �ei�� and the parameters are normal-ized by r2 + s2 + t2 + j�j2 = 1 : (89)In Eq. (88) r � (x; y; z) is the a
tual position of the spinin question. From Table XI one 
an obtain the symmetryproperties of the order parameters for ea
h irrep. Forinstan
emx�1(q) = +��1(q) ; mz�1(q) = +�1(q)mx�2(q) = ���2(q) ; mz�2(q) = ��2(q)mx�3(q) = ���3(q) ; mz�3(q) = �3(q)mx�4(q) = +��4(q) ; mz�4(q) = ��4(q)(90)and I�n(q) = ��n(q) : (91)Note that in 
ontrast to the 
ase of NVO, inversionsymmetry does not �x all the phases. However, itagain drasti
ally redu
es the number of possible mag-neti
 stru
ture parameters whi
h have to be determined.In parti
ular, it is only by using inversion that one �ndsthat the magnitudes of the Fourier 
oeÆ
ients of the twodistin
t Tb sites have to be the same. Note that if we
hoose the origin so that � = 0 (whi
h amounts to re-naming the origin so that that be
omes true), then were
over inversion symmetry (taking a

ount that inver-sion inter
hanges terbium sublatti
e #3 and #1). One
an determine that the spin stru
ture is inversion invari-ant when one 
ondenses a single representation.The experimentally determined stru
ture of the HTIand LTI phases is des
ribed in the 
aption to Fig. 5 andnumeri
al values of the stru
ture parameters are given inRef. 3.The result of Table XII applies other manganatesprovided their waveve
tor is also of the form (0; qy; 0).This in
ludes DMO,9 YMnO350 and HoMnO3.51,52 Boththese systems order into an in
ommensurate stru
tureat about T
 � 42K. The Y 
ompound has a se
ondlower-temperature in
ommensurate phase, whereas theHo 
ompound has a lower-temperature 
ommensuratephase. C. TbMn2O5The spa
e group of TbMn2O5 (TMO25) is Pbam (#55in Ref. 33) and its general positions are listed in TableXIII. The positions of the magneti
 ions are given inTable XIV and are shown in Fig. 6.We will address the situation just below the orderingtemperature of 43K.55 We take the ordering waveve
-tor to be55 to be ( 12 ; 0; q) with q � 0:306. (This may

Er = (x; y; z) 2xr = (x+ 12 ; y + 12 ; z)2z = (x; y; z) 2y = (x+ 12 ; y + 12 ; z)Ir = (x; y; z) mxr = (x+ 12 ; y + 12 ; z)mzr = (x; y; z) myr = (x+ 12 ; y + 12 ; z)TABLE XIII: As Table XIII. General Positions for Pbam.Mn3+ (1) = (x; y; 0) (2) = (x; y; 0)(3)(x+ 12 ; y + 12 ; 0) (4) = (x+ 12 ; y + 12 ; 0)Mn4+ (5) = ( 12 ; 0; z) (6) = (0; 12 ; z)(7) = ( 12 ; 0; z) (8) = (0; 12 ; z)RE (9) = (X;Y; 12 ) (10) = (X;Y ; 12 )(11) = (X + 12 ; Y + 12 ; 12 ) (12) = (X + 12 ; Y + 12 ; 12 )TABLE XIV: Positions of the magneti
 ions of TbMn2O5 inthe Pbam stru
ture. Here x = 0:09, y = �0:15, z = 0:25,53X = 0:14, and Y = 0:17.54 . All these values are taken fromthe isostru
tural 
ompound HoMn2O5.be an approximate value.56) (The following 
al
ulationinvolves a great deal of algebra whi
h may be skipped.The expli
it result for the spin stru
ture is given in Eq.(123).) Initially we assume that the possible spin 
on�g-urations 
onsistent with a 
ontinuous transition at su
h awaveve
tor are eigenve
tors of the operators mx and mywhi
h leave the waveve
tor invariant. We pro
eed as forTMO. We use the unit 
ell Fourier transforms and writethe eigenve
tor 
onditions for transformation by mx asS�(q; �f )0 = ��(mx)S�(q; �i)eiq(rf�Ri) = �xS�(q; �f ) ;(92)where �i and Ri are respe
tively the sublatti
e indi
esand unit 
ell lo
ations before transformation and �f andRf are those after transformation. The eigenvalue equa-tion for transformation by my isS�(q; �f )0 = ��(my)S�(q; �i)eiq(rf�Ri) = �yS�(q; �f ) :(93)If one attempts to 
onstru
t spin fun
tions whi
h aresimultaneously eigenfun
tions of mx and my one �ndsthat these equations yield no solution. While it is, of
ourse, true that the operations mx and my take aneigenfun
tion into an eigenfun
tion, it is only for irrepsof dimension one that the initial and �nal eigenfun
-tions are the same, as we have assumed. The present
ase, when the waveve
tor is at the edge of the Bril-louin zone is analogous to the phenomenon of \sti
king"where, for nonsymmorphi
 spa
e group (i. e. those hav-ing a s
rew axis or a glide plane) the energy bands (orphonon spe
tra) have an almost mysterious degenera
yat the zone boundary57 and the only a
tive irrep has di-mension two. This means that the symmetry operationsindu
e transformations within the subspa
e of pairs ofeigenfun
tions. We now determine su
h pairs of eigen-fun
tions by a straightforward approa
h whi
h does not
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FIG. 6: (Color online). Two representations of TbMn2O5.Top: Mn sites (on-line red) with smaller 
ir
les Mn3+ andlarger 
ir
les 4+ and Tb sites (squares, on-line blue) in theprimitive unit 
ell of TbMn2O5. The Mn+4 sites are in theshaded planes at z = n� Æ with Æ � 0:25 and the Mn+3 sitesare in planes z = n, where n is an integer. The Tb ions are inthe planes z = n+ 12 . The glide plane mx is indi
ated by themirror plane at x = 3=4 followed by a translation (indi
atedby the arrow) of b=2 along the y-axis and similarly for theglide plane my. Bottom: Perspe
tive view. Here the Mn3+are inside oxygen pyramids of small balls and the Mn4+ areinside oxygen o
tahedra.require any knowledge of group theory. Here we expli
-itly 
onsider the symmetries of the matrix ��1 for thequadrati
 terms in the free energy whi
h here is a 36�36dimensional matrix, whi
h we write as��1 = 264 M(xx) M(xy) M(xz)M(xy)y M(yy) M(yz)M(zx)y M(yz)y M(zz) 375 ; (94)

ni mx may mxmay Ib mxmyInf nf ei� nf ei� nf ei�0 nf1 3 4 1 2 1 2 1 12 4 3 1 1 1 1 1 23 1 2 �1 4 �1 4 �1 34 2 1 �1 3 �1 3 �1 45 6 6 �1 5 �1 7 �1 76 5 5 1 6 1 8 1 87 8 8 �1 7 �1 5 �1 58 7 7 1 8 1 6 1 69 11 12 1 10 1 10 1 910 12 11 1 9 1 9 1 1011 9 10 �1 12 �1 12 �1 1112 10 9 �1 11 �1 11 �1 12TABLE XV: Transformation table for sublatti
e indi
es withasso
iated fa
tors for TMO25 under various operations. asde�ned by Eq. (20). For mx, one has exp[iq � (Rf �Ri)℄ =1 for all 
ases and for mxmyI the analogous fa
tor is +1in all 
ases and this operator relates S�(q; �) and S�(q; �)�.NOTE: This table does not in
lude the fa
tor of ��(O) whi
hmay be asso
iated with an operation.a) � = q � (Rf �Ri), as required by Eq. (19).b) �0 = q � (� i + � f ), as required by Eq. (22).where M(ab) is a 12 dimensional submatrix whi
h de-s
ribes 
oupling between a-
omponent and b-
omponentspins and is indexed by sublatti
e indi
es � and � 0 Thesymmetries we invoke are operations of the s
rew axes,mx and my whi
h 
onserve waveve
tor (to within a re-
ipro
al latti
e ve
tor), and I, whose e�e
t is usuallyignored. To guide the reader through the ensuing 
al-
ulation we summarize the main steps. We �rst ana-lyze separately the se
tors involving the x, y, and z spin
omponents. We develop a unitary transformation whi
htakesM(��) into a matrix all of whose elements are real.This �xes the phases within the 12 dimensional spa
eof the � spin 
omponents within the unit 
ell (assumingthese relations are not invalidated by the form ofM(��),with � 6= �). The relative phases between di�erent spin
omponents is �xed by showing that the unitary transfor-mation introdu
ed above leads to M(xy) having all real-valued matrix elements and M(xz) and M(yz) having allpurely imaginary matrix elements. The 
on
lusion, then,is that the phases in the se
tors of x and y 
omponentsare 
oupled in phase and the se
tor of z 
omponents areout of phase with the x and y 
omponents.1. x ComponentsAs a preliminary, in Table XV we list the e�e
t ofthe symmetry operations on the sublatti
e index. Whenthese symmetries are used, one �nds the 12 � 12 sub-matrix ofM(xx) whi
h 
ouples only the x-
omponents of



17spins assumes the form26666666666666664
A g h 0 � � �� �� a b 
 dg A 0 �h �� � ��� �� b a �d �
h 0 A g � � �� �� 
 d a b0 �h g A � �� �� ��� �d �
 b a�� ��� �� �� B 0 � 0 
 �
 Æ Æ�� �� �� ��� 0 B 0 � Æ Æ 
 �
� �� � � �� 0 B 0 
� �
� Æ� Æ�� � � �� 0 �� 0 B Æ� Æ� 
� �
�a b 
 �d 
� Æ� 
 Æ C e f 0b a d �
 �
� Æ� �
 Æ e C 0 �f
 �d a b Æ� 
� Æ 
 f 0 C ed �
 b a Æ� �
� Æ �
 0 �f e C

37777777777777775 ;(95)
where Roman letters are real quantities and Greek ones
omplex. (In this matrix the lines are used to separatedi�erent Wy
ko� orbits.) The numbering of the rows and
olumns follows from Table XIV. I give a few examplesof how symmetry is used to get this form. Consider theterm T1, whereT1 = ��11;5Sx(�q; 1)Sx(q; 5) : (96)Using Table XV we transform this by mx intoT 01 = ��11;5Sx(�q; 3)Sx(q; 6) ; (97)whi
h says that the 1,5 matrix element is equal to the3,6 matrix element. (Note that in writing down T 01 wedid not need to worry about ��, sin
e this fa
tor 
omesin squared as unity.) Likewise if we transform by my weget T 01 = ��115 [�Sx(�q; 4)℄[Sx(q; 6)℄ ; (98)whi
h says that the 1,5 matrix element is equal to thenegative of the 4,6 matrix element. If we transform bymxmy we getT 01 = ��11;5[Sx(�q; 2)℄[�Sx(q; 5)℄ ; (99)whi
h says that the 1,5 matrix element is equal to thenegative of the 2,5 matrix element. To illustrate the e�e
tof I on T1 we writeT 01 = ��11;5[Sx(q; 2)℄[�Sx(�q; 7)℄ ; (100)so that the 1,5 element is the negative of the 7,2 element.From the form of the matrix in Eq. (95) (or equivalentlyreferring to Table XXIII in Appendix B), we see that webring this matrix into blo
k diagonal form by introdu
ingthe wavefun
tions for Sx(q; �),� = 1 2 3 4 5 6 7 8 9 10 11 12p2O(x;1)1;� = 1 0 1 0 0 0 0 0 0 0 0 0p2O(x;1)2;� = 0 1 0 1 0 0 0 0 0 0 0 02O(x;1)3;� = 0 0 0 0 1 1 1 1 0 0 0 02O(x;1)4;� = 0 0 0 0 i i �i �i 0 0 0 0p2O(x;1)5;� = 0 0 0 0 0 0 0 0 1 0 1 0p2O(x;1)6;� = 0 0 0 0 0 0 0 0 0 1 0 1 : (101)

The supers
ripts �; n onO label, respe
tively, the Carte-sian 
omponent and the 
olumn of the irrep a

ord-ing to whi
h the wavefun
tion transforms. The sub-s
ripts m; � label, respe
tively, the index number of thewavefun
tion and the sublatti
e label. Let O�;np be ave
tor with 
omponents O�;np;1 , O�;np;2 , ... O�;np;12. ThenhO(x;1)n jM (xx)jO(x;1)m i � hnjM (xx)jmi is266664 A+ h g �0 + �0 ��00 � �00 a+ 
 b + dg A� h �0 � �0 �00 � �00 b� d a� 
�0 + �0 �0 � �0 B + �0 �" Æ0 + 
0 Æ0 � 
0��00 � �00 �00 � �00 �00 B � �0 Æ00 + 
00 Æ00 � 
00a+ 
 b� d Æ0 + 
0 Æ00 + 
00 C + f eb + d a� 
 Æ0 � 
0 Æ00 � 
00 e C � f 377775 ;(102)where the 
oeÆ
ients are separated into real and imag-inary parts as p2� = �0 + i�00, p2� = �0 + i�00p2
 = 
0 + i
00, and p2Æ = Æ0 + iÆ00. There are nononzero matrix elements between wavefun
tions whi
htransform a

ording to di�erent 
olumns of the irrep.The partners of these fun
tions 
an be found fromO(x;2)n = myO(x;1)n ; (103)so that, using Table XV and in
luding the fa
tor ��, weget � = 1 2 3 4 5 6 7 8 9 10 11 12p2O(x;2)1;� = 0 1 0 �1 0 0 0 0 0 0 0 0p2O(x;2)2;� = 1 0 �1 0 0 0 0 0 0 0 0 02O(x;2)3;� = 0 0 0 0 �1 1 �1 1 0 0 0 02O(x;2)4;� = 0 0 0 0 �i i i �i 0 0 0 0p2O(x;2)5;� = 0 0 0 0 0 0 0 0 0 1 0 �1p2O(x;2)6;� = 0 0 0 0 0 0 0 0 1 0 �1 0 :(104)Within this subspa
e the matrix hnjM (xx)jmi is the sameas in Eq. (102) be
ausehnjm�1y M (xx)myjmi = hnjM (xx)jmi : (105)These fun
tions transform as expe
ted for a two di-mensional irrep, namely,mx " O(x;1)nO(x;2)n # = " O(x;1)n�O(x;2)n #my " O(x;1)nO(x;2)n # = " O(x;2)n�O(x;1)n # : (106)We will refer to the transformed 
oordinates of Eqs.(101) and (104) as \symmetry adapted 
oordinates."The fa
t that the model-spe
i�
 matrix that 
ouplesthem is real, means that the 
riti
al eigenve
tor is a lin-ear 
ombination of symmetry adapted 
oordinates withreal 
oeÆ
ients. 2. y ComponentsThe 12 � 12 matrix M (yy) 
oupling y 
omponents ofspin has exa
tly the same form as that given in Eq. (95),



18although the values of the 
onstants are unrelated. Thisis be
ause here one has �2y = 1 in pla
e of �2x = 1. There-fore the asso
iated wavefun
tions 
an be expressed justas in Eqs. (101) and (104) ex
ept that all the supers
riptsare 
hanged from x to y and � now labels Sy(q; �). How-ever, the transformation of the y 
omponents rather thanthe x 
omponents, requires repla
ing �x by �y whi
h in-du
es sign 
hanges, so thatmx " O(y;1)nO(y;2)n # = " �O(y;1)nO(y;2)n #my " O(y;1)nO(y;2)n # = " �O(y;2)nO(y;1)n # : (107)We want to 
onstru
t wavefun
tions in this se
tor whi
htransform just like the x 
omponents, so that they 
anbe appropriately 
ombined with the wavefun
tions forthe x-
omponents. In view of Eq. (106) we setO(y;1)n;� = O(x;2)n;� ; O(y;2)n;� = O(x;1)n;� : (108)So the 
oeÆ
ients for O(y;1)n are given by Eq. (104) andthose for O(y;2)n by Eq. (101). These wavefun
tions are
onstru
ted to transform exa
tly as those for the x 
om-ponents. 3. z ComponentsSimilarly, we 
onsider the e�e
t of the transformationsof the z 
omponents. In this 
ase we take a

ount of thefa
tor �z to getmx " O(z;1)nO(z;2)n # = " �O(z;1)nO(z;2)n #my " O(z;1)nO(z;2)n # = " O(z;2)n�O(z;1)n # : (109)We now 
onstru
t wavefun
tions in this se
tor whi
htransform just like the x 
omponents. In view of Eq.(106) we setO(z;1)n;� = O(x;2)n;� ; O(z;2)n;� = �O(x;1)n;� ; (110)So the 
oeÆ
ients for O(z;1)n are given by Eq. (104)and those for O(z;2)n are the negatives of those of Eq.(101). These wavefun
tions are 
onstru
ted to transformexa
tly as those for the x 
omponents.4. The Total Wavefun
tion and Order ParametersNow we analyze the form ofM(ab) of Eq. (94) for a 6= b,using inversion symmetry. To do this it is 
onvenient to

invoke invarian
e under the symmetry operation mxmyIwhose e�e
t is given in Table XV. We writemxmyISa(q; �) = �a(mx)�a(my)�Sa(q;R�)� ; (111)where R� = � for � 6= 5; 6; 7; 8, otherwise R� = � � 2within the remaining se
tor of � 's and a (and later b)denotes one of x, y, and z. ThusT � Sa(q; �)�M (ab)�� 0 Sb(q; � 0)= [mxmyISa(q; �)℄�M (ab)�� 0 [mxmyISb(q; � 0)℄= CabSa(q;R�)M (ab)�� 0 Sb(q;R� 0)� ; (112)where Cab = �a(mx)�a(my)�b(mx)�b(my) : (113)From the last line of Eq. (112) we dedu
e thatM (ba)R� 0;R� = CabM (ab)�� 0 ; (114)or, sin
eM is Hermitian thatM (ab)�� 0 = Cab hM (ab)R�1�;R�1� 0i� : (115)Now we 
onsider the matri
es M(ab), in the symmetryadapted representation whereM (ab)n;m = X�� 0 [Oapn� ℄�M (ab)�� 0 Obpm� 0= X�� 0 Cab[Oapn� ℄� hM (ab)R�1�;R�1� 0i�Obpm� 0= CabX�� 0 [OapnR� ℄� hM (ab)�;� 0 i�ObpmR� 0 : (116)There are no matrix elements 
onne
ting p and p0 6= pand the result is independent of p. One 
an verify fromEqs. (101) and (104) thatOapn;R� = �Oapn;� �� ; (117)so that M (ab)n;m = Cab�[Oapn� ℄�M (ab)�;� 0 Obpm� 0��= Cab �Mabnm�� : (118)We have that Cxy = �Cxz = �Cyz = 1, so that all theelements ofM(xy) are real and all the elements ofM(xz)and M(yz) are imaginary. Thus apart from an over allphase for the eigenfun
tion of ea
h 
olumn, the phases ofall the Fourier 
oeÆ
ients are �xed. What this means isthat the 
riti
al eigenve
tor 
an be written as = 2Xp=1�p 6Xn=1 rnxO(x;p)n + rnyO(y;p)n+irnzO(z;p)n ! ; (119)



19Spin �1 �2 Spin �1 �2S(q; 1) r1xr1yir1z r2xr2yir2z S(q; 7) z�x�z�yiz�z �z�xz�yiz�zS(q; 2) r2xr2y�ir2z r1xr1y�ir1z S(q; 8) z�xz�y�iz�z z�xz�yiz�zS(q; 3) r1x�r1y�ir1z �r2xr2yir2z S(q; 9) r5xr5yir5z r6xr6yir6zS(q; 4) r2x�r2yir2z �r1xr1y�ir1z S(q; 10) r6xr6y�ir6z r5xr5y�ir5zS(q; 5) zx�zyizz �zxzyizz S(q; 11) r5x�r5y�ir5z �r6xr6yir6zS(q; 6) zxzy�izz zxzyizz S(q; 12) r6x�r6yir6z �r5xr5y�ir5zTABLE XVI: Normalized spin fun
tions (i. e. Fourier 
o-eÆ
ients) within the unit 
ell of TbMn2O5 for waveve
tor( 12 ; 0; q). Here z� = (r3� + ir4�)=p2. All the r's are realvariables. The wavefun
tion listed under �1 (�2) transformsa

ording to the �rst (se
ond) 
olumn of the irrep. The a
-tual spin stru
ture is a linear 
ombination of the two 
olumnswith arbitrary 
omplex 
oeÆ
ients.where the r's are all real-valued and are normalized by6Xn=1X� [rn�℄2 = 1 ; (120)and �p are arbitrary 
omplex numbers. Thus we havethe result of Table XVI.The order parameters are�1 � �1e�i�1 ; �2 � �2e�i�2 : (121)Neither the relative magnitudes of �1 and �2 nor theirphases are �xed by the quadrati
 terms within the Lan-dau expansion. Note that the stru
ture parameters of Ta-ble XVI are determined by the mi
ros
opi
 intera
tionswhi
h determine the matrix elements in the quadrati
free energy. (Sin
e these are usually not well known, onehas re
ourse to a symmetry analysis.) The dire
tion in�1-�2 spa
e whi
h the system assumes, is determined byfourth or higher-order terms in the Landau expansion.Sin
e not mu
h is known about these terms, this dire
-tion is reasonably treated as a parameter to be extra
tedfrom the experimental data. We use Table XVI to writethe most general spin fun
tions 
onsistent with 
rystalsymmetry. For instan
e we writeS(R; 1) = 12�1[r1xî+ r1y ĵ + ir1zk̂℄e�iq�R + 
: 
:

+ 12�2[r2x î+ r2y ĵ + ir2zk̂℄e�iq�R + 
: 
: :(122)Using this and similar equations for the other sublatti
eswe �nd thatS(R; 1) = �1 h(r1xî+ r1y ĵ) 
os(q �R+ �1)+r1zk̂ sin(q �R+ �1)i+�2 h(r2x î+ r2y ĵ℄ 
os(q �R+ �2)+r2zk̂ sin(q �R+ �2)iS(R; 2) = �1 h(r2xî+ r2y ĵ) 
os(q �R+ �1)�r2zk̂ sin(q �R+ �1)i+�2 h(r1x î+ r1y ĵ℄ 
os(q �R+ �2)�r1zk̂ sin(q �R+ �2)iS(R; 3) = �1 h(r1xî� r1y ĵ) 
os(q �R+ �1)�r1zk̂ sin(q �R+ �1)i+�2 h(�r2xî+ r2y ĵ℄ 
os(q �R+ �2)+r2zk̂ sin(q �R+ �2)iS(R; 4) = �1 h(r2xî� r2y ĵ) 
os(q �R+ �1)+r2zk̂ sin(q �R+ �1)i+�2 h(�r1xî+ r1y ĵ℄ 
os(q �R+ �2)�r1zk̂ sin(q �R+ �2)iS(R; 5) = �1 h(z0xî� z0y ĵ � z00z k̂) 
os(q �R+ �1)+(z00x î� z00y ĵ + z0zk̂) sin(q �R+ �1)i+�2 h(�z0xî+ z0y ĵ � z00z k̂℄ 
os(q �R+ �2)+(�z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R6) = �1 h(z0xî+ z0y ĵ + z00z k̂) 
os(q �R+ �1)+(z00x î+ z00y ĵi� z0zk̂) sin(q �R+ �1)i+�2 h(z0xî+ z0yĵ � z00z k̂℄ 
os(q �R+ �2)+(z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R; 7) = �1 h(z0xî� z0y ĵ + z00z k̂) 
os(q �R+ �1)+(�z00x î+ z00y ĵ + z0zk̂) sin(q �R+ �1)i+�2 h(�z0xî+ zy ĵ + z00z k̂℄ 
os(q �R+ �2)+(z00x î� z00y ĵ + z0zk̂) sin(q �R+ �2)i



20S(R8) = �1 h(z0xî+ z0yĵ � z00z k̂) 
os(q �R+ �1)+(�z00x î� z00y ĵ � z0zk̂) sin(q �R+ �1)i+�2 h(z0xî+ zyĵ + z00z k̂℄ 
os(q �R+ �2)+(�z00x î� z00y ĵ + z0zk̂) sin(q �R+ �2)iS(R; 9) = �1 h(r5x î+ r5y ĵ) 
os(q �R+ �1)+r5zk̂ sin(q �R+ �1)i+�2 h(r6x î+ r6y ĵ℄ 
os(q �R+ �2)+r6zk̂ sin(q �R+ �2)iS(R; 10) = �1 h(r6x î+ r6y ĵ) 
os(q �R+ �1)�r6zk̂ sin(q �R+ �1)i+�2 h(r5x î+ r5y ĵ℄ 
os(q �R+ �2)�r5zk̂ sin(q �R+ �2)iS(R; 11) = �1 h(r5x î� r5y ĵ) 
os(q �R+ �1)�r5zk̂ sin(q �R+ �1)i+�2 h(�r6xî+ r6y ĵ℄ 
os(q �R+ �2)+r6zk̂ sin(q �R+ �2)iS(R; 12) = �1 h(r6x î� r6y ĵ) 
os(q �R+ �1)+r6zk̂ sin(q �R+ �1)i+�2 h(�r5xî+ r5y ĵ℄ 
os(q �R+ �2)�r5zk̂ sin(q �R+ �2)i (123)In Table XVI the position of ea
h spin is R+ �n, wherethe � are listed in Table XIV and R is a Bravais latti
eve
tor. The symmetry properties of the order parametersare mx " �1�2 # = " �1��2 #my " �1�2 # = " �2��1 #I " �1�2 # = " ��2��1 # : (124)We now 
he
k a few representative 
ases of the abovetransformation. If we apply mx to S(q; 1) we do not
hange the signs of the x 
omponent but do 
hange thesigns of the y and z 
omponents. As a result we getS(q; 3) ex
ept that �y has 
hanged sign, in agreement

with the �rst line of Eq. (124). If we apply my to S(q; 1)we do not 
hange the sign of the y 
omponent but do
hange the signs of the x and z 
omponents. As a resultwe get S(q; 4) ex
ept that now �1 is repla
ed by �2 and�2 is repla
ed by �1, in agreement with the se
ond lineof Eq. (124). When inversion is applied to S(q; 1) we
hange the sign of R but not the orientation of the spinswhi
h are pseudove
tors. We then obtain S(q; 2) provid-ing we repla
e �1 by ��2 and �2 by ��1, in agreement withthe last line of Eq. (124).5. Comparison to Group TheoryHere I brie
y 
ompare the above 
al
ulation to the oneusing the standard formulation of representation theory.The �rst step in the standard formulation is to �nd theirreps of the group of the waveve
tor. The easiest wayto do this is to introdu
e a double group having eightelements (see Appendix B) sin
e we need to take a

ountof the operatorm2y � �E. (This is done in Appendix B.)From this one �nds that ea
hWy
ko� orbit and ea
h spin
omponent 
an be 
onsidered separately (sin
e they donot transform into one another under the operations we
onsider). Then, in every 
ase the only irrep that appearsis the two dimensional one for whi
h we setmx = " 1 00 -1 # my = " 0 1-1 0 # mxmy = " 0 11 0 # :(125)Indeed, one 
an verify that the fun
tions in the se
-ond (third) 
olumn of Table XVI 
omprise a basis ve
-tor for 
olumn one (two) of this two dimensional irrep.One might ask: \Why have we undertaken the ugly de-tailed 
onsideration of the matrix for F2?" The point isthat within standard representation theory all the vari-ables in Table XVI would be independently assigned ar-bitrary phases. In addition, the amplitudes for the Tb or-bits (sublatti
es #5, #6 and sublatti
es #7, #8) wouldhave independent amplitudes. To get the results a
tuallyshown in Table XVI one would have to do the equivalentof analyzing the e�e
t of inversion invarian
e of the freeenergy. This task would be a very te
hni
al exer
ise inthe ar
ane aspe
ts of group theory whi
h here we avoidby an exer
ise in algebra, whi
h though messy, is ba-si
ally high s
hool math. I also warn the reader that
anned programs to perform the standard representationanalysis 
an not always be relied upon to be 
orre
t. It isworth noting that published papers dealing with TMO25have not invoked inversion symmetry. For instan
e inRef. 55 one sees the statement \As in the in
ommensu-rate 
ase[3℄, ea
h of the magneti
 atoms in the unit 
ell isallowed to have an independent SDW, i. e., its own am-plitude and phase," and later on in Ref. 56 \all phaseswere subsequently �xed ... to be rational fra
tions of �."Use of the present theory would eliminate most of thephases and would relate the two distin
t Mn4+ Wy
ko�orbits (just as happened for TMO).



21Finally, to see the e�e
t of inversion on a 
on
rete levelI 
onsider the upper right and lower left 4�4 submatri
esof M(xx), whi
h are denoted Mur and Mll, respe
tively.If we do not use inversion symmetry (this amounts tofollowing the usual group theoreti
al formulation) thesematri
es assume the formMur = 26664 a b 
 db a �d �

 d a b�d �
 b a 37775 ;Mll = 26664 a� b� 
� �d�b� a� d� �
�
� �d� a� b�d� �
� b� a� 37775 ; (126)where now all these parameters are 
omplex valued. (Pre-viously, in Eq. (95) all these parameters were real-valued.) From these results one 
ould again introdu
ethe wavefun
tions of Eq. (101). However, in this 
ase,the matrix elements appearing in the analog of Eq. (102)would not be real. In fa
t, Eq. (126) indi
ates in Eq.(102) the quantities a, b, 
, and d in the upper right se
-tor of the matrix would be 
omplex and those in the lowerleft se
tor would be repla
ed by their 
omplex 
onjugates(to ensure Hermiti
ity). Thus invoking inversion symme-try does not 
hange the symmetry adapted 
oordinatesof Eq. (101). Rather it �xes the phases so that the result
an be expressed in terms of real-valued parameters, aswe have done in Table XVI.6. Comparison to YMn2O5YMn2O5 (YMO25) is isostru
tural to TM025, so itsmagneti
 stru
ture is relevant to the present dis
ussion.I will 
onsider the highest temperature magneti
ally or-dered phase, whi
h appears between about 20K and 45K.In this 
ompound Y is nonmagneti
 and in the higher-temperature ordered phase qz = 1=4, so the system is
ommensurate. But sin
e the value of qz is not spe
ial,the symmetry of this state is essentially the same as thatof TMO25. Throughout this subse
tion the stru
turalinformation is taken from Fig. 2 of Ref. 58. (The up-permost panel is mislabeled and is obviously the one wewant for the highest temperature ordered phase.)From Fig. 7 we see that the spin wavefun
tion is aneigenve
tor of mx with eigenvalue �1. So this stru
turemust be that of the se
ond 
olumn of the irrep. In a

or-dan
e with this identi�
ation one sees that the initialwavefun
tion is orthogonal to the wavefun
tion trans-formed by my (sin
e this transformation will produ
e awavefun
tion asso
iated with the �rst 
olumn). Refer-ring to Eq. (123), one sees that to des
ribe the patternof Mn3+ spins one 
hooses�1 = 0 ; r2x = �r1x � 0:95 ;r1y = �r2y � 0:3 : (127)

y

m
x

1

43

2

m
y

x

FIG. 7: (Color online). Top: The spin stru
ture of the Mn3+ions in YMn2O5 (limited to one a-b pane), taken from Fig.2 of Ref. 58. The sublatti
es are labeled in our 
onvention.Bottom left: the spin stru
ture of after transformation bymx.Bottom right: spin stru
ture of TbMn2O5 after transforma-tion by my.The point we make here is that �1 = 0. Although thevalues of these order parameters were not given in Ref.58, it seems 
lear that in the lower temperature phasethe order parameters must be 
omparable in magnitude.D. CuFeO2The magneti
 phase diagram of CuFeO2 has been in-vestigated 
ontinually over the last de
ade or so. Earlystudies59,60 showed a ri
h phase diagram and these 
om-bined with magneto-ele
tri
 data10 led to the phase dia-gram for magneti
 �elds up to about 15T given in Ref.10 whi
h is reprodu
ed in Fig. 8.Above TN2 � 10K, the 
rystal stru
ture is thatof spa
e group of R3m61 (#166 in Ref. 33). Be-low that temperature there is apparently a very smalllatti
e distortion whi
h gives rise to a lower symme-try 
rystal stru
ture.62,63 However, sin
e this distortionmay not be essential to explaining the appearan
e offerroele
tri
ity,64 we will ignore the presen
e of this lat-ti
e distortion. The general positions of ions within spa
egroup R3m is given in Table XVII.Our analysis is based on the following logi
 referredto the phase diagram of Fig. 8. We assume that asthe temperature is lowered in a magneti
 �eld of about10T, the 
ontinuous transition from the paramagneti
phase to the 
ollinear in
ommensurate (CIC) phase intro-du
es a single irrep whi
h we will identify by our simplemethod. Then further lowering of the temperature willintrodu
e a se
ond irrep, taking us into the non
ollinearin
ommensurate (NIC) phase whose symmetry and fer-roele
tri
ity we wish to dis
uss. Both these phases are
hara
terized by an in
ommensurate waveve
tor along ahexagonal < 110 > dire
tion, whi
h is the dire
tion to anearest neighbor in the triangular latti
e plane, as shown
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FIG. 8: (Color online) Temperature (T ) versus magneti
 �eld(B) phase diagram of CuFeO2 with B applied along the 
axis from Kimura et al.10 The upper inset shows the 
rystalstru
ture of CuFeO2 and the lower insets show the magneti
stru
ture of the 
ommensurate states, where white and bla
k
ir
les 
orrespond to the positive and negative 
 dire
tions.Note in the lower left inset that the hexagonal < 110 > dire
-tion (along whi
h q is oriented) is a nearest neighbor dire
tion.Er = (x; y; z) 3r = (z; x; y) 32r = (y; z; x)m3r = (y; x; z) m2r = (z; y; x) m1r = (x; z; y)Ir = (x; y; z) I3r = (z; x; y) I32r = (y; z; x)Im3r = (y; x; z) Im2r = (z; y; x) Im1r = (x; z; y)TABLE XVII: General Positions for R3m, with respe
t torhombohedral axes, an, where a1 = �(a=2)̂i� (ap3=6)ĵ+ 
k̂,a2 = (a=2)̂i� (ap3=6)ĵ + 
k̂, a3 = (ap3=3)ĵ + 
k̂, where 
 isthe distan
e between neighbors planes of Fe ions and a is theseparation between nearest neighbors in the plane. Here "3"denotes a three-fold rotation and mn labels the three mirrorplanes whi
h 
ontain the three-fold axis and an.in Fig. 8. As mentioned, although in prin
iple the lat-ti
e distortion does break the three-fold symmetry, wewill assume that the three states whi
h are related bythe three-fold rotation have only slightly di�erent ener-gies in the distorted stru
ture and our arguments haveto be understood in that sense.We assume the R3m spa
e group and are interestedin stru
tures asso
iated with a waveve
tor in the starof q1 �< q; q; 0 > (referred to hexagonal axes). Thesewaveve
tors are parallel to a nearest neighbor ve
tors ofthe triangular plane of Fe ions. Consider the waveve
tor

q1 � qî. The only operation (other than the identity)that 
onserves waveve
tor is 2x a two-fold rotation aboutthe axis of the waveve
tor. Clearly the Fourier 
ompo-nent mx(q) obeys2xmx(q1) = �(2x)mx(q1) (128)with �(2x) = 1. and we 
all this irrep �1. For irrep �2we have 2xmy(q1) = �(2x)my(q1)2xmz(q1) = �(2x)mz(q1) ; (129)but with �(2x) = �1. So far, the phases of the 
omplexFourier 
oeÆ
ients are not �xed. We have the transfor-mation properties2x�1(q1) = �1(q1) ; 2x�2(q1) = ��2(q1)I�1(q1) = [�1(q1)℄� ; I�2(q1) = [�2(q1)℄� :(130)To �x the phases in irrep �2 we note that its quadrati
free energy 
an be expressed asF2 = Ajmy(q1)j2 +Bjmz(q1)j2 + Cmy(q1)�mz(q1)+C�mz(q1)�my(q1) ; (131)where A and B are real and C is 
omplex. Using the fa
tthat F2 must be invariant under I, we writeF2 = Ajmy(q1)j2 +Bjmz(q1)j2 + Cmz(q1)mz(q1)�+C�mz(q1)my(q1)� : (132)Comparing this with Eq. (131) we 
on
lude that C hasto be real. Sin
e the m's 
an be 
omplex, this means thatthe two 
omponents of the eigenve
tor of the quadrati
form [i. e. my(q1) and mz(q1)℄ have to have the same
omplex phase.We now introdu
e order parameters whi
h des
ribe themagnitude and phase of these two symmetry labels (ir-reps) whi
h make up the wavefun
tion. When both irrepsare present, one hasmx(q1) = �1(q1) (133)and my(q1) = �2(q1)r ; mz(q1) = �2(q1)s ; (134)where r2 + s2 = 1 and �n(�jqkj) = �ne�i�n . (Notethat the phases �n are �xed by the fourth order termsin the free energy to be the same for all members of thestar of the waveve
tor.) Thus, when both irreps (of q1)are present, we have (rede�ning the order parameters toremove a fa
tor of 2)mx(r) = �1(q1) 
os(qx + �1)my(r) = �2(q1)r 
os(qx+ �2)mz(r) = �2(q1)s 
os(qx+ �2) ; (135)where q = jq1j.



23We apply these results as follows. As one lowers thetemperature from the paramagneti
 phase we assumethat we �rst enter the CIC whi
h has the spins pre-dominantly along the z-axis. Therefore, in this phasewe assume that only irrep �2 is a
tive. Noti
e that inthis phase the spins will not lie exa
tly along the z-axis.Indeed, re
ent work65 indi
ates that this phase is one inwhi
h the amplitudes are sinusoidally modulated and thespins are oriented in the y�z plane (as des
ribed by irrep�2) with my=mz (i. e. r=s) between 0 and about 0.2.Lowering the temperature still further leads to the NICphase in whi
h both irreps �2 and �1 are a
tive. Theliterature seems to be rather un
ertain as to the a
tualstru
ture of this phase. However, one possibility, seem-ingly not mentioned up to now, is that appli
ation of amagneti
 �eld to the 
ollinear-
ommensurate (1/4) state,
ould essentially give rise to a spin-
op transition so thatthe spins, instead of being aligned along the hexagonal 
axis, would rotate to being nearly perpendi
ular to the
 axis. This observation would suggest that if we ignorethe latti
e distortion, we would expe
t to have an in-
ommensurate state with the spins ellipti
ally polarizedin a plane nearly (but not exa
tly) perpendi
ular to thehexagonal 
 axis. Su
h a state is 
onsistent with Eq.(135) providing j�2 � �1j = �=2. It does have to be ad-mitted that the spin-
op �eld �eld of about 10T is ratherlarge for an L = 0 ion like Fe3+ whose anisotropy 
ouldbe expe
ted to be small.So far we have 
onsidered only two of the ve
tors q1and �q1, of the star of the waveve
tor. However, theLandau expansion should treat all waveve
tors in the starsymmetri
ally, sin
e at quadrati
 order the system 
anequally well 
ondense into any of the waveve
tors of thestar. So we write the quadrati
 free energy F2 asF2 = 3Xn=1�a1(H;T )j�1(qn)j2 + a2(H;T )j�2(qn)j2� :(136)When the temperature is lowered at a magneti
 �eld ofabout 10T along the z axis, the 
oeÆ
ient a2(H;T ) �rstpasses through zero and only one of the order parameters�2(qn) be
omes nonzero. At lower temperature a1(H;T )passes through zero and one enters a phase in whi
h both�1(qn) and �2(qn) be
ome nonzero. Within Landau the-ory, it is possible to realize a phase in whi
h two or threenon
ollinear waveve
tors simultaneously be
ome unsta-ble. However, sin
e su
h \double q" or \triple q" statesare not realized for CFO, we will not analyze this possibil-ity further than to say that the fourth order terms mustbe su
h as to stabilize states having a single waveve
tor.The ferroele
tri
 phase of interest is one in whi
h�1(qn) and �2(qn) are nonzero for a single value of n.(The value of n represents a broken symmetry.) For fu-ture referen
e we note that at zero applied ele
tri
 andmagneti
 �elds the free energy must be invariant un-der taking either �1 or �2 into its negative. Finally,we re
ord how order parameters 
orresponding to di�er-ent waveve
tors of the star are related by the three-fold

Spa
e group G1 G2 G3P3m1 R I 2xP3 R ITABLE XVIII: Generators Gn of rotational symmetry forthe symmorphi
 spa
e groups of RFMO. Here R is a rotationthrough 2�=3 about the positive 
 axis and 2x is a two foldrotation about the a axis, as in Fig. 9.rotation, 3:3�n(q1) = �n(q2) ; 32�n(q1) = �n(q3) : (137)However, the spins distribution 
orresponding to theseorder parameters of the other waveve
tors are the rotatedversion of the spin stru
ture, so that if we 
onsider theordering waveve
tor q2 we havemx(r) = �[�1(q2)=2℄ 
os(�qx=2� qyp3=2 + �1)�[p3�2(q2)r=2℄ 
os(�qx� qyp3=2 + �2)my(r) = �[�2(q)r=2℄(�qx=2� qyp3=2 + �2)+[p3�1(q2)=2℄(�qx=2� qyp3=2 + �1)mz(r) = �2(q2)s 
os(�qx=2� qyp3=2 + �2) : (138)To summarize: representation theory usefully restri
tsthe possibly spin stru
tures one 
an obtain via one ormore 
ontinuous phase transitions. Re
ognition of thisfa
t might have saved a lot of experimental e�ort in de-termining the spin stru
tures of CuFeO2.E. RbFe(MoO4)2In this se
tion we elaborate on a briefer presenta-tion of the symmetry analysis given previously8 forRbFe(MoO4)2 (RFMO). This symmetry analysis is 
on-sistent with the mi
ros
opi
 model of intera
tion pro-posed by Gasparovi
.66 RFMO 
onsists of two dimen-sional triangular latti
e layers of Fe spin 5/2 ions (per-pendi
ular to the 
rystal 
 axis) su
h that adja
ent lay-ers are sta
ked dire
tly over one another. These layers ofmagneti
 ions are separated by oxygen tetrahedra whi
hsurround an Mo ion. At room temperature the 
rystalstru
ture is P3m1 (# 164 in Ref. 33), but at 180K asmall latti
e distortion leads to the lower symmetry P3(# 147 in Ref. 33) stru
ture,66 whose general latti
e po-sitions are spe
i�ed in Table XVIII, and the stru
ture isshown in Fig. 9. The low-temperature stru
ture di�ersfrom that above T = 180K by not having the two-foldrotation about the 
rystal a axis. As we will explain,this loss of symmetry has important 
onsequen
es for themagneti
 stru
ture.66We now dis
uss the magneti
 stru
ture of RFMO.A s
hemati
 We now dis
uss the magneti
 stru
ture ofRFMO. A s
hemati
 magneti
 phase diagram for mag-neti
 �elds of up to about 10T along the 
 axis is show
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FIG. 9: (Color online). The unit 
ell of RFMO in the P3phase. The large balls (online pink) represent the magneti
Fe ions, the small balls (online blue) oxygen ions, and ea
htetrahedron (online green) 
ontains a Mo ion. For 
larity theRb ion (whi
h sits between the two tetrahedra) is not shown.The in-plane antiferromagneti
 intera
tion J is dominant. Inthe high-temperature P3m1 phase J3 = J4 but in the presen
eof the latti
e distortion to the P3 phase J3 6= J4.66
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FIG. 10: A s
hemati
 phase diagram of RFMO for magneti
�elds of up to about 10T along the 
 axis, based on Refs. 8,66{69 Here P is the paramagneti
 phase, IC-TRI is an in
ommen-surate phase des
ribed in the text in whi
h ea
h plane 
on-sists of the so-
alled 120o triangular latti
e stru
ture. CAFis a 
ommensurate antiferromagnet phase, and ICAF an in-
ommensurate antiferromagneti
 phase, neither of whi
h aredis
ussed in the present paper. We omit referen
e to subtlephase distin
tions dis
ussed in Refs. 67 and 68.in Fig. 10. The magneti
 anisotropy is su
h that allthe spins lie in the basal plane perpendi
ular to the
 axis. The dominant intera
tions responsible for longrange magneti
 order are antiferromagneti
 intera
tionsbetween nearest neighbors in a given basal plane whi
hgive rise to the the so-
alled 120o stru
ture, shown inFig. 11 in whi
h the angle between all nearest neighbor-ing spins in a basal plane is 120o.67,68
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FIG. 11: (Color online) The 120o phase of a triangular latti
e.The orientations of the spins are given by the phase  (r),de�ned in Eq. (156), below, for qzz+� = 0. The dashed linesindi
ate the two-dimensional unit 
ell. The plus and minussigns indi
ate whether the oxygen tetrahedron 
losest to the
enter of the triangle is above (plus) or below (minus) theplane of the paper.
z

FIG. 12: (Color online). Heli
al spin stru
ture of RFMO. Asone moves from one triangular latti
e plane to the next thespins are rotated through an angle 166o.8,66Here we will be mainly interested in the properties ofthe phase whi
h o

urs for magneti
 �elds of less thanabout 3T. Neutron di�ra
tion8,66 
on�rms that in thisphase ea
h triangular layer orders into a phase in whi
hthe angle between the dire
tion of adja
ent spins is 120o.Neutron di�ra
tion8,66 also indi
ated that from one tri-angular layer to the next the spins are rotated throughan angle �� = 166o,8,66 as shown in Fig. 12. This phasela
ks inversion symmetry and is ferroele
tri
.8 In thatreferen
e the order parameters whi
h des
ribe the mag-neti
 ordering are dis
ussed and we give the analysis inmore detail here.
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FIG. 13: (Color online). The �rst Brillouin zone (thehexagon) and the re
ipro
al latti
e (the dots) for a triangularlatti
e. The points labeled X1 are all equivalent and simi-larly for the points labeled X2. Here jXnj = 4�=(p3a). There
ipro
al latti
e is rotated by 30o with respe
t to the dire
tlatti
e. In re
ipro
al latti
e units X2 = (1=3; 1=3; 0).We now dis
uss the waveve
tors whi
h generate thismagneti
 stru
ture. The 120o magneti
 stru
ture of a tri-angular latti
e is generated by waveve
tors at the 
ornersof the two-dimensional Brillouin zone, whi
h is shown inFig. 13. Note that the 
orners of the zone labeled Xnhaving the same n are equivalent to one another be
ausethey di�er by a ve
tor of the re
ipro
al latti
e. How-ever X1 and X2, although the negatives of one another,are distin
t. The in
ommensurate low �eld phase is thus
hara
terized by the waveve
torsQn � Xn + qz k̂ ; (139)where the 
omponent of waveve
tor along 
 des
ribes thetwisting of the spins as one moves along the 
 axis via�� = qz
, where 
 is the interlayer separation. It is
lear that for either of the two relevant spa
e groups theonly operation (other than the identity) that 
onserveswaveve
tor is R. The Fourier 
oeÆ
ients of the spin willbe eigenve
tors of R with eigenvalue �(R) and we listthese in Table XIX.Irrep �1 �2 �3�(R) 1 � �2Sx 0 S? S?Sy 0 �iS? iS?Sz Sk 0 0TABLE XIX: Complex-valued Fourier 
omponents S(q) forthe various irreps. Here � = e2�i=3.

The Fourier amplitude S(q) is de�ned byS(r) = S(q)e�iq�r : (140)The allowed 
omplex-valued Fourier amplitudes S(q) forea
h irrep are given in Table XIX. We now verify theresults given in Table XIX. To do this we need to knowwhat e�e
t the three-fold rotation R has on the Fourier
oeÆ
ient S(q). Let primes denote the value of quantitiesafter transformation by R and unprimed quantities thequantities before transformation. We writeS0(r0) = S0(q)e�iq�r0 : (141)Thus, if we 
an determine how S(r)and r transform intoS0(r0) and r0, respe
tively, we 
an use this relation to inferhow S(q) transforms. For this dis
ussion we introdu
ethe notation thatRS rotates only the spin andRr rotatesonly the position, so thatR = RSRr : (142)Note that after transformation the spin at r0 will be therotated version of the spin that was at r. ThereforeS0(r0) = RSS(r) = [RSS(q)℄e�iq�r : (143)But q � r = q � [R�1r r0℄ = [Rrq℄ � r0 = q � r0 : (144)Here we used the fa
t that under Rr the X-point (seeFig. 13) goes into a point equivalent to itself. ThusS0(r0) = [RSS(q)℄e�iq�r0 : (145)Comparison with Eq. (141) then yieldsS0(q) = RSS(q) ; (146)whi
h we write asS0x(q)S0y(q) = " � 12 �p32p32 � 12 # Sx(q)Sy(q) : (147)We now 
an 
he
k the result in Table XIX. IfS(q) = (S?;�iS?) ; (148)Then Eq. (147) givesS0(q) = �(S?;�iS?) � �S(q) ; (149)where � = exp(2�i=3).1. Order ParametersWe now des
ribe the spin stru
tures 
orresponding tothe various irreps. The distribution fun
tion for spin de-pends on the irrep, �2 or �3, on whi
h X-point is 
hosen,



26and on the value of the z-
omponent of waveve
tor, Sothe possible distributions areS(2)(X1; qz; r) = R?e�i(X1�rk+qzz��)(̂i� iĵ)+
: 
: ; (150)S(3)(X1; qz; r) = R?e�i(X1�rk+qzz��)(̂i+ iĵ)+
: 
: ; (151)S(2)(X2; qz; r) = R?e�i(X2�rk+qzz��)(̂i� iĵ)+
: 
: ; (152)S(3)(X2; qz; r) = R?e�i(X2�rk+qzz��)(̂i+ iĵ)+
: 
: ; (153)where the supers
ript on S labels the irrep and rk is thethe in-plane part of the ve
tor r. Here we have writtenthe 
omplex Fourier 
oeÆ
ient S? as R? exp(i�), whereR? and � are real. We interpret R?ei� as being the
omplex valued order parameter, �.The distributions involving X2 are redundant. Sin
eX2 + qzk̂ = �[X1 � qz k̂℄, one sees thatS(2)(X2; qz; r;��) = S(3)(X1;�qz; r;�) : (154)Thus the order parameter for X2 is equivalent to the
omplex 
onjugate of that for X1 when the sign of qz isreversed. A

ordingly we only introdu
e order parame-ters �nei�n asso
iated with X1 by writingS(2)(X1; qz ; r) = �2(qz)ei�2e�i(X1�rk+qzz) (̂i� iĵ) + 
: 
:S(3)(X1; qz ; r) = �3(qz)ei�3e�i(X1�rk+qzz) (̂i+ iĵ)+
: 
: : (155)The magneti
 stru
tures whi
h these order parametersdes
ribe is best visualized in terms of the phase (r) � X1 � rk + qzz + � : (156)One see that for S(2) the spin at r is oriented in theplane and makes angle � (r) with respe
t to the posi-tive x-axis whereas for S(3) the spin at r is oriented inthe plane and makes angle  (r) with respe
t to the pos-itive x-axis. We show the phase (for qzz+ � = 0) in Fig.11. There are some properties of the two-dimensionalsystem whi
h do not 
arry over to the three-dimensionalstru
ture. For instan
e, for the two-dimensional systemthe plane of the latti
e is a mirror plane and thereforethis magneti
 stru
ture 
an not possibly indu
e a ferro-ele
tri
 moment. Also for the two-dimensional systemshown we 
ould not distinguish between  (r) and � (r)sin
e these are related via a two-fold rotation about anaxis perpendi
ular to the plane of the latti
e. Now wedis
uss the relevan
e of Fig. 11 to RFMO. From Fig.9 one sees that triangles have the 
losest oxygen tetra-hedra alternatingly above and below the latti
e. So we

de�ne "positive triangles" to be those for whi
h the oxy-gen tetrahedra 
losest to the 
enter of the triangle areabove the plane. Suppose in Fig. 11 these are the trian-gles with a vertex oriented upward. We indi
ate these by"+" signs and the downward triangles by � signs. Notethat if we ignored the three dimensionality (i. e. if weignored the plus and minus signs signs), then we 
ould
hange the sign of  by a two-fold rotation about an axisperpendi
ular to the latti
e plane. However, sin
e thisoperation inter
hanges + into �, it is not a symmetryof the three-dimensional latti
e and the two spin distri-butions of Eq. (155) are distinguishable. The e�e
t ofthe additional phase � � qzz + � is to rotate all thespins in a given plane through the angle � and thusqz determines the heli
ity. For qz > 0, S(2) has negativeheli
ity sin
e its spin orientations follow � (r), whereasS(3) has positive heli
ity sin
e its spin orientations fol-low  (r). The 
hirality of a triangle is usually de�ned asbeing positive or negative a

ording to whether the spinrotate through plus or minus 120o as one traverses theverti
es of a triangle 
ounter
lo
kwise. In Fig. 11 the uptriangles have positive 
hirality and the down ones neg-ative 
hirality. Thus this stru
ture does not have overall
hirality.We now 
onsider the symmetry of the order parameter.First of all R�2 = ��2 ;R�3 = ���3 : (157)Note the e�e
t of inversion whi
h transports the spinto the spatially inverted lo
ation without 
hanging itsorientation. SoIS(2) (X1; qz; r) = S(2)(X1; qz ;�r)= S?ei�ei(X1�rk+qzz) (̂i� iĵ) + 
: 
:= hS?e�i�e�i(X1�rk+qzz) (̂i+ iĵ)i� + 
: 
:= S?e�i�e�i(X1�rk+qzz)(̂i+ iĵ) + 
: 
: : (158)This relation is equivalent to saying thatI�2(qz) = �3(qz)� : (159)The symmetry operation 2x only holds in the high-temperature (P3m1) phase. For it2xS(2)(X1; qz; r) = �2(qz)e�i(X1�rk�qzz) �î+ iĵ� ;(160)so that 2x�2(qz) = �3(�qz)� : (161)Now the quadrati
 free energy (keeping terms involvingboth irreps and both signs of qz) is of the formF2 = Aj�2(qz)j2 +Bj�3(qz)j2+Cj�2(�qz)j2 +Dj�3(�qz)j2 : (162)



27A 
ontinuous phase transition o

urs at a temperatureat whi
h one or more of the 
oeÆ
ients A, B, C, orD be
omes zero. Using Eq. (159) we see that inver-sion symmetry ensures that A = B and C = D. Inthe high-temperature phase 2x symmetry ensures thatA = D and B = C. Thus waveve
tor sele
tion in thehigh-temperature phase would not sele
t the sign of qz.Indeed, if, as is believed, the dominant interplanar inter-a
tions are antiferromagneti
 intera
tions between near-est neighbors in adja
ent layers (J2 in Fig. 9), then hadthere been no latti
e distortion at 180K, one would sele
tqz = 1=2 (whi
h is equivalent to qz = �1=2). Sin
e the2x symmetry is lost below 180K, in that range of tem-perature we should write A � C = B � D = 
0� where� is an order parameter des
ribing the amplitude of thelatti
e distortion and 
0 is a 
onstant whose sign 
an berelated to the quantity J3 � J4.66 A

ordingly, we writethe free energy relative to the high-temperature undis-torted paramagneti
 phase in terms of the stru
tural (�)and magneti
 (�'s) order parameters asF2 = A(T � TD)�2 + u�4+Xqz>0 3Xn=2("�(T � T
) + Jav) 
os(qz
)#�"j�n(qz)j2 + j�n(�qz)j2#� 
0� sin(qz
)"j�n(qz)j2 � j�n(�qz)j2#)+O(�4) ; (163)where TD = 180K is the temperature at whi
h the lat-ti
e distortion appears, T
 is the mean �eld transitiontemperature for 120o magneti
 ordering on the triangu-lar latti
e, and Jav represents the sum of the interplanarantiferromagneti
 intera
tions that do not sele
t the signof qz. Also, we have in
luded the results of a mi
ros
opi
model66 in whi
h the term in 
0 
omes from distortion-modi�ed intera
tions whi
h give the term proportionalto 
0 sin(qz
) whi
h leads to the lifting of degenera
y be-tween +qz and �qz when � 6= 0.So the situation is the following. When we 
oolthrough TD � 180K, the system arbitrarily breaks 
rystalsymmetry from P3m1 and rotates the oxygen tetrahedrainto the P3 stru
ture.66 Here the angle of rotation 
anhave either sign, depending on the sign of the brokensymmetry order parameter �. For the sake of argument,say that � is positive. Now when the temperature is low-ered so that magneti
 ordering takes pla
e, ordering takespla
e in the 
hannels �2(qz) and/or �3(qz), where qz isthe value of qz at whi
h an instability with respe
t to ��rst appears as the temperature is lowered. At quadrati
order the phases �n of the order parameters �n(qz) arearbitrary and also the relative proportion of ea
h irrep isnot �xed. However, it is expe
ted that the fourth orderterms in the Landau expansion (whi
h tend to enfor
e�xed spin length) will favor having only a single irrep

present. So ordering is expe
ted in either �2 or in �3,but we 
an have domains of both, in addition to pos-sibly having domains of either sign of �. Although thedomains of di�erent �'s have the same waveve
tor, theyhave opposite heli
ity, as dis
ussed just above Eq. (157).F. Dis
ussion1. Summary of ResultsIn Table XX we 
olle
t the results for various multifer-roi
s. 2. E�e
t of Quarti
 TermsAs we now dis
uss, the quarti
 terms in the Landau ex-pansion 
an have signi�
ant qualitative e�e
ts.6 In gen-eral, the quarti
 terms are the lowest order ones whi
hfavor the �xed length spin 
onstraint, a 
onstraint whi
his known to be dominant at low temperature.71 How this
onstraint 
omes into play depends on what state is se-le
ted by the quadrati
 terms. For instan
e, in the sim-plest s
enario when one has a ferromagnet or an antiferro-magnet, the instability is su
h (see Fig. 1) that orderingwith uniform spin length takes pla
e. Thus, as the tem-perature is lowered within the ordered phase, the order-ing of waveve
tors near q = 0 for the ferromagnet (nearq = � for the antiferromagnet) whi
h would have be-
ome unstable if only the quadrati
 terms were relevant,is strongly disfavored by the quarti
 terms. In the sys-tems 
onsidered here the situation is quite di�erent. Forinstan
e, in NVO,38 TMO,3 and MWO45 the quadrati
terms sele
t an in
ommensurate stru
ture in whi
h thespins are aligned along an easy axis and their magni-tudes are sinusoidally modulated. As the temperature islowered the quarti
 terms lead to an instability in whi
htransverse spin 
omponent break the symmetry of thelongitudinal in
ommensurate phase. This s
enario ex-plains why the highest-temperature in
ommensurate lon-gitudinal phase be
omes unstable to a lower-temperaturein
ommensurate phase whi
h has both longitudinal andtransverse 
omponents whi
h more nearly 
onserve spinlength.To see this result formally for NVO, TMO, or MWO,let �> (�<) be the 
omplex valued order parameter forthe higher-temperature longitudinal (lower-temperaturetransverse) ordering. The fourth order terms then leadto the free energy asF = a(T � T>)j�>j2 + b(T � T<)j�<j2+A(j�>j2 + j�<j2)2 +Bj�>�<j2+C[(�<��>)2 + (��<�>)2℄ ; (164)where A, B, and C are real. That C is real is a resultof inversion symmetry, whi
h, for these systems leads toI�n = ��n. The high-temperature representation does



28Phase T<(K) T>(K) q Irreps Refs. FE? Refs.NVO (HTI) 6.3 9.1 (q,0,0) �4 6,38 No 4,6NVO (LTI) 3.9 6.3 (q,0,0) �4 +�1 6,38 jj b 4,6TMO (HTI) 28 41 (0; q; 0) �3 3,49 No 2TMO (LTI) 28 (0; q; 0) �3 + �2 3 jj 
 2TbMn2O5 (HTI) 38 43 ( 12 ; 0; q)(a) �(b) 55,56 No 12TbMn2O5 (LTI) 33 38 ( 12 ; 0; q) �(
) 55,56 jj b 12YMn2O5 (C)(d) 23 45 ( 12 ; 0; 14 ) �(b) 58 jj b 12YMn2O5 (IC) 23 (� 12 ; 0; q) 58 jj b 12RFMO(e) 0 3.8 ( 13 ; 13 ; q) �2 or �3 8,66 jj 
 8CFO(f) (CIC) 10 14 (q; q; 0) �2 59,65 No 10CFO (NIC) 0? 10 (q; q; 0) �1 + �2 60 ? 
 10MWO 12.7 13.2 (qx; 12 ; qz) �2 45 No 13MWO 7.6 12.7 (qx; 12 ; qz) �2 + �1 45 jj b 13TABLE XX: In
ommensurate Phases of various multiferroi
s. Ex
ept for CFO ea
h phase is stable for zero applied magneti
�eld for T< < T < T>. When T< = 0 it means that the phase is stable down to the lowest temperature investigated. We givethe in
ommensurate waveve
tor and the asso
iated irredu
ible representations in the notation of our tables. In the 
olumnlabeled \FE?" if the system is ferroele
tri
 we give the dire
tion of the spontaneous polarization, otherwise the entry is "No."a) At the highest temperature the value of qx might not be exa
tly 1/2.b) The irrep is the two dimensional one (see Appendix B). In the HTI phase only one basis ve
tor is a
tive.
) The irrep is the two dimensional one (see Appendix B). In the LTI phase both basis ve
tors are a
tive.d) This phase is 
ommensurate.e) For H < 2T.f) Data for CuFeO2 is for H � 8T.allow transverse 
omponents and 
ould, in prin
iple, sat-isfy the �xed length 
onstraint. In the usual situation,however, the ex
hange 
ouplings are nearly isotropi
 andthis state is not energeti
ally favored. If the higher tem-perature stru
ture is longitudinal, then B will surely benegative, whereas if the higher temperature stru
ture
onserves spin length B will probably be positive. Byproperly 
hoosing the relative phases of the two orderparameters the term in C always favors having two ir-reps. So the usual s
enario in whi
h the longitudinalphase be
omes unstable relative to transverse ordering isexplained (in this phenomenology) by having B be neg-ative, so that the dis
ussion after Eq. (51) applies.To �nish the argument it remains to 
onsider the termin C, whi
h 
an be written asÆF4 = 2C�2<�2> 
os(2�< � 2�>) ; (165)where again we expressed the order parameters as in Eq.(46). Normally, if two irreps are favored, it is be
ausetogether they better satisfy the �xed length 
onstraint.What that means is that when spins have substantiallength in one irrep, the 
ontribution to their spin lengthfrom the se
ond irrep is small. In other words, the twoirreps are out of phase and we therefore expe
t that tominimize ÆF4 we do not set �< = �>, but rather�< = �> � �=2 : (166)In other words, we expe
t C in Eq. (165) to be positive.

The same reasoning indi
ates that the fourth order termswill favor �2 � �1 = �=2 in Eq. (135) for CFO.For all of these systems whi
h have two 
onse
utive
ontinuous transitions one has a family of broken sym-metry states. At the highest temperature transition onehas spontaneously broken symmetry whi
h arbitrarily se-le
ts between �> and ��>. (This is the simplest s
enariowhen the waveve
tor is not truly in
ommensurate.) Inde-pendently of whi
h sign is sele
ted for the order parame-ter �>, one similarly has a further spontaneous breakingof symmetry to obtain arbitrarily either i�< or �i�<.(Here, as mentioned, we assume a relative phase �=2 for�<. In this s
enario, then, there are four equivalent lowtemperature phases 
orresponding to the 
hoi
e of signsof the two order parameters.The 
ases of TMO25 and YMO25 are di�erent fromthe above be
ause they have two order parameters fromthe same two-dimensional irrep and whi
h therefore aresimultaneously 
riti
al. Therefore in su
h a 
ase we writeF = a(T � T
) �j�1j2 + j�2j2�+A(j�1j2 + j�2j2)2 +Bj�1�2j2+C �(�1��2)2 + (��1�2)2� : (167)Here again A, B, and C are real. That C is real is a resultof symmetry under my, as in Eq. (124). Here the fourthorder anisotropy makes itself felt as soon as the orderedphase is entered, but the above dis
ussion about the sign



29of B remains operative. We �rst 
onsider YMO25 in itshigher temperature 
ommensurate (HTC) ordered phase.For it additional fourth order terms o

ur be
ause 4q is are
ipro
al latti
e ve
tor, but these are not important forthe present dis
ussion. Here the analysis of Ref. 58 indi-
ates (see the dis
ussion of our Fig. 7) that only a singleorder parameter 
ondenses in the HTC phase. This indi-
ates that energeti
s must favor positive B in this 
ase.The question is whether B is also positive for TMO25. Aswe will see in the next se
tion one has ferroele
tri
ity un-less the magnitudes of the two order parameters are thesame. For YMO25 the HTC phase is ferroele
tri
 and the
on
lusion that only one order parameter is a
tive 
om-ports with this. However, for TMO25 the situation is not
ompletely 
lear. Apparently there is a region su
h thatone has magneti
 ordering without ferroele
tri
ity.12,55 Ifthis is so, then TMO25 di�ers from YMO25 in that itshigh temperature in
ommensurate phase has two equalmagnitude order parameters.IV. MAGNETOELECTRIC COUPLINGFerroele
tri
ity is indu
ed in these in
ommensuratemagnets by a 
oupling whi
h is somewhat similar to thatfor the so-
alled \improper ferroele
tri
s."17 To see howsu
h a 
oupling arises within a phenomenologi
al pi
-ture, we imagine expanding the free energy in powers ofthe magneti
 order parameters whi
h we have studied indetail in the previous se
tion and also the ve
tor orderparameter for ferroele
tri
ity whi
h is the spontaneouspolarization P, whi
h, of 
ourse, is a zero waveve
torquantity. If we had nonintera
ting magneti
 and ele
-tri
 systems, then we would write the nonintera
ting freeenergy, Fnon asFnon = 12X� ��1E;�P 2� +O(P 4)+12X� a�(T � T�)j��(q)j2 +O(�4) ;(168)where ��1E;� is of order unity. The �rst line des
ribes asystem whi
h is not 
lose to being unstable relative todeveloping a spontaneous polarization (sin
e in the sys-tems we 
onsider ferroele
tri
ity is indu
ed by magneti
ordering). The magneti
 terms des
ribe the possibilityof having one or more phase transitions at whi
h su

es-sively more magneti
 order parameters be
ome nonzero.As we have mentioned, the s
enario of having two phasetransitions in in
ommensurate magnets is a very 
om-mon one,30 and su
h a s
enario is well do
umented forboth NVO6,38 and TMO.2,3 Below we will indi
ate theexisten
e of a term linear in P , s
hemati
ally of the form��M2P , where � is a 
oupling 
onstant about whi
hnot mu
h beyond its symmetry is known. One sees thatwhen the free energy, in
luding this term, is minimizedwith respe
t to P one obtains the equilibrium value of P

as hP i = �E�M2 : (169)A. Symmetry of Magnetoele
tri
 Intera
tionWe now 
onsider the free energy of the 
ombined mag-neti
 and ele
tri
 degrees of freedom whi
h we write asF = Fnon + Fint : (170)In view of time reversal invarian
e and waveve
tor 
on-servation, the lowest 
ombination of M(q)'s that 
an ap-pear is proportional to M�(�q)M�(q). So generi
allythe term we fo
us on will be of the formFint = X��
 
��
M�(q)M�(�q)P
 ; (171)where �, �, and 
 label Cartesian 
omponents. But, aswe have seen in detail, the quantities M�(q) are linearlyrelated to the order parameter ��(q), asso
iated with theirrep �. Thus instead of Eq. (171) we writeFint = X�;�0;
A��0
��(q)��0 (q)�P
 : (172)The advantage of this writing the intera
tion in this formis that it is expressed in terms of quantities whose sym-metry is manifest. In parti
ular, the order parameterswe have introdu
ed have well spe
i�ed symmetries. Forinstan
e it is easy to see that for most of the systems stud-ied here, magnetism 
an not indu
e ferroele
tri
ity whenthere is only a single representation present.3,4 This fol-lows from the fa
t that for NVO and TMO, for instan
e,Ij�nj2 = j�nj2 ; (173)as is evident from Eq. (50). The interpretation of this issimple: when one has one representation, it is essentiallythe same as having a single in
ommensurate wave. Butsu
h a single wave will have inversion symmetry (to as
lose a toleran
e as we wish) with respe
t to some latti
epoint. This is enough to ex
lude ferroele
tri
ity. So the
anoni
al s
enario3,4 is that ferroele
tri
ity appears, notwhen the �rst in
ommensurate magneti
 order parameter
ondenses, but rather when a se
ond su
h order parame-ter 
ondenses. Unless the two waves have the same origin,their 
enters of inversion symmetry do not 
oin
ide andthere is no inversion symmetry and hen
e ferroele
tri
-ity will o

ur. One might ask whether or not the twowaves (i. e. two irreps) will be in phase. The e�e
t, dis-
ussed above, of quarti
 terms is 
ru
ial here. The quar-ti
 terms typi
ally favors the �xed length spin 
onstraint.To approximately satisfy this 
onstraint, one needs to su-perpose two waves whi
h are out of phase. Indeed theformal result, obtained below in Eq. (178), shows thatthe spontaneous polarization is proportional to the sineof the phase di�eren
e between the two irreps.4 We now
onsider the various systems in turn.



30B. NVO, TMO, and MWOWe now analyze the 
anoni
al magneto-ele
tri
 inter-a
tion in the 
ases of NVO, TMO, ad MWO. These 
asesare all similar to one another and in ea
h 
ase the orderparameters have been de�ned so as to obey Eq. (50).This relation indi
ates that if we are in a phase for whi
honly one irrep is a
tive, then we may 
hoose the originof the in
ommensurate system so that the phase of theorder parameter at the origin of a unit 
ell is arbitrarily
lose to zero. When this phase is zero, the spin distri-bution of this irrep has inversion symmetry relative tothis origin. In the 
ase when only a single irrep is a
tive,this symmetry then indi
ates that the magneti
 stru
-ture 
an not indu
e a spontaneous polarization.4 As men-tioned, in the high temperature in
ommensurate phasesof NVO, TMO, and MWO only one irrep is present,and this argument indi
ates that the magneto-ele
tri
intera
tion vanishes in agreement with the experimen-tal observation2,4,13 that this phase is not ferroele
tri
.Noti
e that this argument relies on symmetry and doesnot invoke the fa
t that the HTI phase may involve a
ollinear spin stru
ture (as it seems for TMO and MWO,but not for NVO). Small departures from 
ollinearity (in-du
ed by, say, Dzialoshinskii-Moriya intera
tions72) donot 
hange the symmetry of the stru
ture and therefore
an not indu
e ferroele
tri
ity. This 
on
lusion is notobvious from the spin-
urrent models.15,16We now turn to the general 
ase when one or moreirreps are present.4{7 We write the magneto-ele
tri
 in-tera
tion asFint = X
��0A��0
��(q)��0(q)�P
 ; (174)where ��(q) = ��(�q). For this to yield a real value ofF we must have Hermiti
ity:A��0
 = A��0�
 : (175)In addition, be
ause this is an expansion relative to thestate in whi
h all order parameters are zero, this intera
-tion has to be inversion under all operations whi
h leavethis \va
uum" state invariant.26,31 In other words thisintera
tion has to be invariant under inversion (whi
htakes P
 into �P
). In view of Eq. (50) we 
on
ludethat A�;�0;
 vanishes for �0 = �. Thus, for these systemsit is essential to have the simultaneous existen
e of twodistin
t irreps. A similar phenomenologi
al des
ription ofse
ond harmoni
 generation has also invoked the ne
es-sity of having simultaneously two irreps.70 (We will seebelow that systems su
h as TMO25 and YMO25 provideex
eptions to this statement.) So we writeFint = 12 X
��0:�6=�0 A��0
��(q)��0(q)�P
 : (176)Now invoke Eq. (50). Sin
e inversion 
hanges the signof P
 we 
on
lude that A��0
 = �A�0�
 . This 
ondition

taken in 
onjun
tion with Eq. (175 indi
ates that A��0
is pure imaginary. ThusFint = i2 X
��0:�<�0 P
r��0
 [��(q)��0(q)����(q)���0(q)℄ ; (177)where r��0
 is real valued. Sin
e usually we have at mosttwo di�erent irreps, whi
h we label \>" and \<," wewrite this asFint = X
 r
P
�>�< sin(�> � �<) : (178)where r
 is real and �< = �< exp(i�<) and similarly forthe irrep \>." The fa
t that the result vanishes when thetwo waves are in phase is 
lear be
ause in that 
ase one
an �nd a 
ommon origin for both irreps about whi
hone has inversion symmetry. In that spe
ial 
ase one hasinversion symmetry and no spontaneous polarization 
anbe indu
ed by magnetism. The above argument appliesto all three systems, NVO,4 TMO,3 and MWO. As wewill see in a moment, it is still possible for inversion sym-metry to be broken and yet indu
ed ferroele
tri
ity notbe allowed.We 
an also dedu
e the dire
tion of the spontaneouspolarization by using the transformation properties of theorder parameters. given in Eq. (49). We start by ana-lyzing the experimentally relevant 
ases at low or zeroapplied magneti
 �eld. For NVO the magnetism in thelower temperature in
ommensurate phase is des
ribed6,38by the two irreps �4 and �1. One sees from Eq. (49)that the produ
t ��1�4 is even under mz and odd un-der 2x. For the intera
tion to be an invariant, P
has to transform this way also. This implies that onlythe b-
omponent of the spontaneous polarization 
an benonzero, as observed.4 For TMO the lower temperaturein
ommensurate phase at low magneti
 �eld is des
ribed3by irreps �3 and �2. From Table XII we see that ��3�2 iseven under mx and odd under mz, whi
h indi
ates thatP has to be even under mx and odd under mz. This 
anonly happen if P lies along the 
 dire
tion, as observed.2Finally, for MWO, we see that �1��2 is odd under my.This indi
ates that P
 also has to be odd under my. Inother words P 
an only be oriented along the b dire
-tion, again as observed.13 In this 
onne
tion one shouldnote that this 
on
lusion is a result of 
rystal symme-try, assuming that the magneti
 stru
ture results fromtwo 
ontinuous transitions, so that representation the-ory is relevant. This 
on
lusion is at varian
e with theargument given by Heyer et al.14 who \expe
t a polar-ization in the plane spanned by the easy axis and theb axis ...," whi
h they justify on the basis of the spi-ral model.15,16 It should be noted that their observationthat the spontaneous polarization has a nonzero 
om-ponent along the a-axis at zero applied magneti
 �eld
ontradi
ts the symmetry analysis given here. The au-thors mention that some of the unexpe
ted behavior they



31observe might possibly be attributed to a small 
ontentof impurities.It is important to realize that the above results are a
onsequen
e of 
rystal symmetry. In view of that, it isnot sensible to 
laim that the fa
t that a theory gives theresult that the polarization lies along b makes it moreplausible than some 
ompeting theory. The point is thatany model, if analyzed 
orre
tly, must give the 
orre
torientation for P.It is also worth noting that this phenomenology hassome semiquantitative predi
tions. To see this, we mini-mize Fnon + Fint with respe
t to P to getP
 = ��E;
r
�>�< sin(�> � �<) : (179)This result indi
ates that near the magneto-ferroele
tri
phase transition of NVO one has P / �4�1,73 or sin
ethe high-temperature order parameter �4 is more or lesssaturated when the ferroele
tri
 phase is entered, one hasP / �1, where �1 is the order parameter of the lowertemperature in
ommensurate phase. This relation hasnot been tested for NVO, TMO, or MWO, but we willsee that su
h a relation has been observed for RFMO.As we dis
ussed, in the low temperature in
ommensu-rate phase one will have arbitrary signs of the two or-der parameters. However, the presen
e of a smll ele
tri
�eld will favor one parti
ular sign of the polarization andhen
e, by Eq. (179) one parti
ular sign for the produ
t�>�<. Presumably this 
ould be tested by a neutrondi�ra
tion experiment.C. TMO25The 
ase of TMO25 is somewhat di�erent. Here wehave only a single irrep. One expe
ts that as the temper-ature is lowered, ordering into an in
ommensurate statewill take pla
e, but the quadrati
 terms in the free en-ergy do not sele
t a dire
tion in �1-�2 spa
e. At presentthe data has not been analyzed to say whi
h dire
tionis favored at temperature just below the highest order-ing temperature. (For YMO25, as mentioned above, thedire
tion �1 = 0 is favored.) As the temperature is re-du
ed, it is not possible for another representation toappear be
ause only one irrep is involved. However, or-dering a

ording to a se
ond eigenvalue 
ould o

ur. We�rst analyze the situation assuming that we have only asingle doubly degenerate eigenvalue. In this 
ase we 
anhave a spin distribution [as given in Eq. (123)℄ involvingthe two order parameters �1 and �2 whi
h measure theamplitude and phase of the ordering of the eigenve
tor ofthe se
ond and third 
olumns of Table XVI, respe
tively.In terms of these order parameters, the magneto-ele
tri

oupling 
an be written asFint = Xnm
 anm
��n�mP
 ; (180)where 
 = x; y; z and n;m = 1; 2 label the 
olumns ofthe irrep labeled �1 and �2, respe
tively, in Table XVI.

Sin
e reality requires that anm
 = a�mn
 , this intera
tionis of the formFint = X
 P
"a1
 j�1j2 + a2
 j�2j2+b
�1��2 + b�
��1�2# : (181)Now use invarian
e under inversion, taking note of Eq.(124). One sees that under inversion �1��2P
 
hangessign, so the only terms whi
h survive lead to the resultFint = X
 r
P
 [j�1j2 � j�2j2℄ : (182)Using Eq. (124) we see that [j�1j2� j�2j2℄ is even undermx and odd under my. For Fint to be invariant underinversion therefore requires that P
 be odd undermy andeven under mx, so P has to be along b as is found.12D. CFOAgain we start with the trilinear magneto-ele
tri
 in-tera
tion, but here we have to allow for 
oupling of thespontaneous polarization to order parameters asso
iatedwith any of the waveve
tors in the star. So we writeFint = Xknm
Anmk
�n(qk)�m(qk)�P
 ; (183)where k is summed over the values 1, 2, 3 and real-ity implies that Anmk
 = A�mnk
 . Sin
e we have thatI�n(qk) = �n(qk)�, we use invarian
e under I to elim-inate terms with n = m: we need two irreps for ferro-ele
tri
ity. Indeed, the higher temperature phase with asingle order parameter �2 is not ferroele
tri
.10 Thus themagnetoele
tri
 intera
tion must be of the formFint = Xk
 [Ak
�1(qk)�2(qk)�+A�k
�1(qk)��2(qk)�P
 : (184)Inversion symmetry indi
ates that Ak
 = �A�k
 , so wewriteFint = iXk
 rk
 [�1(qk)�2(qk)� � �1(qk)��2(qk)℄P
= 2Xk
 rk
�1(qk)�2(qk) sin(�2 � �1)P
 ; (185)where rk
 is real. Now 
onsider the term involvingwaveve
tor q1 and use Eq. (130) whi
h gives that�1(q1)�2(q1)� 
hanges sign under 2x. So for the inter-a
tion to be invariant under 2x (as it must be), P
 hasto be odd under 2x. This means that for q = q1, P has



32to be perpendi
ular to the x axis. SoFint = 2�1(q1)�2(q1) sin(�2 � �1)[aPz + bPy℄+2�1(q2)�2(q2) sin(�2 � �1)�[aPz � (b=2)Py � (p3b=2)Px℄+2�1(q3)�2(q3) sin(�2 � �1)�[aPz � (b=2)Py + (p3b=2)Px℄ ; (186)where the real-value 
oeÆ
ients a and b are not �xedby symmetry. Here we 
onstru
ted the terms involv-ing q2 and q3 by using the transformation properties ofthe three-fold rotation, so that Fint is invarianet undr allthe symmetry operations. Note that symmetry does notfor
e P to lie along the three-fold axis be
ause the orien-tation of the in
ommensurate waveve
tor has broken thethree-fold symmetry.In fa
t, the above results suggest some further experi-ments. First of all, it would be useful to have a de�nitivedetermination of the spin stru
ture of the NIC phase, inparti
ular to test whether our idea of a spin-
op typetransition has o

urred. One should note that symmetrydoes not 
ompletely restri
t the orientation of P when,for instan
e, the waveve
tor is q = q1. In this 
onne
-tion it is interesting to note that in Ref. 10 a 
ompo-nent of P along 
 was dis
arded as being due to samplemisalignment. However, su
h a 
omponent is allowedby symmetry. Although, the spin 
urrent model15,16 issatis�ed by having the spin-
op state we suggest, ouranalysis indi
ates that this spin 
on�guration 
an not beuniquely identi�ed just from the orientation of P, so adetermination of the a
tual spin stru
ture is important.Furthermore, the form of Eq. (186) indi
ates that theorientation of qn is 
oupled to the applied ele
tri
 �eldin the plane perpendi
ular to 
. In other words, by ap-plying an ele
tri
 �eld perpendi
ular to the 
 axis one
ould sele
t between the three equivalent waveve
tors ofthe star. (Sin
e, the 
rystal stru
ture distortion also im-plies su
h a sele
tion, one would have to apply a strongenough ele
tri
 �eld so that the ele
tri
 energy over
omesthe energy of the latti
e distortion.)In the above analysis we did not mention the fa
t thatthe existen
e of the ferroele
tri
 phase requires a mag-neti
 �eld of about 8-10T oriented along the three-foldaxis. In prin
iple one should expand the free energy inpowers of H . Then presumably as a fun
tion of H onerea
hes a regime where �rst one in
ommensurate phaseorders and then at a lower temperature the se
ond in-
ommensurate order parameter appears. Then the phe-nomenology of the trilinear magnetoele
tri
 intera
tionwould 
ome into play as analyzed above.

E. RFMOAgain we start from Eq. (174), whi
h for the present
ase of two irreps (n = 2; 3) we writeFint = X
 "r2
 j�2j2 + r3
 j�3j2+b
�2��3 + b�
�3��2#P
 ; (187)where b
 is 
omplex and rn
 is real. First use inversionsymmetry under whi
h P
 
hanges sign and Eq. (159)holds. This symmetry indi
ates that b
 = 0 and r2
 =�r3;
 , so thatFint = X
 r
 �j�2j2 � j�3j2�P
 : (188)Now 
onsider invarian
e under the three-fold rotation,whi
h leaves j�nj2 invariant. One sees that the onlynonzero 
omponent of P 
an be the 
 
omponent, so that�nally Fint = r �j�2j2 � j�3j2�P
 : (189)As mentioned above, when the total free energy is mini-mized with respe
t to P
 in order to determine its equi-librium value, one �nds thatP
 = �r�E;
 �j�2j2 � j�3j2� : (190)Sin
e the magneti
 stru
ture RFMO has beendetermined8 to have only a single order parameter(
all it �a) in the low �eld phase, in this phaseP
 / j�aj2 : (191)Sin
e the right-hand side of this equation is proportionalto the intensity of the Bragg re
e
tions whi
h appear asone enters the in
ommensurate phase, this relation pre-di
ts that these Bragg intensities are proportional to themagnitude of the spontaneous polarization. This relationhas been experimentally 
on�rmed.8It is interesting to note that for this 
ase the \spiralmodel" or spin-
urrent model do not apply in their sim-plest form. The spin rotated in a plane perpendi
ular tothe three fold axis, so that Si�Sj is parallel to the three-fold axis, no matter what values i and j may take. In thespin 
urrent model the spontaneous polarization is sup-posed to be perpendi
ular to this 
ross produ
t, whi
hwould in
orre
tly predi
t the spontaneous polarization tobe perpendi
ular to the three-fold axis, In 
ontrast, ex-periment shows the spontaneous polarization to lie alongthe three-fold axis.F. High Magneti
 FieldWe 
an also say a word or two about what happenswhen a magneti
 �eld is applied. In TMO, for instan
e,



33one �nds2 that for applied magneti
 �elds above about10T in either the a or b dire
tions, the lower temperaturein
ommensurate phase has a spontaneous polarizationalong the a axis. Keep in mind that we want to identifythis phase with two irreps and from the phase diagramwe know that the higher temperature in
ommensuratephase is maintained into this high �eld regime. So thehigher temperature phase is still that of �3 at these high�elds. Referring to Table XII we see that to get �m��n tobe odd under mx and even under mz (in order to get apolarization along the a axis) we 
an only 
ombine irrep�1 with the assumed preexisting �3. Therefore it is 
learthat the magneti
 stru
ture has to 
hange at the sametime that dire
tion of spontaneous polarization 
hangesas a fun
tion of applied magneti
 �eld.7,16 It is also inter-esting, in this 
onne
tion to spe
ulate on what happensif the lower additional irrep had been �4 so that �4 and�3 would 
oexist. In that 
ase �4��3 is odd under both mxand mz. These 
onditions are not 
onsistent with any di-re
tion of polarization, so in this hypotheti
al 
ase, eventhough we have two irreps and break inversion symmetry,a polar ve
tor (su
h as the spontaneous polarization) isnot allowed.74For MWO a magneti
 �eld along the b axis of about10T 
auses the spontaneous polarization to swit
h its di-re
tion from along the b-axis to along the a axis.13 Wehave no phenomenologi
al explanation of this behavior atpresent. This behavior seems to imply that the waveve
-tor for H > 10T is no longer of the form q = (qx; 12 ; qz).G. Dis
ussionWhat is to be learned from the symmetry analysis ofthe magnetoele
tri
 intera
tions? Perhaps the most im-portant point to keep in mind is to re
ognize whi
h re-sults are purely a result of 
rystal symmetry and whi
hare model dependent. For instan
e, as we have seen, thedire
tion of the spontaneous polarization is usually a re-sult of 
rystal symmetry. So the fa
t that a mi
ros
opi
theory leads to the observed dire
tion of the polarizationdoes not lend 
reden
e to one model as opposed to an-other. In a semiquantitative vein, one 
an say that sym-metry alone predi
ts that near the 
ombined magneto-ele
tri
 phase transition P will be approximately pro-portional to the order parameter raised to the nth power,where the value of n is a result of symmetry. (n = 1 forNVO or TMO, whereas n = 2 for TMO25 or RFMO).We should also note that while the spontaneous po-larization does arise from the 
oupling to another (mag-neti
) order parameter, this 
oupling still indu
es a di-vergen
e in the ele
tri
 sus
eptibility (and hen
e in thediele
tri
 
onstant) at the magnetoele
tri
 phase transi-tion. To illustrate this we 
onsider the less trivial 
asewhere one has two order parameters. Thus, for example,we analyze the 
ase of NVO and 
onsider the magneto-ele
tri
 free energy at a temperature just above the lowertemperature transition, denoted T<, where �< develops.

There the relevant terms in the free energy areF = 12��1E;yP 2y + 12(T � T<)j�<j2+12(T � T>)j�>j2 + 14uj�>j4+ i2�[�>��< � ��>�<℄Py �EyPy ; (192)where Ey is the 
omponent of the ele
tri
 �eld in the ydire
tion, and as before �< = �<ei�< and �> = �>ei�> ,where, for simpli
ity, we have omitted the waveve
torarguments. Sin
e the magnetoele
tri
 intera
tion termproportional to � is a small perturbation, and sin
e thetemperature is signi�
antly less than T>, the value ofj�>j is essentially �xed by minimizing the terms in these
ond line of Eq. (192). The phase of this 
omplexorder parameter is probably lo
ked by some small 
om-mensuration energy (not written in the above equation)to a 
ommensurate value. So we will will 
onsider that�> in the last line of Eq. (192) is �xed by the terms inthe free energy relevant to the ordering at T>. With thisunderstanding we write the free energy asF = 12��1E;yP 2y + 12(T � T<)j�<j2+ i2�[�>��< � ��>�<℄Py �EyPy (193)and we now analyze the transition at T = T< a

ordingto this free energy. Apart from the term proportional toEy, this free energy as a quadrati
 form in the variables�< and Py (remember that here �> is simply a 
omplex
onstant). To diagonalize this quadrati
 form it is sim-plest to write �< = s + it where s and t are real andsimilarly we set �> = a+ ib. Then the terms quadrati
in s, t and Py areF2 = 12��1E;yP 2y + 12(T � T<)[s2 + t2℄+�[sb� ta℄Py : (194)As a preliminary to diagonalizing this form we setx = [sa+ tb℄=pa2 + b2 ;y = [ta� sb℄=pa2 + b2 ; (195)in whi
h 
aseF2 = 12��1E;yP 2y + 12(T � T<)[x2 + y2℄+�0yPy ; (196)where �0 = �j�>j. This form shows that the variablex is de
oupled from the other variables, y and Py. Thenormal 
oordinates ~y and ~Py are obtained from y andPy by a transformation whi
h eliminates the perturba-tive 
oupling �0yPy. The transition temperature for ~y isobtained expli
itly below in Eq. (201) as~T< = T< + �02�E;y : (197)



34Thus we see that as the temperature is lowered, the vari-able x would be
ome 
riti
al at T = T<, ex
ept for thefa
t that ~y 
ondenses �rst (at the higher temperature~T<). To understand the meaning of the variables x andy write x = �<��> + ��<�>2j�>jy = i(�<��> � ��<�>)2j�>j : (198)Thus we see that x is the part of �< whi
h is in phasewith �> and y is the part of �< whi
h is out of phasewith �>. These results are 
ompletely 
onsistent withEq. (178).Now we develop an expression for the ele
tri
 andmagneto-ele
tri
 sus
eptibilities in the presen
e of themagnetoele
tri
 intera
tion as the temperature is low-ered toward the phase transition at T � T<. Note thatthe free energy is of the formF = 12 ~vMv � ~vE ; (199)where v the 
olumn ve
tor with entries Py and y, E isa 
olumn ve
tor with entries Ey and 0, and M is thematrix of 
oeÆ
ients of the quadrati
 form in Py and yof Eq. (196). Minimization with respe
t to v yields theequation of statev � " Pyy # =M�1 " Ey0 # : (200)Then the renormalized ele
tri
 sus
eptibility �̂y is givenby �̂y � �Py�Ey�Ey=0 = M22M11M22 �M212= �E;y(T � T<)(T � T<)� �02�E;y� �E;y(T � T<)(T � ~T<) ; (201)so that as T ! ~T< one has�̂y = �2E;y�02(T � ~T<) : (202)Thus the ele
tri
 sus
eptibility diverges at T = ~T< (al-though with a severely redu
ed amplitude.) It 
an alsobe shown that for T approa
hing ~T< from below that�̂y � �Py�Ey�Ey=0 = a�2E;y�02jT � ~T<j ; (203)where a is a 
onstant of order unity. The magnetoele
-tri
 
oupling in
reases the ele
tri
 sus
eptibility even far

above T< wherê�y � �E;y "1 + �02�E;yT � T< # : (204)The magneto-ele
tri
 sus
eptibility�E;� � �y�Ey�Ey=0 (205)gives the dependen
e of the magneti
 order parameter�< on the ele
tri
 �eld. Using Eq. (200) we have�E;� = � M21M11M22 �M212= � �0�E;yT � ~T< : (206)To measure this sus
eptibility would seem to require mea-suring (probably via a neutron di�ra
tion experiment) y,the 
omponent of the order parameter �< whi
h is outof phase with �> in a small ele
tri
 �eld.It goes without saying that our phenomenologi
al re-sults are supposed to apply generally, independently ofwhat mi
ros
opi
 me
hanism might be operative for thesystem in question. (A number of su
h mi
ros
opi
 
al-
ulations have appeared re
ently.15,75{78) Therefore, wetreat YMO25 and NVO with the same methodology al-though these systems are said55 to have di�erent mi-
ros
opi
 me
hanisms. A popular phenomenologi
al de-s
ription is that given by Mostovoy16 based on a 
ontin-uum formulation. However, this development, althoughappealing in its simpli
ity, does not 
orre
tly 
apturethe symmetry of several systems be
ause it 
ompletelyignores the e�e
t of the di�erent possible symmetrieswithin the magneti
 unit 
ell.74 Furthermore, it does notapply to multiferroi
 systems, su
h as YMO25 or RFMO,in whi
h the plane of rotation of the spins is perpen-di
ular to the waveve
tor.8,58 (The spin-
urrent model15also does not explain ferroele
tri
ity in these systems.)In addition, a big advantage of the symmetry analysispresented here 
on
erns small perturbations. While thestru
ture of NVO and TMO is predominantly a spiralin the ferroele
tri
 phase, one 
an spe
ulate on whetherthere are small spiral-like 
omponents in the nonferro-ele
tri
 (HTI) phase. In other words, 
ould small trans-verse 
omponents lead to a small (maybe too small for
urrent experiments to see) spontaneous polarization? Ifwe take into a

ount the small magneti
 moments in-du
ed on the oxygen ions, 
ould these lead to a smallspontaneous polarization in an otherwise nonferroele
tri
phase? The answer to these questions is obvious withina symmetry analysis like that we have given: these in-du
ed e�e
ts are still governed by the symmetry of thephase whi
h 
an only be lowered by a spontaneous sym-metry breaking (whi
h we only expe
t if we 
ross a phaseboundary). Therefore all su
h possible indu
ed e�e
tsare taken into a

ount by our symmetry analysis.



35Finally, we note that the form of the magneto-ele
tri
intera
tion � M2P suggests a mi
ros
opi
 me
hanismthat has general validity, although it is not ne
essarily thedominant me
hanism. This observation stimulated aninvestigation of the spin phonon intera
tion one obtainsby 
onsidering the ex
hange HamiltonH = Xij�� J��(i; j)S�(i)S�(j) : (207)When J��(i; j) is expanded to linear order in phonon dis-pla
ements, u, one obtains a magneto-ele
tri
 intera
tionof the form uSS.75 After some algebra it was shown75that the results for the dire
tion of the indu
ed sponta-neous polarization (when the spins are ordered appropri-ately) agrees with the results of the symmetry argumentsused here. In addition a �rst-prin
iples 
al
ulation ofthe phonon modes75 led to plausible guesses as to whi
hphonon modes play the key role in the magneto-ele
tri

oupling. But whatever the mi
ros
opi
 model, the phe-nomenology presented here should apply.V. DYNAMICSHere we brie
y indi
ate how symmetry 
onsiderationsapply to dynami
al properties. We 
onsider two phe-nomena, namely, (a) the mixing of the infrared a
tivephonons with the Raman a
tive phonons when inversionsymmetry is broken and (b) the mixing of ele
tri
 dipoleallowed transitions into spin resonan
e transitions whi
hpreviously were only magneti
 dipole allowed.A. Phonon MixingWe dis
uss phonon dynami
s with respe
t to 
oordi-nates appropriate to the phase whi
h is paramagneti
and paraele
tri
. In that phase, at zero waveve
tor, thephonon modes 
an be 
lassi�ed as even (Raman a
tive) orodd (infra-red a
tive). Here we display expli
itly the in-tera
tion whi
h 
auses the mixing of even and odd modeswhen the ferroele
tri
 phase (for whi
h inversion symme-try is broken) is entered. In the ferroele
tri
 phase thespontaneous dipole moment is indu
ed by the trilinearmagneto-ele
tri
 intera
tion dis
ussed above in detail.Here we dis
uss the mixing of even and odd modes forNVO, sin
e NVO has been the obje
t of detailed phonon
al
ulations.75 As dis
ussed in that referen
e the exis-ten
e of a nonzero spontaneous dipole moment along the
rystal b axis (whi
h here we 
all the y-axis) re
e
ts thefa
t that all the zone 
enter phonon modes whi
h trans-form like the y-
omponent of a ve
tor develop nonzerostati
 displa
ements. We now 
onsider the anharmoni
phonon intera
tions. (The present dis
ussion is more de-tailed than that of Aguilar et al.,79 but is otherwise iden-ti
al to what they have done.) In parti
ular the third

1 2y 2x 2z I my mx mz Fun
tionAg 1 1 1 1 1 1 1 1 x2,y2,z2Au 1 1 1 1 -1 -1 -1 -1 xyzB2g 1 1 -1 -1 1 1 -1 -1 xzB2u 1 1 -1 -1 -1 -1 1 1 yB3g 1 -1 1 -1 1 -1 1 -1 yzB3u 1 -1 1 -1 -1 1 -1 1 xB1g 1 -1 -1 1 1 -1 -1 1 xyB1u 1 -1 -1 1 -1 1 1 -1 zTABLE XXI: Irredu
ible representation of the paramagneti
spa
e group of NVO. The ve
tor representations are B1u, B2u,and B3u whose wavefun
tions transform like z, y, and x, re-spe
tively.order intera
tions 
an be written asV (3) = Xq1q2q3X��
 
��
(q1q2q3)Q�(q1)Q�(q2)Q
(q3)�(q1 + q2 + q3) ; (208)where Q�(q) is the amplitude of the �th phonon atwaveve
tor q and � is only nonzero when its argumentis zero modulo a re
ipro
al latti
e ve
tor. The terms inthis intera
tion whi
h are relevant to our dis
ussion arethose whi
h mix even and odd modes at zero waveve
tor.So we set all the waveve
tors to zero in Eq. (208). Inaddition, sin
e we want to dis
uss how modes mix, wewrite the e�e
tive bilinear intera
tion asV (3) = X��
 
��
Q�(0)Q�(0)hQ
(0)i ; (209)where h i indi
ates a stati
 average value. Be
ausethe intera
tion only involves zero waveve
tor modes, we
an pro�tably use their symmetry properties. A

ord-ingly in Table XXI we re
ord the symmetries of the var-ious phonon modes. To emphasize the symmetry of themodes, we label the modes as Q(n)� , where � is the ir-redu
ible representation (irrep), whi
h we identify by itsfun
tion (y for B2u, xyz for Au, et
. and 1 for Ag).Only the B2u modes whi
h transform like y 
an have anonzero average value, be
ause, as we have seen, in NVOthe spontaneous polarization is �xed by symmetry to liealong the y axis. The intera
tion of Eq. (209) has tobe invariant under the symmetry operations of the paraphase. Therefore the intera
tion 
an only 
ontain thefollowing termsV (3) = Xn hQ(n)y i"anmrQ(m)1 Q(r)y + bnmrQ(m)xyzQ(r)xz+
nmrQ(m)yz Q(r)z + dnmrQ(m)xy Q(r)x # : (210)This intera
tion mixes odd symmetry modes whi
h ini-tially were only infra-red a
tive (ex
ept for xyz modes
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FIG. 14: (Color online). S
hemati
 diagram of the frequen
yand infrared absorption 
ross se
tion of a mode whi
h is Ra-man a
tive in the paraele
tri
 phase for T > TF . Note the
hange in slope of the frequen
y when the ferroele
tri
 phaseis entered. We assume the mean-�eld estimate for the orderparameter: P / (TF � T )1=2whi
h are silent) into modes whi
h were previously onlyRaman a
tive (transforming like 1, xz, yz, or xy) Simi-larly this intera
tion mixes even symmetry modes whi
hinitially were only Raman a
tive into modes whi
h werepreviously only infra-red a
tive (transforming like x, y,or z). Experiments 
an distinguish the polarization de-penden
e of the infra-red and Raman modes, so one 
antest the predi
tion that modes whi
h were, for exam-ple, xy-like Raman modes are now infrared a
tive underx-polarized radiation. Sin
e the admixture in the wave-fun
tion is proportional to hQ(n)y i, whi
h itself is pro-portional to the spontaneous polarization, one sees thatthe new intensities are s
aled by the square of the spon-taneous polarization. Also, in the presen
e of a weakperturbation, the mode energies will show an additionaltemperature dependen
e (in addition to what they hadin the paraele
tri
 phase) whi
h is also proportional tothe square of the spontaneous polarization. This is illus-trated s
hemati
ally in Fig. 14B. Ele
tromagnonsHere I give a brief dis
ussion of \ele
tromagnons." Thisterm refers to the possibility of ex
iting magnons throughan ele
tri
 dipole matrix element.80{83 This existen
e ofthis pro
ess implies a mixing of spin operators and thespontaneous polarization, so that the spin-wave developsa dipole moment. In general terms, su
h an intera
tionis implied by the trilinear magneto-ele
tri
 intera
tionstudied in Se
. IV. The treatment here in
ludes elementsfrom the theories of Katsura et al.81 and of Pimenov etal..80,82Again, to exemplify the idea, I des
ribe the situationfor NVO (the 
ase of TMO is almost identi
al) and will
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FIG. 15: (Color online) S
hemati
 diagram of the spin wave-fun
tions within the unit 
ell of NVO for the various ir-reps. For simpli
ity only the Ni spine sites at r = rs;n forn = 1; 2; 3; 4 (see Table II) are shown. The x and z axes areindi
ated and the positive y axis is into the paper. (Filled
ir
les represent spin 
omponents into the paper and x's spin
omponents out of the paper.) This �gure is a pi
torial rep-resentation of the data of Table IV. In the HTI phase thespin distribution is that of �4 within whi
h the x-
omponentis dominant.fo
us on the HTI phase where only the single order pa-rameter �HTI of irrep �4 is nonzero. The aim of thepresent dis
ussion is to analyze the 
onstraints of sym-metry on the equations of motion.81 Sin
e it is only inthe HTI phase that symmetry provides 
onstraints on theele
tromagnon intera
tion,80,82 we 
on
entrate on this
ase, without assuming a spe
i�
 model of intera
tions.We start by writing the equation of motion for theGreen's fun
tion for an infra-red a
tive phonon in thenotation of Zubarev84!2hhQ�;m;Q�;mii = 1 + hh�H=�Q�;m;Q�;mii ;(211)where Q�;m is the mth mass weighted normal 
oordi-nate for the zero waveve
tor of �-like symmetry (� =x; y; z).75 In the absen
e of the magneto-ele
tri
 intera
-tion we set �H=�Q�;m = !2�;mQ�;m. We now in
lude themagneto-ele
tri
 intera
tion Ve�m. In the HTI phase ofNVO where only the order parameter �> of irrep �4 ispresent, the spin-phonon 
oupling we need to mix modesmust arise from an e�e
tive bilinear intera
tion of theform Ve�m = X�;�;m ��;�;mh�>(q)i��(�q)Q�;m+
: 
: ; (212)where ��(q) represents a spin fun
tion having the sym-metry of irrep � and � is a 
oeÆ
ient. Symmetry di
tatesthat the only possible terms of this type have (a) � = �2in whi
h 
ase �4 � �2 transforms like z, so that in this



37term � = z and (b) � = �1 in whi
h 
ase �4 � �1 trans-forms like y, so that in this term � = y. Thus we writeVe�m = Xm �(m)z h�>(q)i��2(�q)Qz;m+Xm �(m)y h�>(q)i��1(�q)Qy;m + 
: 
: :(213)Here we see that magnons 
an only 
ouple to y-like orz-like infra-red a
tive phonons. Then(!2 � !2y;m) hhQy;m;Qy;mii = 1+�(m)y h�>(q)ihh��1 (�q);Qy;mii+�(m)y �h�>(q)�ihh��1 (q);Qy;mii :(214)Similarly the equations of motion with respe
t to these
ond argument yields(!2 � !2y;m)hh��1 (q);Qy;mii= �y(m)h�>(q)ihh��1 (q);��1 (�q)ii : (215)From Fig. 15 we see that ��1 has a y-
omponent ofspin whi
h rotates the staggered moment (whi
h is dom-inantly along the x-axis) of the unit 
ell. Therefore thisspin Green's fun
tion will interse
t the lowest frequen
ymagnon mode at frequen
y !0. This same dis
ussion alsoapplies to the analogous treatment of the z-like phononwhi
h 
ouples to the z-
omponent of ��2(q). For n = 1or n = 2 we sethh��n(q);��n (�q)ii = hSi!2 � !20 ; (216)where hSi is a spin amplitude. In writing Eq. (216) wenoted that the spin Green's fun
tion in Cartesian 
oordi-nates is a linear 
ombination of raising and lowering spinGreen's fun
tions. Eventually we are led to a solutionwhi
h to leading order in the magneto-ele
tri
 intera
-tion 
an be written ashhQ�;m;Q�;mii = 1!2 � !2�;m ���;m ; (217)where ��;m = �2�;m!2 � !20 ; (218)with �2�;m = 2hSijh�>(q)i�(m)� j2. This form leads to mix-ing of the spin and phonon modes. The renormalizedmode frequen
ies are given by the poles of the Green'sfun
tion whi
h o

ur at~!2�;m � !2�;m + �2�;m!2�;m � !20� !2�;m + �2�;m!2�;m (219)

and85 ~!20 = !20 �X�;m �2�;m!2�;m � !20� !20 �X�;m �2�;m!2�;m ; (220)where � assumes the values y and z and we assumed that!0 � !�;m. The most important e�e
t of this mixing isthat it allows magnon absorption in an a. 
. ele
tri
�eld.81 This is en
oded in the Green's fun
tionhh��1(q);Q�;mii = ���;mh�>(q)ihSi!2�;m(!2 � !20) (221)when the a. 
. ele
tri
 �eld is along the � = y or � = zdire
tion.The above interpretation has to be modi�ed for thesystem Eu0:75Y0:25MnO3.86 As these authors dis
uss, theshift in the frequen
y of the opti
al phonon is too smallto be 
onsistent with the amount of its mixing with themagnon if one relies on a trilinear intera
tion of the formV3 � ��(q)�(�q)Q (where Q is a phonon amplitude), aswe have assumed above. It is possible to avoid this in-
onsisten
y if one posits a quarti
 intera
tion of the formV4 � ��(q)�(�q)QQ and the sign of � is su
h as to de-
rease the frequen
y of the opti
al phonon (thereby par-tially 
ompensating its frequen
y shift proportional to �2asso
iated with magnon-phonon mixing). Although V4 isprobably smaller than V3, sin
e it involves an additionalderivative of the energy with respe
t to a phonon dis-pla
ement, the frequen
y shift due to V4 is proportionalto � , whereas that due to V3 is proportional to �2=�E,where �E is the di�eren
e in energy between the phononand the magnon. Su
h a quarti
 intera
tion has been re-
ently invoked by Fennie and Rabe in their treatment ofmagno-phonon intera
tions in ZnCr2O4.87VI. CONCLUSIONIn this paper we have shown in detail how one 
andes
ribe the symmetry of magneti
 and magneto-ele
tri
phenomena and have illustrated the te
hnique by dis-
ussing several examples re
ently 
onsidered in the liter-ature.The prin
ipal results of this work are� We dis
ussed a method alternative to the tradi-tional one (
alled representation analysis) for 
onstru
t-ing allowed spin fun
tions whi
h des
ribe in
ommensu-rate magneti
 ordering. In many 
ases this te
hnique 
anbe espe
ially simple and does not require an understand-ing of group theory.� For systems with a 
enter of inversion symmetry,whether the simple method mentioned above or the moretraditional traditional representation formalism is used,it is essential to further in
lude the restri
tions imposedby inversion symmetry, as we pointed out previously.3{7



38� We have illustrated this te
hnique by applying itto systematize the magneti
 stru
ture analysis of severalmultiferroi
s many of whi
h had not been analyzed usinginversion symmetry.� We dis
ussed the all these systems how one intro-du
es order parameters to 
hara
terize the spin stru
ture.For in
ommensurate systems these order parameters areinevitably 
omplex be
ause the origin of the in
ommen-surate wave is either free or is only �xed by a very smalllo
king energy.� By 
onsidering several examples of multiferroi
s wefurther illustrated the general appli
ability of the trilin-ear magneto-ele
tri
 
oupling of the formM(q)M(�q)P ,whereM(q) is the magnetization at waveve
tor q and Pis the uniform spontaneous polarization.� The introdu
tion of an order-parameter des
riptionof the spin stru
ture has several advantages. First, of all,sin
e the transformation properties of the order param-eters under the symmetry operations of the 
rystal areeasy to analyze, it then is relatively simple to 
onstru
tthe expli
it form of trilinear magneto-ele
tri
 
oupling.This form the allows us to predi
t how the temperaturedependen
e of the spontaneous polarization is related tothe various spin order parameters.� Although our formulation is more 
ompli
ated thanthose based on spiral magnetism15,16 it allows us to dis-
uss all multiferroi
s so far studied. In 
ontrast74 thedis
ussions based on spiral magnetism are not generalenough to dis
uss systems like RFMO, where the planewithin whi
h the spins rotate is perpendi
ular to thepropagation ve
tor of the magneti
 state.�We brie
y dis
ussed the impli
ations of symmetry inassessing the role of various models proposed for multi-ferroi
s.�We displayed the perturbation due to the intera
tionof three zone-
enter phonons whi
h leads to the mix-ing of Raman and infrared a
tive phonon modes whenthe ferroele
tri
 phase is entered.79 This intera
tion alsoleads to an anomalous 
ontribution to the temperature-dependen
e of the phonon frequen
ies whi
h develops asthe ferroele
tri
 phase is entered.� We presented a general analysis of the dynami
s ofmagnon-phonon mixing based on symmetry.ACKNOWLEDGEMENTSI a
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oupling.APPENDIX A: FORM OF EIGENVECTORIn this appendix we show that the matrix G of theform of Eq. (86) [and this in
ludes as a sub
ase the formof Eq. (83)℄ has eigenve
tors of the form given in Eq.(87). De�ne G0 � U�1GU, where
U = 266666666664

1 0 0 0 0 0 00 1 0 0 0 0 00 0 1 0 0 0 00 0 0 1=p2 i=p2 0 00 0 0 1=p2 �i=p2 0 00 0 0 0 0 1=p2 i=p20 0 0 0 0 1=p2 �i=p2
377777777775 :(A1)

We �nd thatU�1GU =26666664 a b 
 p2�0 p2�00 p2�0 p2�00b d e p2�0 p2�00 p2�0 p2�00
 e f p2
0 p2
00 p2�0 p2�00p2�0 p2�0 p2
0 g + Æ0 Æ00 �0 + �0 ��00 � �00p2�00 p2�00 p2
00 Æ00 g � Æ0 �00 � �00 �0 � �0p2�0 p2�0 p2�0 �0 + �0 �00 � �00 h+ �0 �00p2�00 p2�00 p2�00 ��00 � �00 �0 � �0 �00 h� �0
37777775 ;(A2)where �0 and �00 are the real and imaginary parts, re-spe
tively of � and similarly for the other 
omplex vari-ables. Note that we have transformed the original matrixinto a real symmetri
 matrix. Any eigenve
tor (whi
h wedenote jRi) of the transformed matrix has real-valued
omponents and thus satis�es the equationU�1GUjRi = �RjRi; (A3)from whi
h it follows that[G℄UjRi = �RUjRi; (A4)so that any eigenve
tor of G is of the form UjRi, whereall 
omponents of jRi are real. If jRi has 
omponentsr1; r2; : : : r7, thenUjRi = [r1; r2; r3; (r4 + ir5)=p2; (r4 � ir5)=p2;(r6 + ir7)=p2; (r6 � ir7)=p2℄ ; (A5)whi
h has the form asserted.APPENDIX B: IRREPS FOR TMO25In this appendix we give the representation analysisfor TbMn2O5 for waveve
tors of the form ( 12 ; 0; q), where



39Irrep E �mx �my �mxmy �E�a 1 1 1 1 1�b 1 -1 1 -1 1�
 1 1 -1 -1 1�d 1 -1 -1 1 1�2 2 0 0 0 -2G n 0 0 0 �nTABLE XXII: Chara
ter table for the double group of thewaveve
tor. In the �rst line we list the �ve 
lasses of operatorsfor this group. In the last line we indi
ate the 
hara
ters forthe group G whi
h is indu
ed by the n-dimensional redu
iblerepresentation in the spa
e of the � spin 
omponent of spinsin a given Wy
ko� orbit.Spin �1 �2 Spin �1 �2S(q; 1) r1xr1yr1z r2xr2yr2z S(q; 7) r6xr6yr6z �r6x�r6yr6zS(q; 2) r2xr2y�r2z r1xr1y�r1z S(q; 8) r6x�r6y�r6z r6x�r6yr6zS(q; 3) r1x�r1y�r1z �r2xr2yr2z S(q; 9) r3xr3yr3z r4xr4yr4zS(q; 4) r2x�r2yr2z �r1xr1y�r1z S(q; 10) r4xr4y�r4z r3xr3y�r3zS(q; 5) r5xr5yr5z �r5x�r5yr5z S(q; 11) r3x�r3y�r3z �r4xr4yr4zS(q; 6) r5x�r5y�r5z r5x�r5yr5z S(q; 12) r4x�r4yr4z �r3xr3y�r3zTABLE XXIII: Spin fun
tions (i. e. unit 
ell Fourier 
oeÆ-
ients) determined by standard representation analysis with-out invoking inversion symmetry. The se
ond and third
olumns give the fun
tions whi
h transform a

ording to the�rst and se
ond 
olumn of the two dimensional irrep. These
oeÆ
ients are all 
omplex parameters.

q has a nonspe
ial value. The operators we 
onsider areE, mx, my and mxmy, as de�ned in Table XIII. Notethat m2y(x; y; z) = (x + 1; y; z), so that m2y = �1 for thiswaveve
tor. Thus, the above set of four operators donot a
tually form a group. A

ordingly we 
onsider thedouble group whi
h follows by introdu
ing �E de�nedby m2y = �E, (�E)2 = E, and (�E)O(�E) = O. Sin
eaddition has no meaning within a group we do not dis
ussadditive properties su
h as (E) + (�E) = 0. Then, if wede�ne �O � (�E)O, we have the 
hara
ter table givenin Table XXII.The Mn4+ Wy
ko� orbits 
ontain two atoms and allthe other orbits 
ontain four atoms. In either 
ase wemay 
onsider separately an orbit and a single 
omponent,x, y, or z of spin. So the 
orresponding spin fun
tionsform a basis set of n ve
tors, where n = 2 for the sin-gle spin 
omponents of Mn4+ and n = 4, otherwise. Inea
h 
ase, the operations involving mx and/or my inter-
hange sites and therefore have zero diagonal elements.Their 
hara
ter, whi
h is their tra
e within this spa
e ofn ve
tors is therefore zero. On the other hand E and�E give diagonal elements of +1 and �1, respe
tively.So their 
hara
ter (or tra
e) is �n and we have the lastline of the table for this redu
ible representation G.In this 
hara
ter table we also list (in the last line) the
hara
ters of these operations within the ve
tor spa
e ofwavefun
tions of a given spin 
omponent over a Wy
ko�orbit of n sites. Comparing this last line of the table tothe 
hara
ter of the irreps we see thatG 
ontains only theirrep �2 and it 
ontains this irrep n=2 times. This meansthat for the system of three spin 
omponents over 12sites, we have 36 
omplex 
omponents and these fun
tiongenerate a redu
ible representation whi
h 
ontains �2 18times. If there were no other symmetries to 
onsider,this result would imply that to determine the stru
tureone would have to �x the 18 
omplex-valued parameters.The two dimensional representation 
an be realized byEq. (125). The basis ve
tors whi
h transform as the �rstand se
ond 
olumns, respe
tively of the two dimensionalrepresentation are given in Table XXIII. One 
an 
he
kthe entries of this table by verifying that the e�e
t ofmx and my on the ve
tors of this table are in 
onformitywith Eq. (125).However, after taking a

ount of inversion symmetrywe have only 18 real-valued stru
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