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This paper represents a detailed instruction manual for constructing the Landau expansion for
magnetoelectric coupling in incommensurate ferroelectric magnets, including NizgV2Og, TbhMnQsg,
MnWOy, TbMn20s5, YMn20s5, CuFeO2, and RbFe(MO4),. The first step is to describe the mag-
netic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic
order parameters whose transformation properties are displayed. In so doing we use the previously
proposed technique to exploit inversion symmetry, since this symmetry has seemingly been uni-
versally overlooked. Inversion symmetry severely reduces the number of fitting parameters needed
to describe the spin structure, usually by fixing the relative phases of the complex fitting param-
eters. By introducing order parameters of known symmetry to describe the magnetic ordering,
we are able to construct the trilinear magneto-electric interaction which couples incommensurate
magnetic order to the uniform polarization and thereby we treat many of the multiferroic systems
so far investigated. In most cases the symmetry of the magneto-electric interaction determines the
direction of the magnetically induced spontaneous polarization. We use the Landau description of
the magneto-electric phase transition to discuss the qualitative behavior of various susceptibilties
near the phase transition. The consequences of symmetry for optical properties such as polarization
induced mixing of Raman and infra-red phonons and electromagnons are analyzed. The implication
of this theory for microscopic models is discussed.

PACS numbers: 75.25.+z, 75.10.Jm, 75.40.Gb
I. INTRODUCTION

Recently there has been increasing interest in sys-
tems (multiferroics) which exhibit an observable interac-
tion between magnetic and electric degrees of freedom.!
Much interest has centered on a family of multifer-
roics which display a phase transition in which uni-
form ferroelectric order appears simultaneously with in-
commensurate magnetic ordering. Early examples of
such a system whose ferroelectric behavior and mag-
netic structure have been thoroughly studied are Terbium
Manganate, ThMnO; (TMO).%? and Nickel Vanadate,
NizV,0g (NVO)* 7. A similar comprehensive analysis
has recently been given for the triangular lattice com-
pound RbFe(MoQO,)s (RFMO).® A number of other sys-
tems have been shown to have combined magnetic and
ferroelectric transitions,? !4 but the investigation of their
magnetic structure has been less systematic. Initially
this combined transition was somewhat mysterious, but
soon a Landau expansion was developed* to provide a
phenomenological explanation of this phenomenon. An
alternative picture, similar to an earlier result!® based
on the concept of a “spin-current,” and which we refer
to as the “spiral formulation,”'® has gained popularity
due to its simplicity, but as we will discuss, the Landau
theory is more universally applicable and has a number
of advantages. The purpose of the present paper is to
describe the Landau formulation in the simplest possi-
ble terms and to apply it to a large number of currently
studied multiferroics. In this way we hope to demystify
this formulation.

It should be noted that this phenomenon (which we

call “magnetically induced ferroelectricity”) is closely
related to the similar behavior of so-called “improper
ferroelectrics,” which are commonly understood to be
the analogous systems in which uniform magnetic
order (ferromagnetism or antiferromagnetism) drive
ferroelectricity.!” Several decades ago such systems were
studied'® and reviewed'”'? and present many parallels
with the recent developments.

One of the problems one encounters at the outset is
how to properly describe the magnetic structure of sys-
tems with complicated unit cells. This, of course, is a
very old subject,?°"22 but surprisingly, as will be doc-
umented below, the full ramifications of symmetry are
not widely known. Accordingly, we feel it necessary to
repeat the description of the symmetry analysis of mag-
netic structures. While the first part of this symmetry
analysis is well known to experts, we review it here, espe-
cially because our approach is often far simpler and less
technical than the standard one. However, either ap-
proach lays the groundwork for incorporating the effects
of inversion symmetry, which, in the recent literature,
have often been overlooked until our analysis of NVO? 7
and TMO.? Inversion symmetry was also addressed by
Schweizer with a subsequent correction.?® Very recently
a more formal approach to this problem has been given
by Radaelli and Chapon?* and by Schweizer et al.?® But,
at least in the simplest cases, the approach initially pro-
posed by us and used here seems easiest. We here apply
this formalism to a number of currently studied multifer-
roics, such as DyMnO3 (DMO),” MnWO, (MWQ)!3:14,
TbMn, 05 (TM025),11:12 YMn, 05 (YMO25)!2, CuFeO,
(CFO),!% and RFMO.® As was the case for NVO*™7 and
TMO,? once one has in hand the symmetry properties



of the magnetic order parameters, one is then able to
construct the trilinear magnetoelectric coupling term in
the free energy which provides a phenomenological expla-
nation of the combined magnetic and ferroelectric phase
transition.

This paper is organized in conformity with the above
plan. In Sec. II we review a simplified version of the
symmetry analysis known as representation theory. Here
we also review the recently proposed®™ technique to in-
corporate the consequences of inversion symmetry. In
Sec. IIT we apply this formalism to develop magnetic
order parameters for a number of multiferroic systems
and in Eq. (126) we give a simple example to show how
inversion symmetry influences the symmetry of the al-
lowed spin distribution. Then in Sec. IV, we use the
symmetry of the order parameters to construct a magne-
toelectric coupling free energy, whose symmetry proper-
ties are manifested. We give an analysis of the Landau
description of the magneto-electric phase transition. In
particular we discuss the behavior of various susceptibil-
ities near the phase transition. In Sec. V we discuss how
the magneto-electric interaction leads to mixing of infra-
red active and Raman active phonon modes and to the
mixing of magnons with phonons. Finally, in Sec. VI we
summarize the results of these calculations and discuss
their relation to calculations based on the spin current
model'® or the phenomenology of continuum theory.'6

II. REVIEW OF REPRESENTATION THEORY

As we shall see, to understand the phenomenology of
the magnetoelectric coupling which gives rise to the com-
bined magnetic and ferroelectric phase transition, it is es-
sential to characterize and properly understand the sym-
metry of the magnetic ordering. In addition, as we shall
see, to fully include symmetry restrictions on possible
magnetic structures that can be accessed via a continu-
ous phase transition is an extremely powerful aid in the
magnetic structure analysis, Accordingly in this section
we review how symmetry considerations restrict the pos-
sible magnetic structures which can appear at an order-
ing transition. The full symmetry analysis has previously
been presented elsewhere,®7, but it is useful to repeat it
here both to fix the notation and to give the reader con-
venient access to this analysis which is so essential to
the present discussion. To avoid the complexities of the
most general form of this analysis (called representation
theory),?3"2% we will limit discussion to systems having
some crucial simplifying features. First, we limit con-
sideration to systems in which the magnetic ordering is
incommensurate. In the examples we choose k will usu-
ally lie along a symmetry direction of the crystal. Sec-
ond, we only consider systems which have a center of
inversion symmetry, because it is only such systems that
have a sharp phase transition at which long-range ferro-
electric order appears. Thirdly, we restrict attention to
crystals having relatively simple symmetry. (What this

means is that except for our discussion of TbMn;05 we
will consider systems where we do not need the full ap-
paratus of group theory, but can get away with simply
labeling the spin functions which describe magnetic order
by their eigenvalue under various symmetry operations.)
By avoiding the complexities of the most general situ-
ations, it is hoped that this paper will be accessible to
more readers. Finally, as we will see, it is crucial that
the phase transitions we analyze are either continuous
or very nearly so. In many of the examples we discuss,
our simple approach® is vastly simpler than that of stan-
dard representation theory?® 2® augmented by special-
ized techniques to explicitly exploit inversion symmetry.

A. Symmetry Analysis of the Magnetic Free
Energy

In this subsection we give a review of the formalism
used previously®* and presented in detail in Refs. 6,7.
Since we are mainly interested in symmetry properties,
we will describe the magnetic ordering by a version of
mean-field theory in which one writes the magnetic free
energy Fy; as

Z Xap(r,1')Sa(r)Ss(r")

rar’ﬁ
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where S, (r) is the thermally averaged a-component of
the spin at position r. In a moment, we will give an
explicit approximation for the inverse susceptibility y.
We now introduce Fourier transforms in either of two
equivalent formulations. In the first formulation (which
we refer to as “actual position”) one writes the Fourier
transform as

Sa@,7) = N'Y Sy(R+ )BT (2)

R

whereas in the second (which we refer to as “unit cell”)
one writes

Sa(@,7) = N7'D SR+ 7)edR (3)
R

where N is the number of unit cells in the system, T
is the location of the 7th site within the unit cell, and
R is a lattice vector. Note that in Eq. (2) the phase
factor in the Fourier transform is defined in terms of the
actual position of the spin rather than in terms of the
origin of the unit cell, as is done in Eq. (3). In some
cases (viz. NVO) the results are simpler in the actual
position formulation whereas for others (viz. TMO) the
unit cell formulation is simpler. We will use whichever
formulation is simpler. In either case the fact that S,
has to be real indicates that

Sa(=a,;7) = Sala,7)" - (4)



We thus have
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where, for the “actual position” formulation,
Hanr) = el R4 T
R

and for the “unit cell” formulation

Xop(@7.7) = D X h(r,R+7)e ™ (7)
R

To make our discussion more concrete we cite the sim-
plest approximation for a system of spins on a orthorhom-
bic Bravais lattice with general anisotropic exchange cou-
pling, so that the Hamiltonian is

"= Z Jaﬁ(r’r’)sa(r)sﬁ(r')+ZKasa(r)2 {8)

a,Bir,r’

where s, (r) is the a-component of the spin operator at
r and we have included a single ion anisotropy energy
assuming three inequivalent axes, so that the K, are all
different. One has that

b (0, F) = Jug(r,1') + (Ko + cKT)0a sdew , (9)
where 4,5 is unity if @ = b and is zero otherwise and c is
a spin-dependent constant of order unity, so that ckT is
the entropy associated with a spin S. Then

X;[-li () = dap (2J1 [cos(angs) + cos(aangy)
+ cos(ang,)] + akT + Ka> , (10)

where a, is the lattice constant in the a-direction®® and
we assume that K, < K, < K,. Graphs of y~'(q) are
shown in Fig. 1 for both the ferromagnetic (J; < 0) and
antiferromagnetic (J; > 0) cases. For the ferromagnetic
case we now introduce a competing antiferromagnetic
next-nearest neighbor (nun) interaction J, > 0 along the
z-axis, so that

X;i(qz,qy =0,q. =0) = [4J; + 2J; cos(azqz)
+2.J5 cos(2a,q,) + akT + K, (11)

and this is also shown in Fig. 1. As T is lowered one
reaches a critical temperature where one of the eigen-
values of the inverse susceptibility matrix becomes zero.
This indicates that the paramagnetic phase is unstable
with respect to order corresponding to the critical eigen-
vector associated with the zero eigenvalue. For the fer-
romagnet this happens for zero wavevector and for the
antiferromagnet for a zone boundary wavevector in agree-
ment with our obvious expectation. For competing in-
teractions we see that the values of the J’s determine

a wavevector at which an eigenvalue of x~! is minimal.

This is the phenomenon called “wavevector selection,”
and in this case the selected value of q is determined by
extremizing x ! to be30

cos(azq) = J1/(4J2) , (12)

providing Jo > —.J;/4. (Otherwise the system is ferro-
magnetic.) Note also, that crystal symmetry may select
a set of symmetry-related wavevectors, which comprise
what is known as the star of q. (For instance, if the sys-
tem were tetragonal, then crystal symmetry would imply
that one has the same nnn interactions along the y-axis,
in which case the system selects a wavevector along the
z-axis and one of equal magnitude along the y-axis.

From the above discussion it should be clear that if
we assume a continuous transition so that the transi-
tion is associated with the instability in the terms in the
free energy quadratic in the spin amplitudes, then the
nature of the ordered phase is determined by the crit-
ical eigenvector of the inverse susceptibility, i. e. the
eigenvector associated with the eigenvalue of inverse sus-
ceptibility which first goes to zero as the temperature is
reduced. Accordingly, the aim of this paper is to analyze
how crystal symmetry affects the possible forms of the
critical eigenvector.

When the unit cell contains n > 1 spins, the inverse
susceptibility for each wavevector q is a 3n x 3n matrix.
The ordering transition occurs when, for some selected
wavevector(s), an eigenvalue first becomes zero as the
temperature is reduced. In the above simple examples
involving isotropic exchange interactions, the inverse sus-
ceptibility was 3 x 3 diagonal matrix, so that each eigen-
vector trivially has only one nonzero component. The
critical eigenvector has spin oriented along the easiest
axis, i. e. the one for which K, is minimal. In the
present more general case n > 1 and arbitrary interac-
tions consistent with crystal symmetry are allowed. To
avoid the technicalities of group theory, we use as our
guiding principle the fact that the free energy, being an
expansion in powers of the magnetizations relative to the
the paramagnetic state, must be invariant under all the
symmetry operations of the crystal.26-3! This is the same
principle that one uses in discussing the symmetry of the
electrostatic potential in a crystal.?? We now focus our
attention on the critically selected wavevector g which
has an eigenvalue which first becomes zero as the tem-
perature is lowered. This value of q is determined by
the interactions and we will consider it to be an experi-
mentally determined parameter. Operations which leave
the quadratic free energy invariant must leave invariant
the term in the free energy F5(q) which involves only the
selected wavevector q, namely

5 Y Xab@r)Su(a ) Ssla, ) (13)

77,8

F»(q)

Any symmetry operation takes the original variables be-
fore transformation, S, (q, 7), into new ones indicated by



FIG. 1: Inverse susceptibility x ~'(g,0,0). a) Ferromagnetic model (.J; < 0), b) Antiferromagnetic model (.J; < 0), and c)
Model with competing interactions (the nn interaction is antiferromagnetic). In each panel one sees three groups of curves.
Each group consists of the three curves for xaq(g) which depend on the component label @ due to the anisotropy. The z axis
is the easiest axis and the z axis is the hardest. (If the system is orthorhombic the three axes must all be inequivalent. The
solid curves are for the highest temperature, the dashed curves are for an intermediate temperature, and the dash-dot curves
are for T = T, the critical temperature for magnetic ordering. Panel c) illustrates the nontrivial wavevector selection which

occurs when one has competing interactions.

primes. We write this transformation as

Sy(a,7) = Z Uat;arr Sar (4, T') - (14)

o' T

According to a well known statement of elementary quan-
tum mechanics, if a set of commuting operators T}, 75 . ..
also commute with y~!(q), then the eigenvectors of
X *(q) are simultaneously eigenvectors of each of the
Ty’s. (This much reproduces a well known analysis.20 22
We will later consider the effect of inversion, the analysis
of which seems to have been universally overlooked). We
will apply this simple condition to a number of multi-
ferroic systems currently under investigation. (This ap-
proach can be much more straightforward than the stan-
dard one when the operations which conserve wavevector
unavoidably involve translations.) As a first example we
consider the case of NVO and use the “actual position”
Fourier transforms. In Table I we give the general posi-
tions (this set of positions is the so-called Wyckoff orbit)
for the space group Cmca (#64 in Ref. 33) of NVO
and this table defines the operations of the space group
of Cmca. In Table IT we list the positions of the two
types of sites occupied by the magnetic (Ni) ions, which
are called “spine” and “cross-tie” sites in recognition of
their distinctive coordination in the lattice, as can be seen
from Fig. 3, where we show the conventional unit cell of
NVO. Experiments®?3® indicate that as the temperature
is lowered, the system first develops incommensurate or-
der with q along the a-direction with ¢ ~ 0.28.3% In Fig.
2 we show the phase diagram in the T-H plane for H
along the c axis, for T' > 2K.6

The group of operations which conserve wavevector are
generated by a) the two-fold rotation 2, and b) the glide
operation m,, both of which are defined in Table I. We
now discuss how the Fourier spin components transform
under various symmetry operations. Here primed quan-
tities denote the value of the quantity after transforma-
tion. Let O = 0,0, be a symmetry operation which
we decompose into operations on the spin O, and on the
position O,.. The effect of transforming a spin by such
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FIG. 2: Schematic phase diagram for NVO for a magnetic
field applied along the ¢ direction, taken from Ref. 6. Here
AF is an antiferromagnetic phase with a weak ferromagnetic
moment, P is the paramagnetic phase, HTI is the “high tem-
perature incommensurate” phase in which the moments are
essentially aligned along the a axis with a sinusoidally mod-
ulated amplitude (according to irrep I's) and LTI is the “low
temperature incommensurate” phase in which transverse or-
der along the b axis appears to make an elliptically polarized
order parameter wave (according to irreps 'y and I'1). A
spontaneous polarization P appears only in the LTI phase
with P along b.

Er = (2,9, 2) 2r = (T,y+1/2,2+1/2)
2r = (T,y+1/2,2+1/2) 2.r = (2,Y,%2)

Ir = (T,9,2) mer = (z,y +1/2,Z2+1/2)
mpr = (2, +1/2,2+1/2) mgr = (T, y, 2)

TABLE I: General positions®*** within the primitive unit cell
for Cmca which describe the symmetry operations®® of this
space group. 2, is a two-fold rotation (or screw) axis and mq
is a mirror (or glide) which takes rq into —rq.

an operator is to replace the spin at the “final” position
Ry by the transformed spin which initially was at the
position O, 'Ry. So we write

StIJz(szTf) = Ossa(o;l[Rf:Tf])



ra = (0.25,-0.13,0.25)
roo = (0.25,0.13,0.75)
r.s = (0.75,0.13,0.75)
ros = (0.75,-0.13,0.25)
re1 = (0,0,0)

reo = (0.5,0,0.5)

TABLE II: Positions®*®® of Ni?" carrying S=1 within the
primitive unit cell illustrated in Fig. 3. Here rs, denotes the
position of the nth spine site and r., that of the nth cross-tie
site. NVO orders in space group Cmca, so there are six more
atoms in the conventional orthorhombic unit cell which are
obtained by a translation through (0.5a,0.5b,0).

= £a(05)Sa(Ri, i) (15)
where the subscripts “i” and “f” denote initial and final
values and £,(Oy) is the factor introduced by O; for a

pseudovector, namely

fz(mz) = fy(mz) =-1, gz(mz) =1. (16)
Note that OS, (R, T) is not the result of applying O to
move and reorient the spin at R 4+ 7, but instead is the
value of the spin at R + 7 after the spin distribution

is acted upon by O. Thus, for actual position Fourier
transforms we have

S;(anf) = N71 ZS;(Rf,Tf)eiq.(Rf+Tf)
R
€a(O)N ! Z Sa(Ry, ;)€ Rs+T 1)
R
= £4(0,)Sa(q, ) RI+T i RTi (17)

We may write this as
OSa(q:Tf) = ga(os)sa(q:Ti)eiq‘[Rf_FTfiRiiTi](]-g)

This formulation may not be totally intuitive, because
one is tempted to regard the operation O acting on a
spin at an initial location and taking it (and perhaps
reorienting it) to another location. Here, instead, we
consider the spin distribution and how the transformed
distribution at a location is related to the distribution at
the initial location.

Similarly, the result for unit cell Fourier transforms is

Se(@.mp) = £a(0)S,(aq,mi)e! R (19)
As before, we may write this as
08a(a,75) = £a(0s)Salq, T)e R (20)
Under transformation by inversion, £,(Z) = 1 and

Sél(qﬂ-f)* =N Z Sa(Ri,Ti)e*iQ‘(Rf+Tf)
R

= Sa(q, )il Ry T RT

- Sa(q7 Ti) (21)
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FIG. 3: (Color online). Ni sites in the conventional unit cell of
NVO. The primitive translation vectors v, are vi = (a/2)a+
(b/2)b, va = (a/2)a — (b/2)b, and vs = cé. The “cross-tie”
sites (on-line=blue) c1 and c2 lie in a plane with b = 0. The
“spine” sites (on-line=red) are labeled sl1, s2, s3, and s4 and
they may be visualized as forming chains parallel to the a-
axis. These chains are in the buckled plane with b = =44,
where § = 0.13b as is indicated. Cross-tie sites in adjacent
planes (displaced by (£b/2)b) are indicated by open circles.
Spine sites in adjacent planes are located directly above (or
below) the sites in the plane shown. In the incommensurate
phases the wavevector describing magnetic ordering lies along
the a axis. The axis of the two-fold rotation about the z-axis
is shown. The glide plane is indicated by the mirror plane at
3

z=73 and the arrow above m. indicates that a translation of

b/2 in the y-direction is involved.

for actual position Fourier transforms. For unit cell

transforms we get
Se(@,75)" = Sa(q,7)e’dl R Rl

= Sa(q,r;)eTHTd (22)
Now we apply this formalism to find the actual position
Fourier coefficients which are eigenfunctions of the two
operators 2, and m_. In so doing note the simplicity of
Eq. (17): since, for NVO, the operations 2, and m. do

not change the x coordinate, we simply have
Sela,7p) = &Si(a,Ti) - (23)

Thus the eigenvalue conditions for 2, acting on the spine
sites (#1-#4) are

Sa(g; l)l €a(22)5a(4,2) = A(22)Sa(g,1)
50(1172)I = £a(22)5a(q,1) = A(22)54(q,2)
Sa(@,3)" = £a(2:)Sa(a,4) = A(2:)Sal(a, 3)
Sa(@:4)" = &a(2:)Sa(¢,3) = M2:)Sa(q,4) , (24)



Irrep Fl FQ F3 F4
A2)=| +1 | +1 | -1 | -1
N e e e
nl) =| 4 4 5 5

ng | ng | ng | ng

S(a, s1) nls’ nls’ nls’ ng

e | ong | om | o
ng | ng | —ng | —ng

S(a, 52) 7712 7712 nls’ ng

—ng | —ng | ng ng
-ng | ng | —ng | ng
S(a,s3) | nb | —nb | nt —n®
nt | nt | ont | o
-ng | ng . | —na
S(q, s4) 771157 nls’ nls’ 7712
ng | —ng | —ng | ng
ng ng 0 0
S(a,cl) | o 0 n? n?
0 0 ne ne
—ng ng 0 0
S(a,¢2) | o 0 n® | —n®
0 0 —n ne

TABLE III: Allowed spin functions (i. e. actual position
Fourier coefficients) within the unit cell of NVO for wavevec-
tor (q,0,0) which are eigenvectors of 2, and m, with the
eigenvalues A listed. Inversion symmetry is not yet taken into
account. Each of the four combinations of eigenvalues rep-
resents a different symmetry, which we identify with a sym-
metry label I',,. In group theoretical language I',, is refered
to as an irreducible representation (irrep), fow which we use
the notation of Ref. 6. n(I') is the number of independent
structure parameters in the wavefunction having the symme-
try label I'. Group theory indicates that n(I") is the number of
times the irrep I is contained in the original (18-dimensional)
representation corresponding to the S, (q, 7). The labeling of
the sites, 7 is as in Table II and Fig. 3. Here n; (p =s or c,
a = a,b, c) denotes the complex quantity ny (q).

from which we see that A(2,) = +1 and

S5a(q,2) = [£a(22)/A(22)]5a(q, 1)
Sa(qz?’) = [fa(2x)//\(2x)]sa(q74)' (25)

The eigenvalue conditions for m acting on the spine sites
are

Sa(‘]: l)l = fa(mZ)Sa(‘IA) = A(mZ)Sa(‘L 1)
Sa(‘]:‘l)l = fa(mZ)Sa(‘L 1) = )\(mz)Sa(qA)
Salq, 2)I = &a(m:)Sa(q,3) = A(m.)Sa(q,2)
Sa(,3) = &a(m2)Salq,2) = A(m.)Sa(q,3) , (26)
from which we see that A(m.) = £1 and
Sa(q74) = [ga(mz)//\(mz)]sa(qzl) . (27)

We thereby construct the wavefunctions for the spine
sites which are simultaneously eigenvectors of 2, and m,
and these are given in Table III. The results for the
cross-tie sites are obtained in the same way and are also

given in the table. Each set of eigenvalues corresponds
corresponds to a different symmetry label (irrep), here
denoted I',,. Since each operator can have either of two
eigenvalues, we have four symmetry labels to consider.
Note that these spin functions, since they are actually
Fourier coefficients, are complex-valued quantities. [The
spin itself is real because F'(—q) = F(q)*.] Each column
of Table III gives the most general form of an allowed
eigenvector for which one has n(I') =4 or n(I") =5 (de-
pending on the irrep) independent complex constants. In
terms of the amplitude Xﬁm) (q) of the mth eigenfunction
of irrep I' (at wavevector q) and the corresponding eigen-

(m)

value A" (q) the free energy is diagonal:

n(T)
Fo= %ZZZA(Fm)(qnxém)(q)P, (28)

q ' m=1

These eigenvalues can be identified as the inverse suscep-
tibility associated with “normal modes” of spin configu-
rations. To further illustrate the meaning of this table
we explicitly write, in Eq. (48), below, the spin distri-
bution arising from one irrep, I'y. These spin functions
are schematically shown for the spine sites in Fig. 15,
below. Here our main interest is in the mode which first
becomes unstable as the temperature is lowered.

So far, the present analysis reproduces the standard
results and indeed computer programs exist to construct
such tables. But for multiferroics it may be quicker to
obtain and understand how to construct the possible spin
functions by hand rather than to understand how to use
the program! Usually these programs give the results
in terms of unit cell Fourier transforms, which we claim
are not as natural a representation in cases like NVO. In
terms of unit cell Fourier transforms the eigenvalue con-
ditions for 2, acting on the spine sites (#1-#4) are the
same as Eq. (24) for actual position Fourier transforms
because the operation 2, does not change the unit cell.
However, for the glide operation m, this is not the case.
If we start from site #1 or site #2 the translation along
the y axis takes the spin to a final unit cell displaced
by (—a/2)i1+ (b/2)j, whereas if we start from site #3 or
site #4 the translation along the y axis takes the spin
to a final unit cell displaced by (a/2)i + (b/2)j. Now
the eigenvalue conditions for m, acting on the spine sites

(#1-#4) are

Sa(q,;1)" = &a(m.)Sa(g,4)n = X(m=)Sa(g, 1)
Sa(q,4)" = &a(m2)Sa(q, 1)n" = A(m=)Sa(q,4)
Sa(q,2) = &a(m:)Salg,3)n = A(m.)Sa(q,2)
Sa(q,3) = &a(m2)Salg,2)n™ = A(m.)Sa(q,3) ,(29)

where n = exp(img). One finds that all entries for
S(q, s3), S(q, s4), and S(q, ¢2) now carry the phase fac-
tor n* = exp(—imq). But this is just the factor to make
the unit cell result

S(R,7) = S(q,7)e ‘@R (30)



be the same (to within an overall phase factor) as the
actual position result

S(R,7) = S(q,‘r)e*"q'(fw"-). (31)

We should emphasize that in such a simple case as NVO,
it is actually not necessary to invoke any group theo-
retical concepts to arrive at the results of Table III for
the most general spin distribution consistent with crystal
symmetry.

More importantly, it is not commonly understoo
that one can also extract information using the sym-
metry of an operation (inversion) which does not con-
serve wavevector.? 72325 Since what we are about to say
may be unfamiliar, we start from first principles. The
quadratic free energy may be written as

Fo= % > Fi5Sa(am)Ss(ar), (32)

a 7,708

d20—22

where we restrict the sum over wavevectors to the star of
the wavevector of interest. One term of this sum is

Fy(ao) = Y FI3 Salao,7)"Ss(ao, ™) . (33)

il

It should be clear that the quadratic free energy, Fy is
invariant under all the symmetry operations of the para-
magnetic space group (i. e. what one calls the space
group of the crystal).26:3! For centrosymmetric crystals
there are three classes of such symmetry operations. The
first class consists of those operations which leave qq in-
variant and these are the symmetries taken into account
in the usual formulation.?? 22 The second class consists
of operations which take qp into another wavevector of
the star (call it q), where q; # —qo. Use of these sym-
metries allows one to completely characterize the wave-
function at wavevector q; in terms of the wavefunction
for qg. These relations are needed if one is to discuss
the possibility of simultaneously condensing more than
one wavevector in the star of q.?%4% Finally, the third
class consists of spatial inversion (unless the wavevector
and its negative differ by a reciprocal lattice vector, in
which case inversion belongs in class #1). The role of in-
version symmetry is almost universally overlooked,?? 22
as is evident from examination of a number of recent
papers. Unlike the operations of class #1 which takes
Sn(q) into an Sy (q) (for irreps of dimension one which
is true for most cases considered in this paper), inver-
sion takes S, (q) into an S,s(—q). Nevertheless it does
take the free energy written in Eq. (33) into itself and
restricts the possible form of the wavefunctions. So we
now consider the consequences of invariance of F5 under
inversion.®” For this purpose we write Eq. (13) in terms
of the spin coordinates n of Table III. (The result will, of
course, depend on which symmetry label T' we consider.)
In any case, the part of F, which depends on qg can be
written as

Fy(ao) = Y FIj Salao.7)*Ss(q0. )

nraf

= > Graw (D] [ (D) (34)
N,a;N'",3;T"

where N and N' assume the values ”s” for spin and ”¢”
for cross-tie and a and 8 label components, and the sums
over N and « (and similarly N’ and () are over the n(7y)
variables needed to specify the wavefunction associated
with the symmetry label (irrep) I'. From now on we
keep only the terms belonging to the irrep which is active
and for notational simplicity we leave the corresponding
argument I' of n implicit. Then we see that invariance
under inversion implies that

* [
Y G slni] R
N,a;N',3

Y G slIn%) [Ink] . (35)
N,a;N',3

Fy(q)

Now we need to understand the effect of Z on the spin
Fourier coefficients listed in Table ITI. Since we use actual
position Fourier coefficients, we apply Eq. (21). For
the cross-tie variables (which sit at a center of inversion
symmetry) inversion takes the spin coordinates of one
spine sublattice into the complex conjugate of itself:

78(q, cn) = [S(q,cn)]" . (36)
Thus in terms of the n’s this gives
a=m,y,z . (37)

The effect of inversion on the spine variables again fol-
lows from Eq. (21). Since inversion interchanges sublat-
tice #1 and #3, we have

[S(aq, s3))" = [S(q, s1)]" . (38)

For A(2;) = A(m,) = +1 (i. e. for irrep I'y), we substi-
tute the values of the spin vectors from the first column
of Table III to get

I[-ng) = [ng]" . (39)

Note that some components introduce a factor —1 under
inversion and others do not. (Which ones have the minus
signs depends on which irrep we consider.) If we make a
change of variable by replacing n$ in column #1 of Table
I1I by ing§ for those components for which Z introduces
a minus sign and replacing the other ng by n$, then we
may rewrite the first column of Table III in the form
given in Table IV. We replace all the cross tie variables
ng by n. In terms of these new tilde variables one has

T[A%] = [A%]" . (40)

(It is convenient to define the spin Fourier coefficients
so that they all transform in the same way under inver-
sion. Otherwise one would have to keep track of variables



| Irrep= | I | I2 | s | Iy |
[Aea=] +1 [+ [ -1 [ 1]
[Amoy =] +1 | =1 | =1 | 41 |
S(a, s1) ng inls’ nls’ ing
ing ng —ing —ny
S(a, s2) 7712 7inls’ nls’ ing
—ing ng —ing ng
S(qa, s3) n? —in n’ —in®
—ing n —ing ne
—ing ng ing —ng
S(a, s4) 7712 in'; n'; 7in2
ing —n —ing ng
nd nd 0 0
S(a,el) | o 0 n® nb
0 0 ne ne
—ng ne 0 0
S(a,¢2)| o 0 n® —nb
0 —ng ng

TABLE IV: As Table III (for NVO) except that now the effect
of inversion symmetry is taken into account, as a result of
which, apart from an overall phase factor all the n’s in this
table can be taken to be real-valued.

which transform with a plus sign and those which trans-
form with a minus sign.) Repeating this process for all
the other irreps we write the possible spin functions as
those of Table IV. We give an explicit formula for the
spin distribution for one irrep in Eq. (48) below.

Now we implement Eq. (35), where the spin functions
are taken to be the variables listed in Table IV. First
note that the matrix G in Eq. (35) has to be Hermitian
to ensure that F5 be real:

Gmang = [Gngimal® (41)

Then, using Eq. (40), we find that Eq. (35) is

Fy(ao) = Y %) Guraiv.siin

M,a;N,B

= > [Z0%])" G v, s TRY]
M,a;N,B3

> A% Gumanslil]"
M,a;N,B

> AN Gramalin] . (42)
M,a;N,B3

where, in the last line, we interchanged the roles of the
dummy indices M,a and N, 3. By comparing the first
and last lines, one sees that the matrix G is symmetric.
Since this matrix is also Hermitian, all its elements must
be real valued. Thus all its eigenvectors can be taken
to have only real-valued components. But the m’s are

allowed to be complex valued. So, the conclusion is that
for each irrep, we may write

Ay () = e [ry(I)], (43)

where the r’s are all real valued and ¢r is an overall phase
which can be chosen arbitrarily for each I'. When only
a single irrep is active, it is likely that the phase will be
fixed by high-order Umklapp terms in the free energy,
but the effects of such phase locking may be beyond the
range of experiments.*!

It is worth noting how these results should be (and in
a few cases®*% have been) used in the structure determi-
nations. One should choose the best fit to the diffraction
data using, in turn, each irrep (i. e. each set of eigenval-
ues of 2, and m,). Within each irrep one parametrizes
the spin structure by choosing the Fourier coefficients as
in the relevant column of Table IV. Note that instead
of having 4 or 5 complex coefficients to describe the six
sites within the unit cell (see Table III), one has only 4
or 5 (depending on the representation) real-valued coeffi-
cients to determine. The relative phases of the complex
coefficients have all been fixed by invoking inversion sym-
metry. This is clearly a significant step in increasing the
precision of the determination of the magnetic structure
from experimental data.

B. Order Parameters

We now review how the above symmetry classification
influences the introduction of order parameters which al-
low the construction of Landau expansions.*% The form
of the order parameter should be such that it has the po-
tential to describe all ordering which are allowed by the
quadratic free energy F,. Thus, for an isotropic Heisen-
berg model on a cubic lattice, the order parameter has
three components (i. e. it involves a three dimensional
irrep) because although the fourth order terms will re-
strict order to occur only along certain directions, as far
as the quadratic terms are concerned, all directions are
equivalent. The analogy here is that the overall phase
of the spin function ¢(I") is not fixed by the quadratic
free energy and accordingly the order parameter must
be a complex variable which includes such a phase. One
also recognizes that although the amplitude of the critical
eigenvector is not fixed by the quadratic terms in the free
energy, the ratios of its components are fixed by the spe-
cific form of the inverse susceptibility matrix. Although
we do not wish to discuss the explicit form of this matrix,
what should be clear is that the components of the spins
which order must be proportional to the components of
the critical eigenvector. The actual amplitude of the spin
ordering is determined by the competition between the
quadratic and fourth order terms in the free energy. If I',
is the irrep which is critical, then just below the ordering
temperature we write

ny(a) = op(@)ry(Ty) , (44)



where the r’s are real components of the critical eigenvec-
tor (associated with the critical eigenvalue of irrep I') of
the matrix G of Eq. (35) and are now normalized by

SP =1 (45)

aN

Here the order parameter for irrep I'(q), o,(q) is a com-
plex variable, since it has to incorporate the arbitrary
complex phase ¢, associated with irrep I'y:

ap(£la) = ae™or. (46)

The order parameter transforms as indicated in the tables
by its listed eigenvalues under the symmetry operations
2, and m. Since the components of the critical eigenvec-
tor are dominantly determined by the quadratic terms,*?
one can say that just below the ordering temperature the
description in terms of an order parameter continues to

hold but
op ~ |T. — TP, (47)

where mean-field theory gives § = 1/2 but corrections
due to fluctuation are expected.*

To summarize and illustrate the use of Table IV we
write an explicit expression for the magnetizations of
the #1 spine sublattice and the #1 cross-tie sublat-
tice assuming te active irrep to be I'y [A(2,) = —1 and
A(m;) = +1]. We use the definition of the order param-
eter and sum over both signs of the wavevector to get

n
)

T
w0
—_

= 20477 cos(qx + P4)
= 2047Y sin(qz + ¢4)

n
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=
»
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n
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= —204r% cos(qx + ¢4)

Sy(r,s2) = 2041 sin(gx + ¢a)
S.(r,s2) = 20477 cos(qx + ¢4)
Sz (r,s3) = 20475 cos(qr + ¢4)
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= 2047 cos(qz + ¢4)
—2047% cos(qx + ¢4)

0
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w
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= —204rYsin(qz + ¢4)
= 20477 cos(qz + ¢a)
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w
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)

S.(r,ecl) = 0

Sy(r,cl) = 204rY cos(qz + ¢a)

S.(r,cl) = 20477 cos(qz + ¢4)

Sy(r,el) = 0

Sy(r,c2) = —2041Y cos(gr + ¢4)

S.(r,c2) = 20477 cos(qz + Pa) (48)

and similarly for the other irreps. (The observed mag-
netic structures are described qualitatiely in the caption
to Fig. 2. The actual values of the structure parameters
r® in Eq. (48) and its analog for irrep I'y are given in Ref.

6.) Here r = (z,y, 2z) is the actual location of the spin.
Using explicit expressions like the above (or more directly
from Table IV), one can verify that the order parameters
(op for irrep I',) have the transformation properties:

2;01(q) = +o1(a), m.oi(q) = +0o1(q) ,
2,02(q) = +o2(q), m.o3(q) = —02(q),
2,03(q) = —o3(q), m.o3(q) = —0o3(q),
2;04(q) = —04(q), m.o4(q) =+0o4(q) (49)
and
Zon(q) = [ou(a)]". (50)

Note that even when more than a single irrep is present,
the introduction of order parameters, as done here, pro-
vides a framework within which one can represent the
spin distribution as a linear combination of distributions
each having a characteristic symmetry, as expressed by
Eq. (49). When the structure of the unit cell is ignored!®
that information is not readily accessible. Also note that
the phase of each irrep T';, is defined so that when ¢,, = 0,
the wave is inversion-symmetric about r = 0. When ¢,
is nonzero, it is possible to invoke the incommensurabil-
ity to find a lattice site which is arbitrarily close to a
center of inversion symmetry of the mathematical spin
function. Thus each irrep has a center of inversion sym-
metry whose location is implicitly defined by the value of
¢n. When only a single irrep is active, the specification
of ¢, is not important. However, when one has two ir-
reps, then inversion symmetry is only maintained if the
centers of inversion symmetry of the two irreps coincide,
i. e. if their phases are equal.

In many systems, the initial incommensurate order
that first occurs as the temperature is lowered becomes
unstable as the temperature is further lowered.3 Typi-
cally, the initial order involves spins oriented along their
easy axis with sinusoidally varying magnitude. How-
ever, the fourth order terms in the Landau expansion
(which we have not written explicitly) favor fixed length
spins. As the temperature is lowered the fixed length
constraint becomes progressively more important and at
a second, lower, critical temperature a transition occurs
in which transverse components become nonzero. Al-
though the situation is more complicated when there are
several spins per unit cell, the result is similar: the fixed
length constraint is best realized when more than a single
irrep has condensed. So, for NVO and TMO as the tem-
perature is lowered one encounters a second phase transi-
tion in which a second irrep appears. Within a low-order
Landau expansion this phenomenon is described by a free
energy of the form®

1
F =

. 1 .
= E(T — T>)(7'2> + §(T — T<)0'2< + U>(T4>

tucot +woa? | (51)

where 75 > T.. This system has been studied in de-
tail by Bruce and Aharony.** For our purposes, the most
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) 2y1' = (an7z+ %)

= (z,y,
(z,7,

Nl

TABLE V: General Positions for space group P2/c.

important result is that for suitable values of the param-
eters ordering in o5 occurs at 75 and at a lower temper-
ature (when 7' — T« + 2wo? = 0) order in o< may occur.
The application of this theory to the present situation
is simple: we can (and usually do) have two magnetic
phase transitions in which first one irrep and then at a
lower temperature a second irrep condense. A question
arises as to whether the condensation of one irrep can
induce the condensation of a second irrep. This is not
possible because the two irreps have different symmetry.
But could the presence of two irreps, I's and I'. induce
the appearance of a third irrep I's at the temperature at
which I'. first appears? For that to happen would re-
quire that I' ® I'” ® I's contain the unit representation
for some values of n and m. This or any higher com-
bination of representations is not allowed for the simple
four irreps system like NVO. In more complex systems
one might have to allow for such a phenomenon.

III. APPLICATIONS

In this section we apply the above formalism to a num-
ber of multiferroics of current interest.

A. MnWO4,

MnWO, (MWO) crystallizes in the space group P2/c
(#14 in Ref. 33) whose general positions are given in
Table V. The two magnetic Mn ions per unit cell are at
positions

1 1 1 3

T = (5?;’71) ) T2:(§71_y71) . (52)

The wavevector of incommensurate magnetic ordering
is® q = (gs,1/2,q.) with ¢, ~ —0.21 and ¢. ~ 0.46)
and is left invariant by the identity and m,. We start by
constructing the eigenvectors of the quadratic free energy
(i. e. the inverse susceptibility matrix). Here we use unit
cell Fourier transforms to facilitate comparison with Ref.
45. Below X, Y, and Z denote integers (in units of lattice
constants). When

Ry+7;y = (X,Y,Z)-I—Tl

1 1
(X+§’Y+y’z+1) (53)
and

Ri+7; = [m,] '(Ry +7y)
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Irrep I Iy
)\(my) — ei‘rrqz _ei‘rrqz

* *
a*ng | a*ng

S(q,1) || a*ny | a*ny

a“n, a“n,

ang —ang

S(a,2)

—any | any

an, —an,

TABLE VI: Allowed spin eigenfunctions for MWQO (apart
from an overall phase factor) before inversion symmetry is
taken into account, where a = exp(—imq./2). Here the n(q)’s
are complex and we have taken the liberty to adjust the overall
phase to give a symmetrical looking result. But these results
are equivalent to Table II of Ref. 45.

1
= (X+§77Y7y/Z%)
- (X, Y - 1,Z D471s. (54

Then Eq. (19) gives the eigenvalue condition to be

SL(@, 1) = Ealmy)Sala, mo)ema Y DI+
= £a(my)Sa(q, m)e™ T2mie

= Asa(q77—1) s (55)
=& (my) =& (my) = —1. When

R;+71; = (X, YZ)+T2
(

where &, (m,) =

3
X+ Y—l—l—y7Z+4) (56)
then
1
— .z 4+ Z
v Z+7)
1,2)+71, (57)

1
Ri+Ti = (X-l-glfyfl
= (X,-Y —
and Eq. (19) gives the eigenvalue condition to be

S(Ix(q/ TQ) = ga(my)sa(qaTl)EQWiq.(2Y+1)j
= La(my)Sa(q,m)[~1] = ASa(q, 72) .(58)
From Egs. (55) and (58) we get A = +e™% and

Sala,2) = —[€a(my)/NSa(a, 1) - (59)

So we get the results listed in Table VI.

So far the analysis is essentially the completely stan-
dard one. Now we use the fact that the free energy is
invariant under spatial inversion, even though that oper-
ation does not conserve wavevector.>%%7 We now deter-
mine the effect of inversion on the n’s. As will become
apparent use of unit cell Fourier transforms makes this
analysis more complicated than if we had used actual
position transforms. We use Eq. (22) to write

S(q, 7 = 2)*672mq-(%+5+1})
bS(a,2)" , (60)

ZS(q,7=1)



where b = — exp[—27i(g, + q.)]. For I'y we get
Ing,ny,n;.] = [—ng,ny, —n.]"b, (61)
which we can write as
Ing = béa(my)nl, . (62)

Now the free energy is quadratic in the Fourier spin coef-
ficients, which are linearly related to the n’s. So the free
energy can be written as

F, = n'Gn, (63)

where n = (n,,n,,n.) is a column vector and G is a 3x 3
matrix which we write as

A a f
a* B Y ) (64)
gy C

G =

where, for Hermiticity the Roman letters are real and
the Greek ones complex. Now we use the fact that also
we must have invariance with respect to inversion, which
after all is a crystal symmetry. Thus

F, = [In]'G[Zn] . (65)
This can be written as

Z b€a (my)naGapb™a*Es(my)nj
ap

> &almy)naGapés(my)nj . (66)
afB

F,

Thus we may write

A —a §
F2 — ntr —a* B — n*
pr = C
A 7a* /8*
=n'| o B —v|n, (67)
g - C

where 7tr” indicates transpose (so n'" is a row vector)
Since the two expressions for Fy, Egs. (63) and (67)
must be equal we see that a = ia, § = b, and v = ic
where a, b, and ¢ must be real. Thus G is of the form

3
3

A da b
G = | —ia B ic (68)
b —ic C

where all the letters are real. This means that the critical
eigenvector describing the long range order has to be of
the form

(Ngyny,n.) = €(ris,t) (69)
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Irrep I I's
)\(’my) =|| 79z | _gimaz
a’r | —ia*r

S(a,1) || ia*s a*s
a™t | —ia"t

ar ar

S(q,2) —ias as

at iat

TABLE VII: As Table VI (for TMO), except that here in-
version symmetry is taken into account. Here 7, s, and ¢ are
real. All six components can be multiplied by an overall phase
factor which we have not explicitly written.

where 7, s, and t are real. For I's we set e’® = —i. For I';
a similar calculation again yields Eq. (69), but here we
set €!® = 1. (These choices are not essential. They just
make the symmetry more obvious.) Thus we obtain the
final results given in Table VII. Lautenschlager et al*3
say (just above Table II) “Depending on the choice of the
amplitudes and phases ...” What we see here is that in-
version symmetry fixes the phases without the possibility
of a choice (just as it did for NVO). Note again that we
have about half the variables to fix in a structure deter-
mination when we take advantage of inversion invariance
to fix the phase of the complex structure constants.

1. Order Parameter

Now we discuss the definition of the order parameter
for this system. For this purpose we replace r by or, s
by os. etc., with the normalization that

s +ti=1. (70)

Here the order parameter o is complex because we al-
ways have the freedom to multiply the wavefunction by
a phase factor. (This phase factor might be “locked” by
higher order terms in the free energy, but we do not con-
sider that phenomenon here.*%) We record the symmetry
properties of the order parameter. With our choice of
phases we have

Tou(q) = [ou(@]" .
m,oa(@) = Mo (q)
m,oa(-a) = M) ou(—q) , (71)

where o,(q) is the complex-valued order parameter for
ordering of irrep I', and A(T',,) is the eigenvalue of m,
given in Table VII. Now we write an explicit formula for
the spin distribution in terms of the order parameters of
the two irreps:

Ly
r

n

SR, 7=1)=20y |(r1i+tk)cos(q-R+ ¢ — mq-/2)



EI‘:(-T,yaZ) 2131‘:(’6-1- 7?+%7E)
2. =(Z,7,2+3)
Ir = (7,7,%)

m:r = (’Eyyaz-i- %)

TABLE VIII: General Positions for Pbnm. Notation as in
Table 1.

Mn|l (1) =(0,1,0) (2) = (5,0,0)
3)=(0,3,3) 4)=(5.0,3)

Tb| (5) =(z,9,7) | 6)=(r+3,9+737)
(MN=@353) |®)=F+35y+37)

TABLE IX: Positions of the Magnetic Ions in the Pbnm Struc-
ture of ThMnOs, with z = 0.9836 and y = 0.0810.%7

+s1jsin(q R+ ¢ — 7qu/2)}
+209 [(—7"2% — tg];?) sin(q- R + ¢ — 7q,/2)

+597 cos(q- R+ ¢y — qu/2)] , (72)

S(R, 7=2)=20 (i +tk)cos(a- R+ +7g:/2)
- 51}' sin(q-R + ¢1 + 7rqz/2)}
4205 [(rng' + tz];?) sin(q- R + ¢2 + 7q,/2)

+s2j cos(a- R+ g +7q./2)| (73)
One can explicitly verify that these expressions are con-
sistent with Eq. (71). Note that when only one of the
order parameters (say o,) is nonzero, we have inver-
sion symmetry with respect to a redefined origin where
¢n = 0. For each irrep we have to specify three real
parameters, or,, 0s,, and ot, and one overall phase ¢,,
rather than three complex-valued parameters had we not
invoked inversion symmetry.

B. TbMnOg3

Here we give the full details of the calculations for
TbMnOQOs3 described in Ref. 3. The presentation here
differs cosmetically from that in Ref. 5. The space group
of TbMnOj is Pbnm which is #62 in Ref. 33 (although
the positions are listed there for the Pnma setting). The
space group operations for a general Wyckoff orbit is
given in Table VIII. In Table IX we list the positions
of the Mn and Tb ions within the unit cell and these are
also shown in Fig. 4. The phase diagram for magnetic
fields up to 14T along the a axs is shown in Fig. 5.
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FIG. 4: (Color online). Mn sites (smaller circles, on-line red)
and Tb sites (larger circles, on-line blue) in the primitive unit
cell of TbMnOgs. The Tb sites are in the shaded planes at
z= n:l:% and the Mn sites are in planes z =nor z =n+ %,
where n is an integer. The incommensurate wavevector is
along the b axis. The mirror plane at z = 1/4 is indicated
and the glide plane m, is indicated by the mirror plane at
x = 3/4 followed by a translation (indicated by the arrow) of
b/2 along the y-axis.

To start we study the operations that leave invariant
the wavevector of the incommensurate phase which first
orders as the temperature is lowered. Experimentally*’
this wavevector is found to be (0, ¢, 0), with®® ¢ ~ 0.28.
These relevant operators (see Table VIII) m, and m..
We follow the approach used for MWO, but use “actual
location” Fourier transforms. We set Ry + 7y = r in
order to use Eq. (17) and we need to evaluate

A= exp<2mq-[r[mm]1r)
— exp(2miad i = b)) = e (7
and
N = exp(2mia e~ ] 1))

= eXp<27rq.§' yj — [mz]1y5]> =1. (75)

We list, in Table X the transformation table of sublattice
indices of TMO.

Therefore the eigenvalue condition for transformation
by m, is

S;(anf) = fa(mz)sa(q: T1)A = /\(mz)sa(q: TfI76)

and that for transformation by , is

Sz’x(q= Tf) = &a(m2)Salq, 7)) = A(m.)Sa(q, Tf) (77)
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FIG. 5: Schematic phase diagram for TMO for magnetic fields
up to 14T applied along the a direction, taken from Ref. 48.
Here P is the paramagnetic phase, HTI is the “high tem-
perature” incommensurate phase in which® the moments are
essentially aligned along the b axis with a sinusoidally mod-
ulated amplitude according to irrep I's and LTI is the “low
temperature” incommensurate phase in which® transverse or-
der along the c axis appears to make an elliptically polarized
order parameter wave according to irreps I's and I's. A spon-
taneous polarization P appears only in the LTI phase with P
along thec axis for low magnetic field.?
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TABLE X: Transformation table for sublattice indices of
TMO under various operations.

where fz(mr) = 75y(mr) = 7€z(mz) =1 and fa(mz)
was defined in Eq. (16). From these equations we see
that A(m;) assumes the values A and A(m) the values
+1. Then solving the above equations leads to the results
given in Table XI. (These results look different than
those in Ref. 3 because here the Fourier transforms are
defined relative to the actual positions, whereas in Ref.
3 there they are defined relative to the origin of the unit
cell.)

Now, since the crystal is centrosymmetric, we take
symmetry with respect to spatial inversion, Z, into ac-
count. As before, recall that Z transports the spin to its
spatially inverted position without changing the orienta-
tion of the spin (a pseudovector). The change of position
is equivalent to changing the sign of the wavevector in the
Fourier transform and this is accomplished by complex
conjugation. Since the Mn ions sit at centers of inversion
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Irrep T T I's Ty
A(mg) = +A —A —A +A
[Amo =l +1 | -1 | 41 | -1

ny | Ty | na | nu

S(a, M1) 771?\,, n?w n?w 771?\,,

—ny | "y ny | —ny

niy niy niy niy

S(a, M2) n?w n?w n?w n?w
oy oy L3 nm

—ny | v | niy

S(q, M3) n?w n?w 711?\/, 711?\/,
—ng | —ny | ny iy

—ny | nu | —nu | nu

S(q, M4) 7113’\/, n?w 7113’\/, n?w

ny | —ny | ny | —ny

0 ngq 0 ngq

S(q,T1) 0 nY, 0 nd,
ng, 0 ngq 0

0 —no 0 Nio

S(a,T2) 0 nYy 0 —nb,
—Nipg 0 Ngo 0

0 Nio 0 Nipo

S(a,T3) 0 nhy 0 nby
oo 0 Ny 0

0 —npy 0 ngq

S(a,T4) 0 nb, 0 —nl,
—nipy 0 ngq 0

TABLE XI: Spin functions (i. e. actual position Fourier co-
efficients) within the unit cell of TMO for wavevector (0, ¢, 0)
which are eigenvectors of m, and m. with the eigenvalues
listed, with A = exp(imq). All the parameters are complex-
valued. The irreducible representation (irrep) is labeled as in
Ref. 3. Inversion symmetry is not yet taken into account.
Note that the two Tb orbits, (T1-T4) and (T2-T3), have in-
dependent complex amplitudes.

symmetry, one has, for the Mn sublattices,
Z8(q,n) = S(q,n)", (78)

where the second argument specifies the sublattice, as
in Table IX. In order to discuss the symmetry of the
coordinates we define z; = n%,, zo = nl,, z3 = n§, and
for irreps I'y and I's, 24 = n%, and x5 = n.,, whereas
for irreps Ty and 'y, 24 = n,, 25 = n%,, zg = n%,, and
x7 = nb,. Thus Eq. (78) gives

Tx, = xz , n=1,2 3. (79)

n

For the Tb ions 7 interchanges sublattices #5 and #7
and interchanges sublattices #6 and #8. So we have

78(q,5) = S(q,7)"
78(q,6) = S(qa,8)" . (80)

Therefore we have

*
Ixy = x5,



Now we use the invariance of the free energy under 7
to write
F, = Z Sa(q:X)*anSB(q7Y)
X,a;Y,B8

*
= E Ty GmTm
m,n

= Y [Z2}]Gnm[Tam] , (82)

m,n

where the matrix G is Hermitian and we have implicitly
limited consideration to whichever irrep is active.

For irreps I'; and I's the matrix G in Eq. (82) cou-
ples five variables, z ...z5. Equation (79) implies that
the upper left 3 x 3 submatrix of G (which involves the
variables ... xz3) is real. Equations (79) and (81) imply
that Gp4 = G5, for n = 1,2,3. We thus find that G

assumes the form

a b ¢ a o
b d e B pB*
G = c e f v 9|, (83)
ar BTyt g 4
a B v 0" g

where the Roman letters are real valued and the Greek
are complex valued. As shown in the appendix, the form
of this matrix ensures that the critical eigenvector can be
taken to be of the form

1/} = (n(]l\/h n?w: ni\/]: n%“] 3 n%“] *) = (7", S, t; P p*) ’ (84)
where the Roman letters are real and the Greek ones
complex. Of course, because the vector can be complex,
we should include an overall phase factor (which amounts
to arbitrarily placing the origin of the incommensurate
structure), so that more generally

¢ = €(r,s,t;p,p") . (85)

For irreps I'y and 'y the matrix G in Eq. (82) couples
the seven variables, z; ... z7 listed just above Eq. (79).
Equations (79) and (81) imply that G,4 = G5, and
Gne = Gz forn =1,2,3. Also Eq. (81) implies similar
relations within the lower right 4 x 4 submatrix involving
the variables x4 ...z7. Therefore G assumes the form

(abcaa*ff*-
b d e B " n 7y
c e f v v kK K

G=|a" v g 6§ p v |, (86)
a f oy 6" g v
&k pt v o hop
Lfnﬂ'/*up*h_

where Roman letters are real and Greek are complex.
As shown in the appendix, this form ensures that the
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Irrep T T I's Ty
A(ma) =|| +A —A | A | +A
Ao =l 41 | =1 [+ ] -1 |

r —r —r r
S(a, M1) —5 s s —s
—t t t —t
r r r r
S(Q:MZ) s s s S
t t t t
—r —r r r
S(a, M3) s s —s —s
—t —t t t
—r r —r r
S(a, M4) —s s —s s
t —t t —t
0 T 0 T
S(a,T1) || o o 0 -
p 0 P 0
0 -7 0 T
S(a,T2)|| o o* 0 | —o*
—p" 0 p* 0
0 T* 0 T*
S(a,T3)|| o o* 0o | o
p* 0 p* 0
0 —T 0 T
S(a,T4) || o 0| —0o
—p 0 p 0

TABLE XII: As Table XI. Apart from an overall phase ¢r
for each irrep, inversion symmetry restricts all the manganese
Fourier coefficients to be real and all the Tb coefficients to
have the indicated phase relations.

eigenvectors are of the form

b b b
Y = n?\b”M:”?M:n%1=n%2=mT17nT2)
= e(r,s,t; 7,7, 0,0%) . (87)

These results are summarized in Table XII. Note that
the use of inversion symmetry fixes most of the phases
and relates the amplitudes of the two Th orbits, thereby
eliminating almost half the fitting parameters.?

1. Order Parameters

We now introduce order parameters o,(q) = 0,e'%"
for irrep T',, in terms of which we can write the spin dis-
tribution. For instance under I's one has

S.(r,M1) = —2roscos(qy + ¢3)
Sy(r,M1) = 2so3cos(qy + ¢3)
S.(r,M1) = 2toscos(qy + ¢3)
Sy(r,M2) = 2roscos(qy + ¢3)
Sy(r,M2) = 2so3cos(qy + ¢3)
S.(r,M2) = 2toscos(qy + ¢3)
e(r,T1) = S,(r,T1) =0



S.(r,T1) = 2pozcos(qy + d3 + ¢,)
Se(r,T2) = Sy(r,72) =0
S.(r,T2) = 2pozcos(qy + bz —b,) ,  (88)

where we set p = pei®» and the parameters are normal-
ized by

P+t p = 1. (89)

In Eq. (88) r = (x,y, 2z) is the actual position of the spin
in question. From Table XI one can obtain the symmetry
properties of the order parameters for each irrep. For
instance

meoi(q) = +Aoi(q), m.oi(q) = +0oi(q)
m,o2(q) = —Aoa(q), m.ox(q) = —0o2(q)
myos3(q) = —Aos(q), m.o3(q) =o3(q)
mzo4(q) = +Aos(q), m.o4(q) = —o4(q)(90)
and
Ton(a) = op(a) - (91)

Note that in contrast to the case of NVO, inversion
symmetry does not fix all the phases. However, it
again drastically reduces the number of possible mag-
netic structure parameters which have to be determined.
In particular, it is only by using inversion that one finds
that the magnitudes of the Fourier coefficients of the two
distinct Tb sites have to be the same. Note that if we
choose the origin so that ¢ = 0 (which amounts to re-
naming the origin so that that becomes true), then we
recover inversion symmetry (taking account that inver-
sion interchanges terbium sublattice #3 and #1). One
can determine that the spin structure is inversion invari-
ant when one condenses a single representation.

The experimentally determined structure of the HTI
and LTI phases is described in the caption to Fig. 5 and
numerical values of the structure parameters are given in
Ref. 3.

The result of Table XII applies other manganates
provided their wavevector is also of the form (0, ¢,,0).
This includes DMO,? YMnO3°° and HoMnO3.5':52 Both
these systems order into an incommensurate structure
at about T, ~ 42K. The Y compound has a second
lower-temperature incommensurate phase, whereas the
Ho compound has a lower-temperature commensurate
phase.

C. Tan2 05

The space group of ThMn,O5 (TMO25) is Pbam (#55
in Ref. 33) and its general positions are listed in Table
XIII. The positions of the magnetic ions are given in
Table XIV and are shown in Fig. 6.

We will address the situation just below the ordering
temperature of 43K.’> We take the ordering wavevec-
tor to be® to be (3,0,q) with ¢ ~ 0.306. (This may
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Er = (z,y,2) 2Ir:(m+%,y+%,2)
2. =772 |2,=@+3y+312
Ir = (£,5,2) |mer=(T+3,9+73,2)
m.r = (z,y,Z) |myr=(z+ 3.5+ 1,2)

TABLE XIII: As Table XIII. General Positions for Pbam.

Mn®* (1) = (z,y,0) (2) = (z,%,0)
B)T+35,9y+350 | W= (r+375+3,0)
Mn** (5) = (5,0,2) (6) = (0, 5,2)
(7):(%7072) (8):(01572)
RE 9) = (X,Y,3) (10) = (XY, 1)
() =X+iv+LiHay=(x+1vy+1 1

TABLE XIV: Positions of the magnetic ions of ThMn3O5 in
the Pbam structure. Here z = 0.09, y = —0.15, z = 0.25,°
X =0.14, and Y = 0.17.5*. All these values are taken from
the isostructural compound HoMn,Os.

be an approximate value.?®) (The following calculation
involves a great deal of algebra which may be skipped.
The explicit result for the spin structure is given in Eq.
(123).) Initially we assume that the possible spin config-
urations consistent with a continuous transition at such a
wavevector are eigenvectors of the operators m, and m,
which leave the wavevector invariant. We proceed as for
TMO. We use the unit cell Fourier transforms and write
the eigenvector conditions for transformation by m, as

Sa(q: Tf)l = ga(mz)sa(qa Ti)eiq(rfiRi) = /\mSa(qa 7()9)2)

where 7; and R,; are respectively the sublattice indices
and unit cell locations before transformation and 74 and
Ry are those after transformation. The eigenvalue equa-
tion for transformation by m,, is

Sa(q7 Tf)’ = fa(my)sa((L Ti)eiq(rfiRi) = /\ySa((L 7()9)3)

If one attempts to construct spin functions which are
simultaneously eigenfunctions of m, and m, one finds
that these equations yield no solution. While it is, of
course, true that the operations m, and m, take an
eigenfunction into an eigenfunction, it is only for irreps
of dimension one that the initial and final eigenfunc-
tions are the same, as we have assumed. The present
case, when the wavevector is at the edge of the Bril-
louin zone is analogous to the phenomenon of “sticking”
where, for nonsymmorphic space group (i. e. those hav-
ing a screw axis or a glide plane) the energy bands (or
phonon spectra) have an almost mysterious degeneracy
at the zone boundary®” and the only active irrep has di-
mension two. This means that the symmetry operations
induce transformations within the subspace of pairs of
eigenfunctions. We now determine such pairs of eigen-
functions by a straightforward approach which does not
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FIG. 6: (Color online). Two representations of TbMn2Os.
Top: Mn sites (on-line red) with smaller circles Mn®** and
larger circles ** and Tb sites (squares, on-line blue) in the
primitive unit cell of TbMn,Os. The Mn*t* sites are in the
shaded planes at z = n 4§ with § ~ 0.25 and the Mn™? sites
are in planes z = n, where n is an integer. The Tb ions are in
the planes z = n+ % The glide plane m, is indicated by the
mirror plane at £ = 3/4 followed by a translation (indicated
by the arrow) of b/2 along the y-axis and similarly for the
glide plane m,. Bottom: Perspective view. Here the Mn?+
are inside oxygen pyramids of small balls and the Mn** are
inside oxygen octahedra.

require any knowledge of group theory. Here we explic-
itly consider the symmetries of the matrix x~! for the
quadratic terms in the free energy which here is a 36 x 36
dimensional matrix, which we write as

MGez)  n(zy) N(e2)
x ' = | MeEnt Mo Mo | (94)
IV ICOLRY (COLER Y (€5
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n; || ma mz mzmz P mamyZ
ny |ng | e ||ng| e || ny eid’ ny
1 3 4 1 2 1 2 1 1
2 4 3 1 1 1 1 1 2
3 1 2 -1/ 4| —1 4 -1 3
4 2 1 |1 -1(3] -1 3 -1 4
5 6 6 | 1] 5| —1 7 -1 7
6 5 5 1 6 1 8 1 8
7 8 8 | —1||7| -1 5 -1 5
8 7 7 1 81 1 6 1 6
9 11 12 1 100 1 10 1 9
10 || 12 11 1 9 1 9 1 10
11 9 10 | —1 (|12 —1 || 12 —1 11
12| 10 9 =1 ({11 —1 11 -1 12

TABLE XV: Transformation table for sublattice indices with
associated factors for TMO25 under various operations. as
defined by Eq. (20). For mg, one has expliq- (R — R;)] =
1 for all cases and for m,myZ the analogous factor is +1
in all cases and this operator relates So(q,7) and Sa(q,7)".
NOTE: This table does not include the factor of £, (O) which
may be associated with an operation.

a) ¢ = q- (Ry — Ri), as required by Eq. (19).

b) ' =q- (7i + Ty), as required by Eq. (22).

where M(Y) is a 12 dimensional submatrix which de-
scribes coupling between a-component and b-component
spins and is indexed by sublattice indices 7 and 7' The
symmetries we invoke are operations of the screw axes,
m, and m, which conserve wavevector (to within a re-
ciprocal lattice vector), and Z, whose effect is usually
ignored. To guide the reader through the ensuing cal-
culation we summarize the main steps. We first ana-
lyze separately the sectors involving the z, y, and z spin
components. We develop a unitary transformation which
takes M(®®) into a matrix all of whose elements are real.
This fixes the phases within the 12 dimensional space
of the a spin components within the unit cell (assuming
these relations are not invalidated by the form of M(®5)
with @ # ). The relative phases between different spin
components is fixed by showing that the unitary transfor-
mation introduced above leads to M(*¥) having all real-
valued matrix elements and M(*#) and M(¥*) having all
purely imaginary matrix elements. The conclusion, then,
is that the phases in the sectors of  and y components
are coupled in phase and the sector of z components are
out of phase with the z and y components.

1. = Components

As a preliminary, in Table XV we list the effect of
the symmetry operations on the sublattice index. When
these symmetries are used, one finds the 12 x 12 sub-

matrix of M(*%) which couples only the z-components of



spins assumes the form

A g h 0 «a Jé] «a B
g A 0 —h | —«a B | —a* pB* b a —d -—c
h 0 A g B o B* a* c a b
0 —-h g A B —a | 85 —a*|—-d —c b a
a* —a* B* pB* B 0 € 0 vy =y 4 8
B* B a* —a” 0 B 0 € é 8 ¥y -
a —-a f B e* 0 B 0 |~ —~% 6%
B B a —a 0 €* 0 B |6 & % —v*
a b c  —d | v &* % 1) C e f 0
b a d —c |—y" 6 — é e C 0 —f
¢ —d a b 6" v é 1o f 0 C e J
U d —c b a 6 - é -y |0 —f e C

where Roman letters are real quantities and Greek ones
complex. (In this matrix the lines are used to separate
different Wyckoff orbits.) The numbering of the rows and
columns follows from Table XIV. I give a few examples
of how symmetry is used to get this form. Consider the
term T, where

I = xiéSI(*q, 1)S2(q,5) . (96)
Using Table XV we transform this by m, into

which says that the 1,5 matrix element is equal to the
3,6 matrix element. (Note that in writing down 7] we
did not need to worry about &, since this factor comes
in squared as unity.) Likewise if we transform by m, we
get

Tll = X;5] [_Sac(_qz 4)][595((] 6)] s (98)

which says that the 1,5 matrix element is equal to the
negative of the 4,6 matrix element. If we transform by
mgm, we get

T = x1508:(~a,2)][-Sa(a.5)] , (99)

which says that the 1,5 matrix element is equal to the
negative of the 2,5 matrix element. To illustrate the effect
of Z on T} we write

T = X158, 2][-S:(-a,7)],  (100)
so that the 1,5 element is the negative of the 7,2 element.
From the form of the matrix in Eq. (95) (or equivalently
referring to Table XXIII in Appendix B), we see that we

bring this matrix into block diagonal form by introducing
the wavefunctions for S, (q, 7),

= 123 4|5 6|7 89 10 11 12
v20"Y =1 0 1 oo ojo oo 0 0 o0
v20{ Y =|lo 1 0 1o 0j0o oo 0 o o
208 = |loo o oft 1|1 1)0 0 0 o0 (101)
20" = |lo o 0 0|i i|]-i —ij0o 0 0 o0
V20 =|lo o o oo ojo o1 0 1 o0
v20{";" =|[o 0o 0 ojo 0] o ojo 1 0 1

(95)
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The superscripts a,n on O label, respectively, the Carte-
sian component and the column of the irrep accord-
ing to which the wavefunction transforms. The sub-
scripts m, 7 label, respectively, the index number of the
wavefunction and the sublattice label. Let Op™ be a

. a,n a,n a,n
vector with components O,%", O, , ... O,7,. Then

(O M0 |05y = (n)|ME)|m) is

A4+ h g o +5' | =o' - 8" a+c b+d
g A—h |8 —a'| o' —p5" b—d a—c
a/ + BI B/ _ a/ B + 6/ 677 6/ + ’Y’ 6/ _ 'Y, (102)
7&” _ BII a” _ BH 6” B _ EI 6” +,yll 6// _ 'Y”
a+c b—d 5'+’y' 5"+’y” CH+f e
b+ d a—c 8 —A" | 8 — A" e c—f

where the coefficients are separated into real and imag-
inary parts as vV2a = o + ia, V26 = B+ if"
V2y = 4" + i7", and V26 = §' + i8". There are no
nonzero matrix elements between wavefunctions which
transform according to different columns of the irrep.
The partners of these functions can be found from
o2 — myo(%l) :

n n

(103)

so that, using Table XV and including the factor &,, we
get

= 12 3 4[5 6/7 8[910 11 12
v20"P =llo 1 0 —-1]0 o0 of0o 0 0 ©
v20{"® =|lt 0 -1 0|0 of0 o0fo 0 0 o0
208 = loo 0 0 |-11]-1 1]0 0 0 0 [{(104)
20 = Jloo 0o o |-i i|i —ijo 0 0 o0
vzol"? =llo o 0 o 0 01 0 —1
v20{"* =llo o 0 o 0| o 10 -1 0

Within this subspace the matrix (n|M (#%)|m) is the same
as in Eq. (102) because

(n|my ' M my|lm) = (n|M")|m) . (105)

These functions transform as expected for a two di-
mensional irrep, namely,

Oglz,l) Oglm,l)

My O%zg) = 70%@2)

O’Elz,l) 051172)

my Oglzg) = *ngz’])
We will refer to the transformed coordinates of Egs.
(101) and (104) as “symmetry adapted coordinates.”
The fact that the model-specific matrix that couples
them is real, means that the critical eigenvector is a lin-

ear combination of symmetry adapted coordinates with
real coefficients.

(106)

2. y Components

The 12 x 12 matrix M®¥) coupling y components of
spin has exactly the same form as that given in Eq. (95),



although the values of the constants are unrelated. This
is because here one has £2 = 1 in place of £, = 1. There-
fore the associated wavefunctions can be expressed just
asin Egs. (101) and (104) except that all the superscripts
are changed from z to y and 7 now labels S, (q, 7). How-
ever, the transformation of the y components rather than
the x components, requires replacing &, by &, which in-
duces sign changes, so that

O(n%l) B _0(ny11)
Mol ow2 | = | o2
O(ny’l) 70(ny:2)
my o) ol (107)

We want to construct wavefunctions in this sector which
transform just like the x components, so that they can
be appropriately combined with the wavefunctions for
the x-components. In view of Eq. (106) we set
oWw:2) — ol=1)

n,t n,t

ow = O (108)

So the coefficients for O are given by Eq. (104) and

those for 01" by Eq. (101). These wavefunctions are
constructed to transform exactly as those for the x com-
ponents.

3. z Components

Similarly, we consider the effect of the transformations
of the z components. In this case we take account of the

factor &, to get
ngz’l) _Oglz,l)
My 022,2) 022,2)
O'Ezz’l) 0512,2)
my 022,2) = 7022,1)
We now construct wavefunctions in this sector which

transform just like the x components. In view of Eq.
(106) we set

(109)

021):O(z2), 0(22):_0z1)=

s s s
n,t n,t T

(110)

So the coefficients for 05" are given by Eq. (104)

and those for O(nZ’Q) are the negatives of those of Eq.
(101). These wavefunctions are constructed to transform
exactly as those for the z components.

4. The Total Wavefunction and Order Parameters

Now we analyze the form of M(¢®) of Eq. (94) for a # b,
using inversion symmetry. To do this it is convenient to
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invoke invariance under the symmetry operation m,m,T
whose effect is given in Table XV. We write

mamyLSa(q,7) = &a(ma)éa(my)
xS (q, RT)*

where Rt = 7 for 7 # 5,6,7,8, otherwise Rt = 7 + 2
within the remaining sector of 7’s and a (and later b)
denotes one of z, y, and z. Thus

(111)

T = So(q.7) M8,y (q,7)
= [mzmyzsa(qzT)]*M(ab)[mmmyzsb(qﬂ—’)]

77!

= CupSala, RT)IM) Sy(a, RT)* (112)
where
Cav = &al(ma)&a(my)&e(ma)&e(my) . (113)
From the last line of Eq. (112) we deduce that
My or = CapM ), (114)
or, since M is Hermitian that
M = o, [M@TVR,H, (115)

Now we consider the matrices M(®) in the symmetry
adapted representation where

M(ab) — Z[O#I)_]*M(ab)obp,

n,m TT' mT

S Cul022)* [M;;EZTR,H,] o,

Cur 3105, 1 [ML0)] O, - (116)

There are no matrix elements connecting p and p’ # p
and the result is independent of p. One can verify from
Egs. (101) and (104) that

On'r, = (O], (117)
so that
miet) = cu(loz aietolr, )
= Cup [M22]7 . (118)

We have that C,, = —C,. = —C,, = 1, so that all the
elements of M(“%) are real and all the elements of M(*?)
and M(¥2) are imaginary. Thus apart from an over all
phase for the eigenfunction of each column, the phases of
all the Fourier coefficients are fixed. What this means is
that the critical eigenvector can be written as

6
(ES Z op Z (rmofﬂ’) + rnyO;y’p)
p=1 n=1

+irnzOSf’p)> , (119)



Spin o1 oo Spin o1 oo
Tle Top Zy —zy

S(qa 1) Ty T2y S(q7 7) —Z; Z;

iri. irs. iz iz

T2g Tz zy zy

S(q,2) T2y Ty S(q,8) z,, z,,

—ira, | —ir1. —iz, iz

Tix —T2z Tsx T6x

S(qa,3) —T1y T2y S(q,9) T'sy T'ey
72'7"12 ir22 ir52 iTGz

T2z —T1z T6x T'sx

S(qa 4) —T2y Ty S(q7 10) Tey T'sy
2. | —iT1, —iT6. | —iTs5;
2z —Zg T5z —Téx

S(a,5)|| —z 2y S(q, 11)|| —rsy | rey
12, 12z —iT5: | T6z
2z 2z T6x —T'sz

S(qa 6) Zy Zy S(q7 12) —Té6y sy
—12, 12, 6 —1irs5,

TABLE XVI: Normalized spin functions (i. e. Fourier co-
efficients) within the unit cell of TbhMn2QOs5 for wavevector
(%,O,q). Here zo = (rsa + ir4a)/\/§. All the r’s are real
variables. The wavefunction listed under o1 (o2) transforms
according to the first (second) column of the irrep. The ac-
tual spin structure is a linear combination of the two columns
with arbitrary complex coefficients.

where the r’s are all real-valued and are normalized by

> Sl = 1.

n=1 «o

(120)

and o, are arbitrary complex numbers. Thus we have

the result of Table XVI.
The order parameters are

i61

o1 = 01 (o) 50267“’2 . (121)

Neither the relative magnitudes of o; and o, nor their
phases are fixed by the quadratic terms within the Lan-
dau expansion. Note that the structure parameters of Ta-
ble XVI are determined by the microscopic interactions
which determine the matrix elements in the quadratic
free energy. (Since these are usually not well known, one
has recourse to a symmetry analysis.) The direction in
o0 1-09 space which the system assumes, is determined by
fourth or higher-order terms in the Landau expansion.
Since not much is known about these terms, this direc-
tion is reasonably treated as a parameter to be extracted
from the experimental data. We use Table XVI to write
the most general spin functions consistent with crystal
symmetry. For instance we write

1 . . o
S(R,1) = Sou[riei +1y) + irkle R 4 coc.
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1 . . .
+ 502[7»“1' + 1oy J +ira kle TR 4 e (122)

Using this and similar equations for the other sublattices
we find that

S(R,1) = o [(mﬂmy})cos(q-Rm])
+r1.ksin(q- R+ ¢1)]
0 [(rasi + 2] cos(@ - R + ¢2)
+ro.ksin(q- R+ qﬁz)]

S(R.2) = o1 [(rasi + 129]) cos(a- R+ 1)
—raksin(a- R+ 61)]
+02 | (r1a + 1] cos(a R+ o)
—r1.ksin(q- R + qﬁz)]

S(R,3) = o1 [(rizi — r1,j) cos(a- R+ 1)
—ri:ksin(q- R+ qsl)}
02 (=722 + 2] cos(@ R+ 6)

+r22fcsin(q R+ (;52)]

S(R,4) = o |:(7“21% — 79,7) cos(q - R+ ¢1)
+ro.ksin(q- R+ (;51)]
+0o3 [(*leg + le.;] cos(q - R + ¢2)
—ri.k sin(q-R + gi)z)}

S(R,5) = o [(z;i - z;j —2"k) cos(q- R+ ¢1)
(=i — 2] + 2 k)sin(q- R + ¢1)}
+09 [(fz;% + z,’ﬁ — 2"k] cos(q- R + ¢s)
+(—2"i + Z?'J']A + 2 k)sin(q - R + ¢2)]

S(Re) = o1 [(z4i +2pj + 2/k) cos(a- R + 1)

+(2"i + z,’f}z — z;iz) sin(q- R+ ¢1)}
+09 [(2;2 + z;j — 2"k] cos(q - R + ¢)
+(2i + z;'f + 2 k)sin(q- R + ¢2)}
S(R,T) = a1 [(z)i — 2}j + 2k) cos(a- R + 1)
+(—2"i + Z?'J']A + 2 k) sin(q - R + ¢ )]
+03 [(72;2 + 2,) + 2"k cos(q - R + ¢2)

+(z;'zA' — z;'a + z;ic) sin(q- R + (;52)}



S(Rg) = o1 [(2;5 + z;} - z;'lAc) cos(q R+ ¢1)
+(72ﬁ — 21'1’3 — z;lfc) sin(q- R + ¢1)}
+09 [(zﬁ + 2,7 + 2"k] cos(q - R + ¢)
(=i = 2j + 2k sin(a - R+ )]

S(R,9) = o1 [(rsai +75y)) cos(a- R+ 6)

+rs.ksin(q- R+ ¢1)]
+09 [(rﬁw% + 76,7] cos(q - R + ¢)
+rg.ksin(q- R + ¢2)}

S(R,10) = oy [(rﬁw% + 76,7) cos(q- R+ ¢1)
—rg.ksin(q- R + ¢1)]
+05 | (s +75,5] cos(a - R + 62)
—rs.ksin(q-R + ¢2)}

S(R,11) = oy [(r5w% —75,7) cos(q- R+ ¢1)
—rs.k sin(q-R + ¢1)]
+09 [(—rGsz' + 76y7] cos(q - R + ¢)
+rg-ksin(q- R + ¢2)]

S(R,12) = 1 [(resi — eyd) cos(a- R+ 61)
+rg-ksin(q- R + ¢1)}
+09 [(—7"5sz' + 75,7] cos(q - R + ¢)

2 sin(q- R + (152)]
(123)
In Table XVI the position of each spin is R + 7,,, where
the 7 are listed in Table XIV and R is a Bravais lattice

vector. The symmetry properties of the order parameters
are

(o] (o]
My =
(o) —02
o1 (o)
My =
(o) —01
[ o1 ] [ o
7 = |72 (124)
o2 o}

We now check a few representative cases of the above
transformation. If we apply m, to S(q,1) we do not
change the signs of the z component but do change the
signs of the y and z components. As a result we get
S(q,3) except that o, has changed sign, in agreement
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with the first line of Eq. (124). If we apply m, to S(q, 1)
we do not change the sign of the y component but do
change the signs of the x and z components. As a result
we get S(q,4) except that now o is replaced by o4 and
o4 is replaced by o1, in agreement with the second line
of Eq. (124). When inversion is applied to S(q, 1) we
change the sign of R but not the orientation of the spins
which are pseudovectors. We then obtain S(q, 2) provid-
ing we replace o1 by g5 and o, by o7, in agreement with
the last line of Eq. (124).

5. Comparison to Group Theory

Here I briefly compare the above calculation to the one
using the standard formulation of representation theory.
The first step in the standard formulation is to find the
irreps of the group of the wavevector. The easiest way
to do this is to introduce a double group having eight
elements (see Appendix B) since we need to take account
of the operator m? = —F. (This is done in Appendix B.)
From this one finds that each Wyckoff orbit and each spin
component can be considered separately (since they do
not transform into one another under the operations we
consider). Then, in every case the only irrep that appears
is the two dimensional one for which we set

My = 1o my = 01 mym, = 01125)
0 -1 -10 10

Indeed, one can verify that the functions in the sec-
ond (third) column of Table XVI comprise a basis vec-
tor for column one (two) of this two dimensional irrep.
One might ask: “Why have we undertaken the ugly de-
tailed consideration of the matrix for F»?” The point is
that within standard representation theory all the vari-
ables in Table XVI would be independently assigned ar-
bitrary phases. In addition, the amplitudes for the Tb or-
bits (sublattices #5, #6 and sublattices #7, #8) would
have independent amplitudes. To get the results actually
shown in Table XVI one would have to do the equivalent
of analyzing the effect of inversion invariance of the free
energy. This task would be a very technical exercise in
the arcane aspects of group theory which here we avoid
by an exercise in algebra, which though messy, is ba-
sically high school math. I also warn the reader that
canned programs to perform the standard representation
analysis can not always be relied upon to be correct. It is
worth noting that published papers dealing with TMO25
have not invoked inversion symmetry. For instance in
Ref. 55 one sees the statement “As in the incommensu-
rate case[3], each of the magnetic atoms in the unit cell is
allowed to have an independent SDW, i. e., its own am-
plitude and phase,” and later on in Ref. 56 “all phases
were subsequently fixed ... to be rational fractions of 7.”
Use of the present theory would eliminate most of the
phases and would relate the two distinct Mn*t Wyckoff
orbits (just as happened for TMO).



Finally, to see the effect of inversion on a concrete level
I consider the upper right and lower left 4 x 4 submatrices
of M%) which are denoted My, and My, respectively.
If we do not use inversion symmetry (this amounts to
following the usual group theoretical formulation) these
matrices assume the form

a b ¢ d
M, — b a —-d —c 7
¢c d a b
—d —¢ b a
CL* b* C* *d*
M, — b* a* d¥ —c 7 (126)

¢ —d* a* b*

da* —c* b* a*

where now all these parameters are complez valued. (Pre-
viously, in Eq. (95) all these parameters were real-
valued.) From these results one could again introduce
the wavefunctions of Eq. (101). However, in this case,
the matrix elements appearing in the analog of Eq. (102)
would not be real. In fact, Eq. (126) indicates in Eq.
(102) the quantities a, b, ¢, and d in the upper right sec-
tor of the matrix would be complex and those in the lower
left sector would be replaced by their complex conjugates
(to ensure Hermiticity). Thus invoking inversion symme-
try does not change the symmetry adapted coordinates
of Eq. (101). Rather it fixes the phases so that the result
can be expressed in terms of real-valued parameters, as
we have done in Table XVI.

6. Comparison to YMnoOs

YMn, 05 (YMO25) is isostructural to TM025, so its
magnetic structure is relevant to the present discussion.
I will consider the highest temperature magnetically or-
dered phase, which appears between about 20K and 45K.
In this compound Y is nonmagnetic and in the higher-
temperature ordered phase ¢, = 1/4, so the system is
commensurate. But since the value of ¢, is not special,
the symmetry of this state is essentially the same as that
of TMO25. Throughout this subsection the structural
information is taken from Fig. 2 of Ref. 58. (The up-
permost panel is mislabeled and is obviously the one we
want for the highest temperature ordered phase.)

From Fig. 7 we see that the spin wavefunction is an
eigenvector of m, with eigenvalue —1. So this structure
must be that of the second column of the irrep. In accor-
dance with this identification one sees that the initial
wavefunction is orthogonal to the wavefunction trans-
formed by m, (since this transformation will produce a
wavefunction associated with the first column). Refer-
ring to Eq. (123), one sees that to describe the pattern

of Mn?* spins one chooses

g1 = 07 T'Qz:—leNO.957

(127)

Ty = —Toy & 0.3.
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FIG. 7: (Color online). Top: The spin structure of the Mn**
ions in YMn»Oj (limited to one a-b pane), taken from Fig.
2 of Ref. 58. The sublattices are labeled in our convention.
Bottom left: the spin structure of after transformation by m,.
Bottom right: spin structure of TbMn»QOj after transforma-
tion by my.

The point we make here is that o1 = 0. Although the
values of these order parameters were not given in Ref.
58, it seems clear that in the lower temperature phase
the order parameters must be comparable in magnitude.

D. CuFeO:

The magnetic phase diagram of CuFeOs has been in-
vestigated continually over the last decade or so. Early
studies®® 9 showed a rich phase diagram and these com-
bined with magneto-electric data!® led to the phase dia-
gram for magnetic fields up to about 15T given in Ref.
10 which is reproduced in Fig. 8.

Above Tho = 10K, the crystal structure is that
of space group of R3m® (#166 in Ref. 33). Be-
low that temperature there is apparently a very small
lattice distortion which gives rise to a lower symme-
try crystal structure.f?%3 However, since this distortion
may not be essential to explaining the appearance of
ferroelectricity,® we will ignore the presence of this lat-
tice distortion. The general positions of ions within space
group R3m is given in Table XVII.

Our analysis is based on the following logic referred
to the phase diagram of Fig. 8. We assume that as
the temperature is lowered in a magnetic field of about
10T, the continuous transition from the paramagnetic
phase to the collinear incommensurate (CIC) phase intro-
duces a single irrep which we will identify by our simple
method. Then further lowering of the temperature will
introduce a second irrep, taking us into the noncollinear
incommensurate (NIC) phase whose symmetry and fer-
roelectricity we wish to discuss. Both these phases are
characterized by an incommensurate wavevector along a
hexagonal < 110 > direction, which is the direction to a
nearest neighbor in the triangular lattice plane, as shown
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FIG. 8: (Color online) Temperature (7") versus magnetic field
(B) phase diagram of CuFeO» with B applied along the c
axis from Kimura et al.'® The upper inset shows the crystal
structure of CuFeQO» and the lower insets show the magnetic
structure of the commensurate states, where white and black
circles correspond to the positive and negative ¢ directions.
Note in the lower left inset that the hexagonal < 110 > direc-
tion (along which ¢ is oriented) is a nearest neighbor direction.

Er = (z,y,2) 3r = (z,2,y) 3%r = (y,2,z)

mar = (y,x, 2) mor = (z,y,x) mir = (x,2,y)

Ir = (T, 7, %) I3r = (2,Z,7) |ZI3%r=(7,%,%)
Imsr = (y,%,2z) |Zmor = (2,¥,Z) |Zmir = (T,Z,7)

TABLE XVII: General Positions for R3m, with respect to
rhombohedral axes, a,,, where a1 = —(a/2)i — (av/3/6)] + ck,
as = (a/2)i — (aV/3/6)] + ck, a3 = (aV/3/3)] + ck, where ¢ is
the distance between neighbors planes of Fe ions and a is the
separation between nearest neighbors in the plane. Here ”3”
denotes a three-fold rotation and m, labels the three mirror
planes which contain the three-fold axis and a,,.

in Fig. 8. As mentioned, although in principle the lat-
tice distortion does break the three-fold symmetry, we
will assume that the three states which are related by
the three-fold rotation have only slightly different ener-
gies in the distorted structure and our arguments have
to be understood in that sense.

We assume the R3m space group and are interested
in structures associated with a wavevector in the star
of q1 =< ¢,q,0 > (referred to hexagonal axes). These
wavevectors are parallel to a nearest neighbor vectors of
the triangular plane of Fe ions. Consider the wavevector
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a1 = ¢i. The only operation (other than the identity)
that conserves wavevector is 2, a two-fold rotation about
the axis of the wavevector. Clearly the Fourier compo-
nent mg(q) obeys

22ma(qr) = M22)ma (a1) (128)

with A(2,) = 1. and we call this irrep I';. For irrep I's
we have

2;my(@i) =

2;mz(a1) = M2z)m:(ai) , (129)

but with A\(2,) = —1. So far, the phases of the complex
Fourier coefficients are not fixed. We have the transfor-
mation properties

2,09 (a1) = —o2(a1)
Zoz(qi) = [o2(q1)]" (130)

2;01(q1) = o1(a1) ,
Zoi(qi) = [oi(a1)]”

To fix the phases in irrep I's we note that its quadratic
free energy can be expressed as

Fy = Apmy(qu)” + Blm:(a)|” + Cmy (a1) m (a1)
+C"m (i) my(a1) , (131)

where A and B are real and C' is complex. Using the fact
that F5 must be invariant under Z, we write

F, = A‘my(ql)‘Z + B|m2(q1)|2 + Cm(qi)m.(a1)"
+C*m(qi)my(ai)” . (132)

Comparing this with Eq. (131) we conclude that C' has
to be real. Since the m’s can be complex, this means that
the two components of the eigenvector of the quadratic
form [i. e. my(qi) and m;(q1)] have to have the same
complex phase.

We now introduce order parameters which describe the
magnitude and phase of these two symmetry labels (ir-
reps) which make up the wavefunction. When both irreps
are present, one has

mz(a1) = oi(ai) (133)

and

m(q1) = o2(qi)s , (134)

where 72 + 52 = 1 and o,(£|qx|) = o.et. (Note
that the phases ¢,, are fixed by the fourth order terms
in the free energy to be the same for all members of the
star of the wavevector.) Thus, when both irreps (of q)
are present, we have (redefining the order parameters to
remove a factor of 2)

my(q1) = oa(aq)r,

= o1(a) cos(gz + ¢1)
= oa(qu)rcos(qr + ¢2)

m,(r) = oa(qr)scos(qgr + ¢2) , (135)

where ¢ = |q1].



We apply these results as follows. As one lowers the
temperature from the paramagnetic phase we assume
that we first enter the CIC which has the spins pre-
dominantly along the z-axis. Therefore, in this phase
we assume that only irrep I's is active. Notice that in
this phase the spins will not lie exactly along the z-axis.
Indeed, recent work®® indicates that this phase is one in
which the amplitudes are sinusoidally modulated and the
spins are oriented in the y — z plane (as described by irrep
['y) with my/m. (i. e. r/s) between 0 and about 0.2.

Lowering the temperature still further leads to the NIC
phase in which both irreps I's and I'; are active. The
literature seems to be rather uncertain as to the actual
structure of this phase. However, one possibility, seem-
ingly not mentioned up to now, is that application of a
magnetic field to the collinear-commensurate (1/4) state,
could essentially give rise to a spin-flop transition so that
the spins, instead of being aligned along the hexagonal ¢
axis, would rotate to being nearly perpendicular to the
c axis. This observation would suggest that if we ignore
the lattice distortion, we would expect to have an in-
commensurate state with the spins elliptically polarized
in a plane nearly (but not exactly) perpendicular to the
hexagonal ¢ axis. Such a state is consistent with Eq.
(135) providing |¢2 — ¢1]| = w/2. It does have to be ad-
mitted that the spin-flop field field of about 10T is rather
large for an L = 0 ion like Fe?* whose anisotropy could
be expected to be small.

So far we have considered only two of the vectors q
and —qq, of the star of the wavevector. However, the
Landau expansion should treat all wavevectors in the star
symmetrically, since at quadratic order the system can
equally well condense into any of the wavevectors of the
star. So we write the quadratic free energy F, as

3

Fy = Z(al(H;T”Ul(qn)2+042(H,T)|0'2(qn)?(?36)

n=1

When the temperature is lowered at a magnetic field of
about 10T along the z axis, the coefficient ay(H,T") first
passes through zero and only one of the order parameters
02(q,) becomes nonzero. At lower temperature a, (H,T)
passes through zero and one enters a phase in which both
01(an) and o3(qy,) become nonzero. Within Landau the-
ory, it is possible to realize a phase in which two or three
noncollinear wavevectors simultaneously become unsta-
ble. However, since such “double q” or “triple q” states
are not realized for CFO, we will not analyze this possibil-
ity further than to say that the fourth order terms must
be such as to stabilize states having a single wavevector.

The ferroelectric phase of interest is one in which
o1(qn) and o2(q,) are nonzero for a single value of n.
(The value of n represents a broken symmetry.) For fu-
ture reference we note that at zero applied electric and
magnetic fields the free energy must be invariant un-
der taking either o7 or o into its negative. Finally,
we record how order parameters corresponding to differ-
ent wavevectors of the star are related by the three-fold

23

Space group || G1|G2|G3
P3m1 T |2
P3 7

R
R

TABLE XVIII: Generators G, of rotational symmetry for
the symmorphic space groups of REMO. Here R is a rotation
through 27/3 about the positive c axis and 2, is a two fold
rotation about the a axis, as in Fig. 9.

rotation, 3:

Bou(q) = on(qz) ,  3%0n(a1) =onlqs) . (137)

However, the spins distribution corresponding to these
order parameters of the other wavevectors are the rotated
version of the spin structure, so that if we consider the
ordering wavevector q; we have
~[on(a2)/2] cos(—qz/2 — qyV/3/2 + 1)
~[V303(a2)r/2] cos(—qz — qyV/3/2 + )
my(r) = —loa(@)r/2)(—qz/2 — qyV3/2 + ¢2)
+1V301(a2)/2)(—g2/2 — qyV/3/2 + 1)
m.(r) = oa(qz)scos(—qz/2 — quvV/3/2+ ¢o) . (138)

m(r)

To summarize: representation theory usefully restricts
the possibly spin structures one can obtain via one or
more continuous phase transitions. Recognition of this
fact might have saved a lot of experimental effort in de-
termining the spin structures of CuFeQs,.

E. RbFe(MoO4),

In this section we elaborate on a briefer presenta-
tion of the symmetry analysis given previously® for
RbFe(MoOy4)2 (RFMO). This symmetry analysis is con-
sistent with the microscopic model of interaction pro-
posed by Gasparovic.56 RFMO consists of two dimen-
sional triangular lattice layers of Fe spin 5/2 ions (per-
pendicular to the crystal ¢ axis) such that adjacent lay-
ers are stacked directly over one another. These layers of
magnetic ions are separated by oxygen tetrahedra which
surround an Mo ion. At room temperature the crystal
structure is P3m1 (# 164 in Ref. 33), but at 180K a
small lattice distortion leads to the lower symmetry P3
(# 147 in Ref. 33) structure,%% whose general lattice po-
sitions are specified in Table XVIII, and the structure is
shown in Fig. 9. The low-temperature structure differs
from that above T' = 180K by not having the two-fold
rotation about the crystal a axis. As we will explain,
this loss of symmetry has important consequences for the
magnetic structure.56

We now discuss the magnetic structure of RFMO.
A schematic We now discuss the magnetic structure of
RFMO. A schematic magnetic phase diagram for mag-
netic fields of up to about 10T along the c axis is show



FIG. 9: (Color online). The unit cell of RFMO in the P3
phase. The large balls (online pink) represent the magnetic
Fe ions, the small balls (online blue) oxygen ions, and each
tetrahedron (online green) contains a Mo ion. For clarity the
Rb ion (which sits between the two tetrahedra) is not shown.
The in-plane antiferromagnetic interaction J is dominant. In
the high-temperature P3m1 phase .J3 = .J4 but in the presence
of the lattice distortion to the P3 phase Js # Jy .56

15
e ICAF

S

[}

i 10 CAF P
L

9] \

c

S IC-TRI

= Pl c

Temperature (K) 4

FIG. 10: A schematic phase diagram of RFMO for magnetic
fields of up to about 10T along the c axis, based on Refs. 8,66
69 Here P is the paramagnetic phase, IC-TRI is an incommen-
surate phase described in the text in which each plane con-
sists of the so-called 120° triangular lattice structure. CAF
is a commensurate antiferromagnet phase, and ICAF an in-
commensurate antiferromagnetic phase, neither of which are
discussed in the present paper. We omit reference to subtle
phase distinctions discussed in Refs. 67 and 68

in Fig. 10. The magnetic anisotropy is such that all
the spins lie in the basal plane perpendicular to the
c axis. The dominant interactions responsible for long
range magnetic order are antiferromagnetic interactions
between nearest neighbors in a given basal plane which
give rise to the the so-called 120° structure, shown in
Fig. 11 in which the angle between all nearest neighbor-
ing spins in a basal plane is 120°.67:68
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FIG. 11: (Color online) The 120° phase of a triangular lattice.
The orientations of the spins are given by the phase ¢(r),
defined in Eq. (156), below, for q.z+ ¢ = 0. The dashed lines
indicate the two-dimensional unit cell. The plus and minus
signs indicate whether the oxygen tetrahedron closest to the
center of the triangle is above (plus) or below (minus) the
plane of the paper.
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FIG. 12: (Color online). Helical spin structure of RFMO. As
one moves from one triangular lattice plane to the next the
spins are rotated through an angle 166°.%:5¢

Here we will be mainly interested in the properties of
the phase which occurs for magnetic fields of less than
about 3T. Neutron diffraction® % confirms that in this
phase each triangular layer orders into a phase in which
the angle between the direction of adjacent spins is 120°.
Neutron diffraction®%6 also indicated that from one tri-
angular layer to the next the spins are rotated through
an angle A¢ = 166°,355 as shown in Fig. 12. This phase
lacks inversion symmetry and is ferroelectric.® In that
reference the order parameters which describe the mag-
netic ordering are discussed and we give the analysis in
more detail here.
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FIG. 13: (Color online). The first Brillouin zone (the

hexagon) and the reciprocal lattice (the dots) for a triangular
lattice. The points labeled X; are all equivalent and simi-
larly for the points labeled X». Here |X,| = 47/(v/3a). The
reciprocal lattice is rotated by 30° with respect to the direct
lattice. In reciprocal lattice units X» = (1/3,1/3,0).

We now discuss the wavevectors which generate this
magnetic structure. The 120° magnetic structure of a tri-
angular lattice is generated by wavevectors at the corners
of the two-dimensional Brillouin zone, which is shown in
Fig. 13. Note that the corners of the zone labeled X,
having the same n are equivalent to one another because
they differ by a vector of the reciprocal lattice. How-
ever X; and X, although the negatives of one another,
are distinct. The incommensurate low field phase is thus
characterized by the wavevectors

where the component of wavevector along ¢ describes the
twisting of the spins as one moves along the ¢ axis via
A¢ = q.c, where c¢ is the interlayer separation. It is
clear that for either of the two relevant space groups the
only operation (other than the identity) that conserves
wavevector is K. The Fourier coefficients of the spin will
be eigenvectors of R with eigenvalue A(R) and we list
these in Table XIX.

Irrep||T1| T2 |3

AR 1] p | p
S |0 S [SL
s, |lo|-is.|is.
S. SH 0 0

TABLE XIX: Complex-valued Fourier components S(q) for

the various irreps. Here p = e2™/3,
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The Fourier amplitude S(q) is defined by

S(r) = S(q)e T . (140)
The allowed complex-valued Fourier amplitudes S(q) for
each irrep are given in Table XIX. We now verify the
results given in Table XIX. To do this we need to know
what effect the three-fold rotation R has on the Fourier
coefficient S(q). Let primes denote the value of quantities
after transformation by R and unprimed quantities the
quantities before transformation. We write

(q)e T .

Thus, if we can determine how S(r)and r transform into
S'(r") and r', respectively, we can use this relation to infer
how S(q) transforms. For this discussion we introduce
the notation that Rg rotates only the spin and R, rotates
only the position, so that

S'(r)y =S (141)

R = RsR, . (142)

Note that after transformation the spin at r’ will be the
rotated version of the spin that was at r. Therefore
S'(r') = RsS(r) = [RsS(q)je @™ .  (143)
But
qr =q R 'M]=[Rq t'=q-1r" . (144)

Here we used the fact that under R, the X-point (see
Fig. 13) goes into a point equivalent to itself. Thus

S'(r') = [RsS(q)le "™ | (145)
Comparison with Eq. (141) then yields
S'(a) = RsS(a) . (146)
which we write as
— 1 _vlw
§7E(q) _ [ \/§2 % ] Ew(q) (147)
Sy(Q) 5 T3 Sy(‘l)
We now can check the result in Table XIX. If
S(q) = (S.,—iS1) . (148)
Then Eq. (147) gives
S'@ = p(S1,—iS1)=pS(@,  (149)

where p = exp(27i/3).

1. Order Parameters

We now describe the spin structures corresponding to
the various irreps. The distribution function for spin de-
pends on the irrep, I'y or I's, on which X-point is chosen,



and on the value of the z-component of wavevector, So
the possible distributions are

S(2)(X1>QZ§I') = Rj_efi(xl'rH‘quZ*cﬁ)(ZfZ )

+c.c., (150)
SO(Xy,q.;r) = Rie {Ximita=2=0) G 4 i)

+c. c. (151)
S(2)(X2,qz;r) = RLe*i(Xz-rH+qzzf¢)(g7Z.A.)

+c. ¢, (152)
S(g)(Xg,qz;r) = RLe*i(Xz-rH+qzzf¢)(g+Z.j.)

+c.c., (153)

where the superscript on S labels the irrep and r) is the
the in-plane part of the vector r. Here we have written
the complex Fourier coefficient S| as R, exp(i¢), where
R, and ¢ are real. We interpret R, e’® as being the
complex valued order parameter, o.

The distributions involving X, are redundant. Since
Xy + q.k = —[X5 - qzlAsL one sees that

S (Xa,q:315—¢) = SO(Xy, —q.i150) . (154)

Thus the order parameter for X, is equivalent to the
complex conjugate of that for X; when the sign of ¢, is
reversed. Accordingly we only introduce order parame-
ters o,e'% associated with X; by writing

SO (Xy,q.;1) = oa(ge)e2eXmite=2)(G —jj) 4 ¢ c.
S<3)(X1,qz;r) — 0.3(qz)ei¢3€7i(xl-r|‘+qzz)(z_,r_i"?‘-)

+e e (155)

The magnetic structures which these order parameters
describe is best visualized in terms of the phase

1,[)(1‘) = X3 T+ g2+ o . (156)
One see that for S(?) the spin at r is oriented in the
plane and makes angle —(r) with respect to the posi-
tive z-axis whereas for S®) the spin at r is oriented in
the plane and makes angle ¢(r) with respect to the pos-
itive xz-axis. We show the phase (for ¢,z + ¢ = 0) in Fig.
11. There are some properties of the two-dimensional
system which do not carry over to the three-dimensional
structure. For instance, for the two-dimensional system
the plane of the lattice is a mirror plane and therefore
this magnetic structure can not possibly induce a ferro-
electric moment. Also for the two-dimensional system
shown we could not distinguish between ¢ (r) and —(r)
since these are related via a two-fold rotation about an
axis perpendicular to the plane of the lattice. Now we
discuss the relevance of Fig. 11 to RFMO. From Fig.
9 one sees that triangles have the closest oxygen tetra-
hedra alternatingly above and below the lattice. So we
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define ”positive triangles” to be those for which the oxy-
gen tetrahedra closest to the center of the triangle are
above the plane. Suppose in Fig. 11 these are the trian-
gles with a vertex oriented upward. We indicate these by
”+” signs and the downward triangles by — signs. Note
that if we ignored the three dimensionality (i. e. if we
ignored the plus and minus signs signs), then we could
change the sign of ¢ by a two-fold rotation about an axis
perpendicular to the lattice plane. However, since this
operation interchanges + into —, it is not a symmetry
of the three-dimensional lattice and the two spin distri-
butions of Eq. (155) are distinguishable. The effect of
the additional phase Ay = ¢,z + ¢ is to rotate all the
spins in a given plane through the angle A+ and thus
q- determines the helicity. For ¢. > 0, S has negative
helicity since its spin orientations follow —(r), whereas
S®) has positive helicity since its spin orientations fol-
low ¢ (r). The chirality of a triangle is usually defined as
being positive or negative according to whether the spin
rotate through plus or minus 120° as one traverses the
vertices of a triangle counterclockwise. In Fig. 11 the up
triangles have positive chirality and the down ones neg-
ative chirality. Thus this structure does not have overall
chirality.

We now consider the symmetry of the order parameter.
First of all

Ros = pos
Ros = p'os . (157)
Note the effect of inversion which transports the spin
to the spatially inverted location without changing its
orientation. So

78 (Xy,¢:51) =SP(Xy,q.; 1)

S et Xtz (; _ 5y 4 e c.

= |S e e X mite2) (G 4 )| 4c.c.
= S e e XaTiFa2) (G 4 i5) 4. . (158)
This relation is equivalent to saying that

Tos(q.) = o3(g.)" . (159)

The symmetry operation 2, only holds in the high-
temperature (P3m1) phase. For it

2,8 (X1,q.31) = 0a(gz)e "Xrmime-2) (5+i3X150)
so that
2z0'2(qz) = 03(_qz)*- (161)

Now the quadratic free energy (keeping terms involving
both irreps and both signs of ¢,) is of the form

Fy = A|0'2(qz)|2+B‘U3(qz)‘2

+Clo2(=¢:)]* + Dlos(—q.)]* . (162)



A continuous phase transition occurs at a temperature
at which one or more of the coefficients A, B, C, or
D becomes zero. Using Eq. (159) we see that inver-
sion symmetry ensures that A = B and C = D. In
the high-temperature phase 2, symmetry ensures that
A = D and B = C. Thus wavevector selection in the
high-temperature phase would not select the sign of ¢,.
Indeed, if, as is believed, the dominant interplanar inter-
actions are antiferromagnetic interactions between near-
est neighbors in adjacent layers (J> in Fig. 9), then had
there been no lattice distortion at 180K, one would select
g. = 1/2 (which is equivalent to g, = —1/2). Since the
2, symmetry is lost below 180K, in that range of tem-
perature we should write A — C = B — D = ¢'n where
7 is an order parameter describing the amplitude of the
lattice distortion and ¢’ is a constant whose sign can be
related to the quantity J; — J4.5¢ Accordingly, we write
the free energy relative to the high-temperature undis-
torted paramagnetic phase in terms of the structural (7)
and magnetic (o’s) order parameters as

Fy = A(T — Tp)n? + un*

>3

q->0n=2

a(T =T.) + Jav) cos(qzc)]
X lﬂn(qz)2 + Un(qz)2]

- dn sin(q.c) [|0n(QZ)|2 - |Un(_qz)|2] }

+0(a")

where Tp = 180K is the temperature at which the lat-
tice distortion appears, T, is the mean field transition
temperature for 120° magnetic ordering on the triangu-
lar lattice, and .J,, represents the sum of the interplanar
antiferromagnetic interactions that do not select the sign
of ¢q.. Also, we have included the results of a microscopic
model®® in which the term in ¢’ comes from distortion-
modified interactions which give the term proportional
to ¢ sin(g,c¢) which leads to the lifting of degeneracy be-
tween +q, and —q, when n # 0.

So the situation is the following. When we cool
through Tp = 180K, the system arbitrarily breaks crystal
symmetry from P3m1 and rotates the oxygen tetrahedra
into the P3 structure.%® Here the angle of rotation can
have either sign, depending on the sign of the broken
symmetry order parameter 7. For the sake of argument,
say that n is positive. Now when the temperature is low-
ered so that magnetic ordering takes place, ordering takes
place in the channels o3(g;) and/or o5(q.), where ¢, is
the value of g, at which an instability with respect to o
first appears as the temperature is lowered. At quadratic
order the phases ¢, of the order parameters o,(g,) are
arbitrary and also the relative proportion of each irrep is
not fixed. However, it is expected that the fourth order
terms in the Landau expansion (which tend to enforce
fixed spin length) will favor having only a single irrep

(163)
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present. So ordering is expected in either oy or in o3,
but we can have domains of both, in addition to pos-
sibly having domains of either sign of 1. Although the
domains of different o’s have the same wavevector, they
have opposite helicity, as discussed just above Eq. (157).

F. Discussion
1. Summary of Results

In Table XX we collect the results for various multifer-
roics.

2.  Effect of Quartic Terms

As we now discuss, the quartic terms in the Landau ex-
pansion can have significant qualitative effects.’ In gen-
eral, the quartic terms are the lowest order ones which
favor the fixed length spin constraint, a constraint which
is known to be dominant at low temperature.”" How this
constraint comes into play depends on what state is se-
lected by the quadratic terms. For instance, in the sim-
plest scenario when one has a ferromagnet or an antiferro-
magnet, the instability is such (see Fig. 1) that ordering
with uniform spin length takes place. Thus, as the tem-
perature is lowered within the ordered phase, the order-
ing of wavevectors near ¢ = 0 for the ferromagnet (near
q = 7 for the antiferromagnet) which would have be-
come unstable if only the quadratic terms were relevant,
is strongly disfavored by the quartic terms. In the sys-
tems considered here the situation is quite different. For
instance, in NVO,3 TMO,?> and MWO* the quadratic
terms select an incommensurate structure in which the
spins are aligned along an easy axis and their magni-
tudes are sinusoidally modulated. As the temperature is
lowered the quartic terms lead to an instability in which
transverse spin component break the symmetry of the
longitudinal incommensurate phase. This scenario ex-
plains why the highest-temperature incommensurate lon-
gitudinal phase becomes unstable to a lower-temperature
incommensurate phase which has both longitudinal and
transverse components which more nearly conserve spin
length.

To see this result formally for NVO, TMO, or MWO,
let o5 (0<) be the complex valued order parameter for
the higher-temperature longitudinal (lower-temperature
transverse) ordering. The fourth order terms then lead
to the free energy as

F = a(T -T5)|os|” +b(T - T<)|o<|?
+A(los|? + |lo<)’ + Bloso|?

+Cl(0<oy)® + (02a5)?] (164)

where A, B, and C are real. That C is real is a result

of inversion symmetry, which, for these systems leads to

1o, = o). The high-temperature representation does
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Phase T«(K)|T>(K)

Irreps | Refs. || FE? |Refs.

NVO (HTI) 6.3 | 9.1

(4,0,0) Iy 6,38 || No | 4,6

NVO (LTI) 39 | 63 || (a.00) | Ta+Ty 638 ||b | 46
TMO (HTI) 28 | 41 || (0,¢,0) Ts 349 || No | 2
TMO (LTI) 28 || (0,¢,0) |Ts+Ty| 3 e | 2

TbMn,Os (HTD)| 38 | 43
TbMn,Os (LTI)| 33 | 38

(%507(1)(&) F(b)
(3.0, | T

55,56|| No | 12
55,56 || b | 12

YMnyO5 (C) @ | 23 45 || (3,0, %) r® 58 || |6 | 12
YMny05 (IC) 23 ||(=3,0,9) 58 || || b | 12
RFMO® 0 3.8 || (3, 2,9) |ToorTs 866 [lc | 8
Cro® (CIC) 10 14 (¢,4,0) I 59,65| No | 10
CFO (NIC) 0? 10 (¢,¢,0) | T +Ts | 60 || Le | 10
MWO 12.7 | 13.2 |[(ge, 5,9:) T 45 No | 13
MWO 76 | 12.7 ||(ge,5,9:)| T2+ T1 | 45 o | 13

TABLE XX: Incommensurate Phases of various multiferroics. Except for CFO each phase is stable for zero applied magnetic
field for T« < T < T5. When T« = 0 it means that the phase is stable down to the lowest temperature investigated. We give
the incommensurate wavevector and the associated irreducible representations in the notation of our tables. In the column
labeled “FE?” if the system is ferroelectric we give the direction of the spontaneous polarization, otherwise the entry is ”No.”

a) At the highest temperature the value of g, might not be exactly 1/2.

b) The irrep is the two dimensional one (see Appendix B). In the HTT phase only one basis vector is active.
c¢) The irrep is the two dimensional one (see Appendix B). In the LTI phase both basis vectors are active.
d) This phase is commensurate.

e) For H < 2T.

f) Data for CuFeO, is for H =~ 8T.

allow transverse components and could, in principle, sat-
isfy the fixed length constraint. In the usual situation,
however, the exchange couplings are nearly isotropic and
this state is not energetically favored. If the higher tem-
perature structure is longitudinal, then B will surely be
negative, whereas if the higher temperature structure
conserves spin length B will probably be positive. By
properly choosing the relative phases of the two order
parameters the term in C' always favors having two ir-
reps. So the usual scenario in which the longitudinal
phase becomes unstable relative to transverse ordering is
explained (in this phenomenology) by having B be neg-
ative, so that the discussion after Eq. (51) applies.

To finish the argument it remains to consider the term
in C, which can be written as

§Fy = 2C0202 cos(2¢< — 2¢5) , (165)

where again we expressed the order parameters as in Eq.
(46). Normally, if two irreps are favored, it is because
together they better satisfy the fixed length constraint.
What that means is that when spins have substantial
length in one irrep, the contribution to their spin length
from the second irrep is small. In other words, the two
irreps are out of phase and we therefore expect that to
minimize §F; we do not set ¢ = ¢, but rather

b =@ £ 7/2.

In other words, we expect C' in Eq. (165) to be positive.

(166)

The same reasoning indicates that the fourth order terms
will favor ¢ — ¢1 = 7/2 in Eq. (135) for CFO.

For all of these systems which have two consecutive
continuous transitions one has a family of broken sym-
metry states. At the highest temperature transition one
has spontaneously broken symmetry which arbitrarily se-
lects between o~ and —o~. (This is the simplest scenario
when the wavevector is not truly incommensurate.) Inde-
pendently of which sign is selected for the order parame-
ter o~ , one similarly has a further spontaneous breaking
of symmetry to obtain arbitrarily either io. or —io..
(Here, as mentioned, we assume a relative phase /2 for
o <. In this scenario, then, there are four equivalent low
temperature phases corresponding to the choice of signs
of the two order parameters.

The cases of TMO25 and YMO25 are different from
the above because they have two order parameters from
the same two-dimensional irrep and which therefore are
simultaneously critical. Therefore in such a case we write

F = a(T -T.) [|o:]* + |o2]?]
+A(|0’1‘2 + ‘0’2‘2)2 + B‘0102‘2
+C [(0103)” + (0702)°] (167)
Here again A, B, and C are real. That C' is real is a result
of symmetry under m,, as in Eq. (124). Here the fourth
order anisotropy makes itself felt as soon as the ordered
phase is entered, but the above discussion about the sign



of B remains operative. We first consider YMO25 in its
higher temperature commensurate (HTC) ordered phase.
For it additional fourth order terms occur because 4q is a
reciprocal lattice vector, but these are not important for
the present discussion. Here the analysis of Ref. 58 indi-
cates (see the discussion of our Fig. 7) that only a single
order parameter condenses in the HTC phase. This indi-
cates that energetics must favor positive B in this case.
The question is whether B is also positive for TMO25. As
we will see in the next section one has ferroelectricity un-
less the magnitudes of the two order parameters are the
same. For YMO25 the HTC phase is ferroelectric and the
conclusion that only one order parameter is active com-
ports with this. However, for TMO25 the situation is not
completely clear. Apparently there is a region such that
one has magnetic ordering without ferroelectricity.!?° If
this is so, then TMO25 differs from YMO25 in that its
high temperature incommensurate phase has two equal
magnitude order parameters.

IV. MAGNETOELECTRIC COUPLING

Ferroelectricity is induced in these incommensurate
magnets by a coupling which is somewhat similar to that
for the so-called “improper ferroelectrics.”'” To see how
such a coupling arises within a phenomenological pic-
ture, we imagine expanding the free energy in powers of
the magnetic order parameters which we have studied in
detail in the previous section and also the vector order
parameter for ferroelectricity which is the spontaneous
polarization P, which, of course, is a zero wavevector
quantity. If we had noninteracting magnetic and elec-
tric systems, then we would write the noninteracting free
energy, Fyon as

1 _ .
Foon = §;XE,106P§+O(P4)

5 Y ar( 1) or(@) * +O(o*) (168)

where X;a is of order unity. The first line describes a
system which is not close to being unstable relative to
developing a spontaneous polarization (since in the sys-
tems we consider ferroelectricity is induced by magnetic
ordering). The magnetic terms describe the possibility
of having one or more phase transitions at which succes-
sively more magnetic order parameters become nonzero.
As we have mentioned, the scenario of having two phase
transitions in incommensurate magnets is a very com-
mon one,*® and such a scenario is well documented for
both NVO®38 and TMO.2? Below we will indicate the
existence of a term linear in P, schematically of the form
—AM?P, where ) is a coupling constant about which
not much beyond its symmetry is known. One sees that
when the free energy, including this term, is minimized
with respect to P one obtains the equilibrium value of P

29

as

(P) = xpAM?. (169)

A. Symmetry of Magnetoelectric Interaction

We now consider the free energy of the combined mag-
netic and electric degrees of freedom which we write as

F = Fyon + Finy - (170)

In view of time reversal invariance and wavevector con-
servation, the lowest combination of M (g)’s that can ap-
pear is proportional to M,(—q)Mga(q). So generically
the term we focus on will be of the form

Ent = ZCQB’YMQ(q)MB(iq)P’Y7
aBy

(171)

where «, 3, and ~y label Cartesian components. But, as
we have seen in detail, the quantities M, (q) are linearly
related to the order parameter or(q), associated with the
irrep I'. Thus instead of Eq. (171) we write

F = Z AFFWUF(Q)UF’(Q)*Pﬂr-

Ly

(172)

The advantage of this writing the interaction in this form
is that it is expressed in terms of quantities whose sym-
metry is manifest. In particular, the order parameters
we have introduced have well specified symmetries. For
instance it is easy to see that for most of the systems stud-
ied here, magnetism can not induce ferroelectricity when
there is only a single representation present.®* This fol-
lows from the fact that for NVO and TMO, for instance,

I‘UH‘Q = |Un‘2 ) (173)
as is evident from Eq. (50). The interpretation of this is
simple: when one has one representation, it is essentially
the same as having a single incommensurate wave. But
such a single wave will have inversion symmetry (to as
close a tolerance as we wish) with respect to some lattice
point. This is enough to exclude ferroelectricity. So the
canonical scenario®* is that ferroelectricity appears, not
when the first incommensurate magnetic order parameter
condenses, but rather when a second such order parame-
ter condenses. Unless the two waves have the same origin,
their centers of inversion symmetry do not coincide and
there is no inversion symmetry and hence ferroelectric-
ity will occur. One might ask whether or not the two
waves (i. e. two irreps) will be in phase. The effect, dis-
cussed above, of quartic terms is crucial here. The quar-
tic terms typically favors the fixed length spin constraint.
To approximately satisfy this constraint, one needs to su-
perpose two waves which are out of phase. Indeed the
formal result, obtained below in Eq. (178), shows that
the spontaneous polarization is proportional to the sine
of the phase difference between the two irreps.* We now
consider the various systems in turn.



B. NVO, TMO, and MWO

We now analyze the canonical magneto-electric inter-
action in the cases of NVO, TMO, ad MWO. These cases
are all similar to one another and in each case the order
parameters have been defined so as to obey Eq. (50).
This relation indicates that if we are in a phase for which
only one irrep is active, then we may choose the origin
of the incommensurate system so that the phase of the
order parameter at the origin of a unit cell is arbitrarily
close to zero. When this phase is zero, the spin distri-
bution of this irrep has inversion symmetry relative to
this origin. In the case when only a single irrep is active,
this symmetry then indicates that the magnetic struc-
ture can not induce a spontaneous polarization.# As men-
tioned, in the high temperature incommensurate phases
of NVO, TMO, and MWO only one irrep is present,
and this argument indicates that the magneto-electric
interaction vanishes in agreement with the experimen-
tal observation®#13 that this phase is not ferroelectric.
Notice that this argument relies on symmetry and does
not invoke the fact that the HTI phase may involve a
collinear spin structure (as it seems for TMO and MWO,
but not for NVO). Small departures from collinearity (in-
duced by, say, Dzialoshinskii-Moriya interactions”) do
not change the symmetry of the structure and therefore
can not induce ferroelectricity. This conclusion is not
obvious from the spin-current models.'5'6

We now turn to the general case when one or more
irreps are present.*”” We write the magneto-electric in-
teraction as

Fue = Y Arror(@or (@) Py

AT

(174)

where o1 (q) = or(—q). For this to yield a real value of
F we must have Hermiticity:

Arriy = Apip,, - (175)
In addition, because this is an expansion relative to the
state in which all order parameters are zero, this interac-
tion has to be inversion under all operations which leave
this “vacuum” state invariant.263! In other words this
interaction has to be invariant under inversion (which
takes P, into —P,). In view of Eq. (50) we conclude
that Ap r , vanishes for I'' = T'. Thus, for these systems
it is essential to have the simultaneous existence of two
distinct irreps. A similar phenomenological description of
second harmonic generation has also invoked the neces-
sity of having simultaneously two irreps.”® (We will see
below that systems such as TMO25 and YMO25 provide
exceptions to this statement.) So we write

1
-Fint = 3 Z AFF"YOT(q)UF’(q)*P’y .

AT D AT

(176)

Now invoke Eq. (50). Since inversion changes the sign
of P, we conclude that Arr/y = —Ap/p. This condition

30

taken in conjunction with Eq. (175 indicates that Apr/,
is pure imaginary. Thus
i *
-Fint = 5 Z P’yTFF”y [OT (Q)U'F' (q)

ATT:D<T"
~or(@)or (@) | (77)
where rrr/, is real valued. Since usually we have at most
two different irreps, which we label “>” and “<,” we
write this as

Fu = Y ryPyosocsin(és <) . (178)
¥

where r, is real and o« = o< exp(i¢<) and similarly for
the irrep “>.” The fact that the result vanishes when the
two waves are in phase is clear because in that case one
can find a common origin for both irreps about which
one has inversion symmetry. In that special case one has
inversion symmetry and no spontaneous polarization can
be induced by magnetism. The above argument applies
to all three systems, NVO,* TMO,> and MWO. As we
will see in a moment, it is still possible for inversion sym-
metry to be broken and yet induced ferroelectricity not
be allowed.

We can also deduce the direction of the spontaneous
polarization by using the transformation properties of the
order parameters. given in Eq. (49). We start by ana-
lyzing the experimentally relevant cases at low or zero
applied magnetic field. For NVO the magnetism in the
lower temperature incommensurate phase is described®38
by the two irreps I'y and T';. One sees from Eq. (49)
that the product ojoy4 is even under m, and odd un-
der 2,. For the interaction to be an invariant, P,
has to transform this way also. This implies that only
the b-component of the spontaneous polarization can be
nonzero, as observed.* For TMO the lower temperature
incommensurate phase at low magnetic field is described?
by irreps I's and I's. From Table XII we see that o509 is
even under m, and odd under m,, which indicates that
P has to be even under m, and odd under m,. This can
only happen if P lies along the ¢ direction, as observed.?

Finally, for MWO, we see that o103 is odd under m,,.
This indicates that P, also has to be odd under m,. In
other words P can only be oriented along the b direc-
tion, again as observed.!® In this connection one should
note that this conclusion is a result of crystal symme-
try, assuming that the magnetic structure results from
two continuous transitions, so that representation the-
ory is relevant. This conclusion is at variance with the
argument given by Heyer et al.'* who “expect a polar-
ization in the plane spanned by the easy axis and the
b axis ...,” which they justify on the basis of the spi-
ral model.'>16 It should be noted that their observation
that the spontaneous polarization has a nonzero com-
ponent along the a-axis at zero applied magnetic field
contradicts the symmetry analysis given here. The au-
thors mention that some of the unexpected behavior they



observe might possibly be attributed to a small content
of impurities.

It is important to realize that the above results are a
consequence of crystal symmetry. In view of that, it is
not sensible to claim that the fact that a theory gives the
result that the polarization lies along b makes it more
plausible than some competing theory. The point is that
any model, if analyzed correctly, must give the correct
orientation for P.

It is also worth noting that this phenomenology has
some semiquantitative predictions. To see this, we mini-
mize Flon + Fing with respect to P to get

P, = —XEg,ry0>0< sin(¢s — ¢<) . (179)

This result indicates that near the magneto-ferroelectric
phase transition of NVO one has P « o401, or since
the high-temperature order parameter o4 is more or less
saturated when the ferroelectric phase is entered, one has
P « o7, where o is the order parameter of the lower
temperature incommensurate phase. This relation has
not been tested for NVO, TMO, or MWO, but we will
see that such a relation has been observed for RFMO.

As we discussed, in the low temperature incommensu-
rate phase one will have arbitrary signs of the two or-
der parameters. However, the presence of a smll electric
field will favor one particular sign of the polarization and
hence, by Eq. (179) one particular sign for the product
0>0<. Presumably this could be tested by a neutron
diffraction experiment.

C. TMO25

The case of TMO25 is somewhat different. Here we
have only a single irrep. One expects that as the temper-
ature is lowered, ordering into an incommensurate state
will take place, but the quadratic terms in the free en-
ergy do not select a direction in o1-09 space. At present
the data has not been analyzed to say which direction
is favored at temperature just below the highest order-
ing temperature. (For YMO25, as mentioned above, the
direction o4 = 0 is favored.) As the temperature is re-
duced, it is not possible for another representation to
appear because only one irrep is involved. However, or-
dering according to a second eigenvalue could occur. We
first analyze the situation assuming that we have only a
single doubly degenerate eigenvalue. In this case we can
have a spin distribution [as given in Eq. (123)] involving
the two order parameters o1 and o5 which measure the
amplitude and phase of the ordering of the eigenvector of
the second and third columns of Table X VI, respectively.
In terms of these order parameters, the magneto-electric
coupling can be written as

*
Ent = § anm'yo—no—mpr}/7

nmy

(180)

where v = z,y,z and n,m = 1,2 label the columns of
the irrep labeled o, and o2, respectively, in Table XVI.
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*

Since reality requires that anm,y = ay,,,, this interaction

is of the form

F = ZP’y

v

arylor P + ag,|o]?

+b,o105 + bf‘yai‘ag] . (181)

Now use invariance under inversion, taking note of Eq.
(124). One sees that under inversion oi03P, changes
sign, so the only terms which survive lead to the result

Fow = Y omPollonf —loalf]. (182)
Y

Using Eq. (124) we see that [|o1|? — |o2]?] is even under
m, and odd under m,. For Fiy¢ to be invariant under
inversion therefore requires that P, be odd under m,, and
even under m,, so P has to be along b as is found.!?

D. CFO

Again we start with the trilinear magneto-electric in-
teraction, but here we have to allow for coupling of the
spontaneous polarization to order parameters associated
with any of the wavevectors in the star. So we write

Ent = Z Anmkwan(qk)am(qk)*P’y 3

knm-~y

(183)

where k is summed over the values 1, 2, 3 and real-
ity implies that Apmiy = A;‘nnkv. Since we have that
Zon(ar) = on(qr)*, we use invariance under Z to elim-
inate terms with n = m: we need two irreps for ferro-
electricity. Indeed, the higher temperature phase with a
single order parameter oy is not ferroelectric.!® Thus the

magnetoelectric interaction must be of the form

Fne = Z [Ago1(ar)oa(ar)”

ky

+A o (ar) o2 (ar)] Py - (184)

Inversion symmetry indicates that Ay, = —Aj

: k> SO We
write

F = Z'ZTIW [o1(ak)o2(ar)” — o1(ax) o2 (ar)] Py
kv

= 2 riyor(ar)oa(ar) sin(gs — ¢1) Py

k~y

(185)

where 71, is real. Now consider the term involving
wavevector ¢; and use Eq. (130) which gives that
o1(qi)o2(qr)* changes sign under 2,. So for the inter-
action to be invariant under 2, (as it must be), P, has
to be odd under 2,. This means that for q = q1, P has



to be perpendicular to the z axis. So

Fine = 201(a1)oz(aqi) sin(¢a — ¢1)[aP, + bP,]
+201(q2)02(qz2) sin(dz — ¢1)
x[aP, — (b/2)P, — (v/3b/2)P,]
+201(q3)0o2(qs3) sin(¢2 — ¢1)

<[aP. — (b/2)P, + (V3b/2)P,],  (186)

where the real-value coefficients a and b are not fixed
by symmetry. Here we constructed the terms involv-
ing g2 and qs by using the transformation properties of
the three-fold rotation, so that Fj,; is invarianet undr all
the symmetry operations. Note that symmetry does not
force P to lie along the three-fold axis because the orien-
tation of the incommensurate wavevector has broken the
three-fold symmetry.

In fact, the above results suggest some further experi-
ments. First of all, it would be useful to have a definitive
determination of the spin structure of the NIC phase, in
particular to test whether our idea of a spin-flop type
transition has occurred. One should note that symmetry
does not completely restrict the orientation of P when,
for instance, the wavevector is q = q;. In this connec-
tion it is interesting to note that in Ref. 10 a compo-
nent of P along ¢ was discarded as being due to sample
misalignment. However, such a component is allowed
by symmetry. Although, the spin current model'®!6 is
satisfied by having the spin-flop state we suggest, our
analysis indicates that this spin configuration can not be
uniquely identified just from the orientation of P, so a
determination of the actual spin structure is important.
Furthermore, the form of Eq. (186) indicates that the
orientation of q, is coupled to the applied electric field
in the plane perpendicular to c. In other words, by ap-
plying an electric field perpendicular to the ¢ axis one
could select between the three equivalent wavevectors of
the star. (Since, the crystal structure distortion also im-
plies such a selection, one would have to apply a strong
enough electric field so that the electric energy overcomes
the energy of the lattice distortion.)

In the above analysis we did not mention the fact that
the existence of the ferroelectric phase requires a mag-
netic field of about 8-10T oriented along the three-fold
axis. In principle one should expand the free energy in
powers of H. Then presumably as a function of H one
reaches a regime where first one incommensurate phase
orders and then at a lower temperature the second in-
commensurate order parameter appears. Then the phe-
nomenology of the trilinear magnetoelectric interaction
would come into play as analyzed above.

32
E. RFMO

Again we start from Eq. (174), which for the present
case of two irreps (n = 2,3) we write

Entzz

Y

raq|as|* + 13, |os]?

+byo20; + Vo305 | Py (187)

where b, is complex and r,, is real. First use inversion
symmetry under which P, changes sign and Eq. (159)
holds. This symmetry indicates that b, = 0 and ry, =
—73,~, SO that

Fuy = Y 1y [loa]” —los’] P, . (188)
Y

Now consider invariance under the three-fold rotation,
which leaves |o,|* invariant. One sees that the only
nonzero component of P can be the ¢ component, so that
finally

Fng = rloaf> —|osf’] P . (189)

As mentioned above, when the total free energy is mini-
mized with respect to P. in order to determine its equi-
librium value, one finds that

Po = —rxpclo2® —os]?] . (190)

Since the magnetic structure RFMO has been
determined® to have only a single order parameter
(call it o) in the low field phase, in this phase

P. x |o.]* . (191)

Since the right-hand side of this equation is proportional
to the intensity of the Bragg reflections which appear as
one enters the incommensurate phase, this relation pre-
dicts that these Bragg intensities are proportional to the
magnitude of the spontaneous polarization. This relation
has been experimentally confirmed.®

It is interesting to note that for this case the “spiral
model” or spin-current model do not apply in their sim-
plest form. The spin rotated in a plane perpendicular to
the three fold axis, so that S; x S; is parallel to the three-
fold axis, no matter what values 7 and j may take. In the
spin current model the spontaneous polarization is sup-
posed to be perpendicular to this cross product, which
would incorrectly predict the spontaneous polarization to
be perpendicular to the three-fold axis, In contrast, ex-
periment shows the spontaneous polarization to lie along
the three-fold axis.

F. High Magnetic Field

We can also say a word or two about what happens
when a magnetic field is applied. In TMO, for instance,



one finds? that for applied magnetic fields above about
10T in either the a or b directions, the lower temperature
incommensurate phase has a spontaneous polarization
along the a axis. Keep in mind that we want to identify
this phase with two irreps and from the phase diagram
we know that the higher temperature incommensurate
phase is maintained into this high field regime. So the
higher temperature phase is still that of I'; at these high
fields. Referring to Table XII we see that to get 0,0}, to
be odd under m, and even under m, (in order to get a
polarization along the a axis) we can ouly combine irrep
'y with the assumed preexisting I's. Therefore it is clear
that the magnetic structure has to change at the same
time that direction of spontaneous polarization changes
as a function of applied magnetic field.”'6 It is also inter-
esting, in this connection to speculate on what happens
if the lower additional irrep had been I'y so that T'y and
I's would coexist. In that case o403 is odd under both m,
and m.. These conditions are not consistent with any di-
rection of polarization, so in this hypothetical case, even
though we have two irreps and break inversion symmetry,
a polar vector (such as the spontaneous polarization) is
not allowed.™

For MWO a magnetic field along the b axis of about
10T causes the spontaneous polarization to switch its di-
rection from along the b-axis to along the a axis.!®> We
have no phenomenological explanation of this behavior at
present. This behavior seems to imply that the wavevec-
tor for H > 10T is no longer of the form q = (¢s. 3,4:)-

G. Discussion

What is to be learned from the symmetry analysis of
the magnetoelectric interactions? Perhaps the most im-
portant point to keep in mind is to recognize which re-
sults are purely a result of crystal symmetry and which
are model dependent. For instance, as we have seen, the
direction of the spontaneous polarization is usually a re-
sult of crystal symmetry. So the fact that a microscopic
theory leads to the observed direction of the polarization
does not lend credence to one model as opposed to an-
other. In a semiquantitative vein, one can say that sym-
metry alone predicts that near the combined magneto-
electric phase transition P will be approximately pro-
portional to the order parameter raised to the nth power,
where the value of n is a result of symmetry. (n =1 for
NVO or TMO, whereas n = 2 for TMO25 or REMO).

We should also note that while the spontaneous po-
larization does arise from the coupling to another (mag-
netic) order parameter, this coupling still induces a di-
vergence in the electric susceptibility (and hence in the
dielectric constant) at the magnetoelectric phase transi-
tion. To illustrate this we consider the less trivial case
where one has two order parameters. Thus, for example,
we analyze the case of NVO and consider the magneto-
electric free energy at a temperature just above the lower
temperature transition, denoted T, where o develops.
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There the relevant terms in the free energy are

1 1
F =

D) (T*T<)|'7<\2

XEyP2

1 1
"'§(T*T>)|'7>\2 + ZU\U>\4

+%/\[0'>0'< clo P, —E,P,, (192)
where E, is the component of the electric field in the y
direction, and as before o« = o.e'?< and o~ = 05>,
where, for simplicity, we have omitted the wavevector
arguments. Since the magnetoelectric interaction term
proportional to A is a small perturbation, and since the
temperature is significantly less than 7%, the value of
|o~| is essentially fixed by minimizing the terms in the
second line of Eq. (192). The phase of this complex
order parameter is probably locked by some small com-
mensuration energy (not written in the above equation)
to a commensurate value. So we will will consider that
o~ in the last line of Eq. (192) is fixed by the terms in
the free energy relevant to the ordering at 7. With this
understanding we write the free energy as

1 —1 PZ

FzzEy’f 2

(T —To)lo<|’

+§/\[o'>0'*< -olo/P,—E,P, (193)
and we now analyze the transition at 7' = T~ according
to this free energy. Apart from the term proportional to
E,, this free energy as a quadratic form in the variables
o< and P, (remember that here o is simply a complex
constant). To diagonalize this quadratic form it is sim-
plest to write o~ = s + it where s and t are real and
similarly we set 0> = a + tb. Then the terms quadratic
in s, t and P, are

1

Fy = i P+ (T =Tl + 7
+A[sb — ta]P, . (194)
As a preliminary to diagonalizing this form we set
T = [sa—l—tb]/\/m,
y = [ta—sb]/Va2 +0?, (195)
in which case
Fy = gxil Pl 2 (T~ Tl + 7]
+A'yP, (196)
where X' = Mo ~|. This form shows that the variable

x is decoupled from the other variables, y and P,. The
normal coordinates § and py are obtained from y and
P, by a transformation which eliminates the perturba-
tive coupling A'yP,. The transition temperature for § is
obtained explicitly below in Eq. (201) as

Te = Te +XNx5, . (197)



Thus we see that as the temperature is lowered, the vari-
able x would become critical at T' = T, except for the
fact that ¢ condenses first (at the higher temperature
T.). To understand the meaning of the variables z and
y write

o0 tolos
2|0 |
(ool —0o%os)

y = . 198
2\U>\ ( )

Thus we see that = is the part of o~ which is in phase
with o~ and y is the part of o~ which is out of phase
with o. These results are completely consistent with
Eq. (178).

Now we develop an expression for the electric and
magneto-electric susceptibilities in the presence of the
magnetoelectric interaction as the temperature is low-
ered toward the phase transition at 7'~ T-. Note that
the free energy is of the form

1
F = §\~/Mv —vE , (199)
where v the column vector with entries Py and y, E is
a column vector with entries E, and 0, and M is the
matrix of coefficients of the quadratic form in P, and y

of Eq. (196). Minimization with respect to v yields the
equation of state

v= | 1| By (200)
Y 0

Then the renormalized electric susceptibility x, is given
by
_ 0P, B Moo
Xv = 6—&,>Ey_0 = My My, — M7,
XE,y(T -T)
(T-T<) - /\’2XE,y
_ XE,y(T - 1)
- (r-To)

(201)

so that as T'— T one has

2 12
XEJI)‘

77 (202)

)A(y:

Thus the electric susceptibility diverges at T' = T. (al-
though with a severely reduced amplitude.) It can also

be shown that for T approaching T from below that

X oP, axy N

= % — XBy7 203
Xy aEy>Ey_0 T-T.|’ (203)

where a is a constant of order unity. The magnetoelec-
tric coupling increases the electric susceptibility even far
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above T where

0, 14 Nxeg (204)
Xy ~ XE7?I T — T<
The magneto-electric susceptibility
Ay >
XE,o = (205)
0E, B,—0

gives the dependence of the magnetic order parameter
o < on the electric field. Using Eq. (200) we have

o Mn
My Msy — ME,

_7A’XE7~U
T-T.

XE,c =
(206)

To measure this susceptibility would seem to require mea-
suring (probably via a neutron diffraction experiment) y,
the component of the order parameter o which is out
of phase with ¢ in a small electric field.

It goes without saying that our phenomenological re-
sults are supposed to apply generally, independently of
what microscopic mechanism might be operative for the
system in question. (A number of such microscopic cal-
culations have appeared recently.!>”® ) Therefore, we
treat YMO25 and NVO with the same methodology al-
though these systems are said®® to have different mi-
croscopic mechanisms. A popular phenomenological de-
scription is that given by Mostovoy'® based on a contin-
uum formulation. However, this development, although
appealing in its simplicity, does not correctly capture
the symmetry of several systems because it completely
ignores the effect of the different possible symmetries
within the magnetic unit cell.”® Furthermore, it does not
apply to multiferroic systems, such as YMO25 or RFMO,
in which the plane of rotation of the spins is perpen-
dicular to the wavevector.®58 (The spin-current model'®
also does not explain ferroelectricity in these systems.)
In addition, a big advantage of the symmetry analysis
presented here concerns small perturbations. While the
structure of NVO and TMO is predominantly a spiral
in the ferroelectric phase, one can speculate on whether
there are small spiral-like components in the nonferro-
electric (HTT) phase. In other words, could small trans-
verse components lead to a small (maybe too small for
current experiments to see) spontaneous polarization? If
we take into account the small magnetic moments in-
duced on the oxygen ions, could these lead to a small
spontaneous polarization in an otherwise nonferroelectric
phase? The answer to these questions is obvious within
a symmetry analysis like that we have given: these in-
duced effects are still governed by the symmetry of the
phase which can only be lowered by a spontaneous sym-
metry breaking (which we only expect if we cross a phase
boundary). Therefore all such possible induced effects
are taken into account by our symmetry analysis.



Finally, we note that the form of the magneto-electric
interaction ~ M?Z2P suggests a microscopic mechanism
that has general validity, although it is not necessarily the
dominant mechanism. This observation stimulated an
investigation of the spin phonon interaction one obtains
by considering the exchange Hamilton

Ho= Y Japlis5)Sa(i)Ss (i) - (207)

ijafB

When J,5(i, j) is expanded to linear order in phonon dis-
placements, u, one obtains a magneto-electric interaction
of the form uSS.™ After some algebra it was shown™
that the results for the direction of the induced sponta-
neous polarization (when the spins are ordered appropri-
ately) agrees with the results of the symmetry arguments
used here. In addition a first-principles calculation of
the phonon modes™ led to plausible guesses as to which
phonon modes play the key role in the magneto-electric
coupling. But whatever the microscopic model, the phe-
nomenology presented here should apply.

V. DYNAMICS

Here we briefly indicate how symmetry considerations
apply to dynamical properties. We consider two phe-
nomena, namely, (a) the mixing of the infrared active
phonons with the Raman active phonons when inversion
symmetry is broken and (b) the mixing of electric dipole
allowed transitions into spin resonance transitions which
previously were only magnetic dipole allowed.

A. Phonon Mixing

We discuss phonon dynamics with respect to coordi-
nates appropriate to the phase which is paramagnetic
and paraelectric. In that phase, at zero wavevector, the
phonon modes can be classified as even (Raman active) or
odd (infra-red active). Here we display explicitly the in-
teraction which causes the mixing of even and odd modes
when the ferroelectric phase (for which inversion symme-
try is broken) is entered. In the ferroelectric phase the
spontaneous dipole moment is induced by the trilinear
magneto-electric interaction discussed above in detail.
Here we discuss the mixing of even and odd modes for
NVO, since NVO has been the object of detailed phonon
calculations.”™ As discussed in that reference the exis-
tence of a nonzero spontaneous dipole moment along the
crystal b axis (which here we call the y-axis) reflects the
fact that all the zone center phonon modes which trans-
form like the y-component of a vector develop nonzero
static displacements. We now consider the anharmonic
phonon interactions. (The present discussion is more de-
tailed than that of Aguilar et al.,” but is otherwise iden-
tical to what they have done.) In particular the third
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12,2, 2. T my m, m.|Function
Ag1 11 11 1 1 1|x%y%z®
Ay11 11 -1 -1 -1 -1 xyz
Byg[11-1-11 1 -1 -1 X7
By,[11-1-1-1-1 1 1 y
Bzg[1-11-11-1 1 -1 vz
Ba,|1-11-1-11 -1 1 x
Byll-1-111-1 -1 1 Xy
Bi,f1-1-11-11 1 -1 z

TABLE XXI: Irreducible representation of the paramagnetic
space group of NVO. The vector representations are Biy, Bay,
and Bs, whose wavefunctions transform like z, y, and z, re-
spectively.

order interactions can be written as

VO = 3" N capy (a192a3) Qu(a1)Qs(a2) Q- (as)
q19293 afy

Alqy +q2 + q3) , (208)

where (),(q) is the amplitude of the ath phonon at
wavevector q and A is only nonzero when its argument
is zero modulo a reciprocal lattice vector. The terms in
this interaction which are relevant to our discussion are
those which mix even and odd modes at zero wavevector.
So we set all the wavevectors to zero in Eq. (208). In
addition, since we want to discuss how modes mix, we
write the effective bilinear interaction as

VO =3 a5y Qa(0)Q5(0)(Q4(0) . (209)
afy
where ( ) indicates a static average value. Because

the interaction only involves zero wavevector modes, we
can profitably use their symmetry properties. Accord-
ingly in Table XXI we record the symmetries of the var-
ious phonon modes. To emphasize the symmetry of the
modes, we label the modes as Q(Fn), where T is the ir-
reducible representation (irrep), which we identify by its
function (y for Bs,, xyz for A,, etc. and 1 for A,).
Only the By, modes which transform like y can have a
nonzero average value, because, as we have seen, in NVO
the spontaneous polarization is fixed by symmetry to lie
along the y axis. The interaction of Eq. (209) has to
be invariant under the symmetry operations of the para
phase. Therefore the interaction can only contain the
following terms

VO = 3 QU) | anme Q™ Q) + bumr QU QL
+CnmrQ§T)QEJ) + dnmng(vT)Qg(yT)

(210)

This interaction mixes odd symmetry modes which ini-
tially were only infra-red active (except for zyz modes



Absorption

Y
—

T
F

FIG. 14: (Color online). Schematic diagram of the frequency
and infrared absorption cross section of a mode which is Ra-
man active in the paraelectric phase for T > Tr. Note the
change in slope of the frequency when the ferroelectric phase
is entered. We assume the mean-field estimate for the order
parameter: P o (Tp — T)'/?

which are silent) into modes which were previously only
Raman active (transforming like 1, zz, yz, or zy) Simi-
larly this interaction mixes even symmetry modes which
initially were only Raman active into modes which were
previously only infra-red active (transforming like z, ¥,
or z). Experiments can distinguish the polarization de-
pendence of the infra-red and Raman modes,; so one can
test the prediction that modes which were, for exam-
ple, zy-like Raman modes are now infrared active under
z-polarized radiation. Since the admixture in the wave-

function is proportional to (QS]”), which itself is pro-
portional to the spontaneous polarization, one sees that
the new intensities are scaled by the square of the spon-
taneous polarization. Also, in the presence of a weak
perturbation, the mode energies will show an additional
temperature dependence (in addition to what they had
in the paraelectric phase) which is also proportional to
the square of the spontaneous polarization. This is illus-
trated schematically in Fig. 14

B. Electromagnons

Here I give a brief discussion of “electromagnons.” This
term refers to the possibility of exciting magnons through
an electric dipole matrix element.383 This existence of
this process implies a mixing of spin operators and the
spontaneous polarization, so that the spin-wave develops
a dipole moment. In general terms, such an interaction
is implied by the trilinear magneto-electric interaction
studied in Sec. IV. The treatment here includes elements
from the theories of Katsura et al.®' and of Pimenov et
al. 8082

Again, to exemplify the idea, I describe the situation
for NVO (the case of TMO is almost identical) and will
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FIG. 15: (Color online) Schematic diagram of the spin wave-
functions within the unit cell of NVO for the various ir-
reps. For simplicity only the Ni spine sites at r = r,, for
n =1,2,3,4 (see Table II) are shown. The z and z axes are
indicated and the positive y axis is into the paper. (Filled
circles represent spin components into the paper and x’s spin
components out of the paper.) This figure is a pictorial rep-
resentation of the data of Table IV. In the HTI phase the
spin distribution is that of I'y within which the z-component
is dominant.

focus on the HTT phase where only the single order pa-
rameter oyt of irrep 'y is nonzero. The aim of the
present discussion is to analyze the constraints of sym-
metry on the equations of motion.®! Since it is only in
the HTT phase that symmetry provides constraints on the
electromagnon interaction,?®2 we concentrate on this
case, without assuming a specific model of interactions.

We start by writing the equation of motion for the
Green’s function for an infra-red active phonon in the
notation of Zubarev®*

w2<<Qa,m;Qa7m>) =1+ <<8/H/8Qa7m;Qa7m>>(7211)

where QQq,m is the mth mass weighted normal coordi-
nate for the zero wavevector of a-like symmetry (a =
x,9,2).”> In the absence of the magneto-electric interac-
tion we set OH/0Qa,m = w2 ;,Qa,m- We now include the
magneto-electric interaction V,_p,. In the HTT phase of
NVO where only the order parameter o~ of irrep T'y is
present, the spin-phonon coupling we need to mix modes
must arise from an effective bilinear interaction of the
form

Veem = Z ram(o>(q)or(-a)Qa.m
I'a,m

+c.c., 212
; (212)

where o1 (q) represents a spin function having the sym-
metry of irrep I' and € is a coefficient. Symmetry dictates
that the only possible terms of this type have (a) I' = T’y
in which case 'y x 'y transforms like z, so that in this



term o = z and (b) I' = I'y in which case I'y x T'; trans-
forms like y, so that in this term « = y. Thus we write

Veom = 3 ™o (a))or, (—
+Ze; No

Here we see that magnons can only couple to y-like or
z-like infra-red active phonons. Then

(W —wym)  ({Qumi Qym)) =
+ey™ (o> (@) {(or, (—a); Qym))
ey (o (a)") ((or, (@); Qy.m))(214)

Y
Similarly the equations of motion with respect to the
second argument yields

(w® = wj ) {(or, (@); Qyom))
= ey(m)(o>(a)){{or, (a); or, (—q))) -

From Fig. 15 we see that op, has a y-component of
spin which rotates the staggered moment (which is dom-
inantly along the z-axis) of the unit cell. Therefore this
spin Green’s function will intersect the lowest frequency
magnon mode at frequency wp. This same discussion also
applies to the analogous treatment of the z-like phonon
which couples to the z-component of or,(q). For n =1
or n =2 we set

Q)QZ,m

Dot (—a)Qy,m + c. d213)

(215)

(or (@:or, () = —20 . (216)

w? — Wi

where (S) is a spin amplitude. In writing Eq. (216) we
noted that the spin Green’s function in Cartesian coordi-
nates is a linear combination of raising and lowering spin
Green’s functions. Eventually we are led to a solution
which to leading order in the magneto-electric interac-
tion can be written as

1
am; Wam)) = ; . 21
(Qomi Qanl) = =g (17
where
2
ll’ozm
Yam = ————, 218
"= (218)

with 2, . = 2(S)|(o> (@)™ |2. This form leads to mix-
ing of the spin and phonon modes. The renormalized
mode frequencies are given by the poles of the Green’s
function which occur at

~9 2 :ua,m
woz,m ~ woz,m+ 9 — 2
wa,m wo
2
2 ua,m
R Wom 3 (219)
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and®

,Uam

w2 42
am Wy
2
oz

(220)

X

a,m
m a,m

where a assumes the values y and z and we assumed that
wo € Wq,m- The most important effect of this mixing is

that it allows magnon absorption in an a. c. electric
field.8! This is encoded in the Green’s function
€a,m(0>(Q))(S

((or, (@); Qa,m)) = _fam{o>(@N5) (221)

W m (W? = wp)

when the a. c. electric field is along the a =y or a = z
direction.

The above interpretation has to be modified for the
system Eug. 75 Y0.20sMnO3.8% As these authors discuss, the
shift in the frequency of the optical phonon is too small
to be consistent with the amount of its mixing with the
magnon if one relies on a trilinear interaction of the form
Vs ~ puo(q)o(—q)Q (where @ is a phonon amplitude), as
we have assumed above. It is possible to avoid this in-
consistency if one posits a quartic interaction of the form
Vi~ 10(q)o(—q)QQ and the sign of 7 is such as to de-
crease the frequency of the optical phonon (thereby par-
tially compensating its frequency shift proportional to j
associated with magnon-phonon mixing). Although Vj is
probably smaller than V3, since it involves an additional
derivative of the energy with respect to a phonon dis-
placement, the frequency shift due to Vj is proportional
to 7, whereas that due to V3 is proportional to u?/AFE,
where AFE is the difference in energy between the phonon
and the magnon. Such a quartic interaction has been re-
cently invoked by Fennie and Rabe in their treatment of
magno-phonon interactions in ZnCr,0,4.87

VI. CONCLUSION

In this paper we have shown in detail how one can
describe the symmetry of magnetic and magneto-electric
phenomena and have illustrated the technique by dis-
cussing several examples recently considered in the liter-
ature.

The principal results of this work are

e We discussed a method alternative to the tradi-
tional one (called representation analysis) for construct-
ing allowed spin functions which describe incommensu-
rate magnetic ordering. In many cases this technique can
be especially simple and does not require an understand-
ing of group theory.

e For systems with a center of inversion symmetry,
whether the simple method mentioned above or the more
traditional traditional representation formalism is used,
it is essential to further include the restrictions imposed
by inversion symmetry, as we pointed out previously.? 7



e We have illustrated this technique by applying it
to systematize the magnetic structure analysis of several
multiferroics many of which had not been analyzed using
inversion symmetry.

e We discussed the all these systems how one intro-
duces order parameters to characterize the spin structure.
For incommensurate systems these order parameters are
inevitably complex because the origin of the incommen-
surate wave is either free or is only fixed by a very small
locking energy.

e By considering several examples of multiferroics we
further illustrated the general applicability of the trilin-
ear magneto-electric coupling of the form M (q)M (—q)P,
where M(q) is the magnetization at wavevector q and P
is the uniform spontaneous polarization.

e The introduction of an order-parameter description
of the spin structure has several advantages. First, of all,
since the transformation properties of the order param-
eters under the symmetry operations of the crystal are
easy to analyze, it then is relatively simple to construct
the explicit form of trilinear magneto-electric coupling.
This form the allows us to predict how the temperature
dependence of the spontaneous polarization is related to
the various spin order parameters.

e Although our formulation is more complicated than
those based on spiral magnetism!®'° it allows us to dis-
cuss all multiferroics so far studied. In contrast™ the
discussions based on spiral magnetism are not general
enough to discuss systems like RFMO, where the plane
within which the spins rotate is perpendicular to the
propagation vector of the magnetic state.

e We briefly discussed the implications of symmetry in
assessing the role of various models proposed for multi-
ferroics.

e We displayed the perturbation due to the interaction
of three zone-center phonons which leads to the mix-
ing of Raman and infrared active phonon modes when
the ferroelectric phase is entered.”® This interaction also
leads to an anomalous contribution to the temperature-
dependence of the phonon frequencies which develops as
the ferroelectric phase is entered.

e We presented a general analysis of the dynamics of
magnon-phonon mixing based on symmetry.

ACKNOWLEDGEMENTS

I acknowledge inspiration and advice from M. Kenzel-
mann who carried out several of the group theoretical cal-
culations presented here. It should be obvious that this
paper owes much to my other collaborators, especially
G. Lawes, T. Yildirim, A. Aharony, O. Entin-Wohlman,
C. Broholm, and A. Ramirez. I thank S.-H. Lee for pro-
viding me with the figure of ThMn»O5 and for insisting
that I clarify various arguments. T am grateful to G. Gas-
parovic for providing me with the figure of RbFe(MQOy)4
and for access to his thesis. I am grateful to the authors
of Ref. 10 for allowing me to reproduce their figure as
Fig. 8 and I thank T. Kimura for attracting my attention

38

to some recent references on CuFeO,. I thank J. Villain
for calling my attention to some of the history of repre-
sentation theory. I also wish to thank H. D. Drew for
providing me with references invoked in Sec. V and for
several instructive discussions of the experimental conse-
quences of the magnetoelectric coupling.

APPENDIX A: FORM OF EIGENVECTOR

In this appendix we show that the matrix G of the
form of Eq. (86) [and this includes as a subcase the form
of Eq. (83)] has eigenvectors of the form given in Eq.
(87). Define G’ = U 1GU, where

(100 © 0 0 0 |
010 0 0 0 0
001 0 0 0 0

U=10001/vV2 i/vV2 0 0 (A1)
000 1/V/2 —-i/vV2 0 0
000 O 0 1/V2 i/V2
(000 0 0 1/v2 —i/ﬁJ

We find that
U 'Gu =

a b ¢ \/Ea/ \/Eau \/EEI \/EEH

b d e V25’ v2g" Ve vy
c e f \/57' \/57” \/5:1' \/51@”
\/ia' \/§BI \/571 g + 6’ 5” NI + l/l 7”” _ l/”( 2)
\/501” \/iﬁ” \/i’y” i g— 5! N” _ NI !
\/EEI \FZW' \/EN, ur +u N” o h+ p/ p”
\/56” \/5"7” \/EKII *I—L” - ur _ p” h— p,

where o/ and o' are the real and imaginary parts, re-
spectively of « and similarly for the other complex vari-
ables. Note that we have transformed the original matrix
into a real symmetric matrix. Any eigenvector (which we
denote |R)) of the transformed matrix has real-valued
components and thus satisfies the equation

U~'GUIR) = AxlR). (A3)
from which it follows that
[GIUIR) = AgrUJR), (Ad)

so that any eigenvector of G is of the form U|R), where
all components of |R) are real. If |R) has components
rl,r2,...r7, then

U|R) = [r1,72,r3, (ra +ir5)/V2, (rq — irs)/ V2,
(re +ir7) V2, (re —ir7)/V2] (A5)

which has the form asserted.
APPENDIX B: IRREPS FOR TMO25

In this appendix we give the representation analysis
for TbMn, Q5 for wavevectors of the form (%7 0,q), where



Irrep|E +m,; £my tm,m, —F
. (1 1 1 1 1
Iy |1 -1 1 -1 1
r. {1 1 -1 -1 1
g |1 -1 -1 1 1
I's |2 -2
G |n —-n

TABLE XXII: Character table for the double group of the
wavevector. In the first line we list the five classes of operators
for this group. In the last line we indicate the characters for
the group G which is induced by the n-dimensional reducible
representation in the space of the o spin component of spins
in a given Wyckoff orbit.

Spin o1 oo Spin o1 oo
Tz T2z T6x —Téx
S(qa 1) Tiy T2y S(q7 7) Tey —T6y
T12 T2, T6z T6z
T24 Tz T6x Téx
S(q,2) T2y Ty S(q,8) —T6y | —Te6y
—T2z —T1z —T62 T62
Tz —T2z T3z T4z
S(q,3) —Tiy | T2y S(a,9) T3y Tay
—T1z T2z T3z T4z
T2z —Tiz T4z T3z
S(qa 4) —T2y T1y S(q7 10) T4y T3y
ro. | —Ti: —Ta; | —T3:
T5z —Tsz T3z —Taz
S(a,5) T5y —Tsy S(q,11) —T3y Tay
Tsz sz —T3: T4,
T'sz T'sz T4z —T3z
S(qa 6) —TIsy | —Tsy S(q7 12) —Tay T3y
—T'52 52 T4z —T3z

TABLE XXIII: Spin functions (i. e. unit cell Fourier coeffi-
cients) determined by standard representation analysis with-
out invoking inversion symmetry. The second and third
columns give the functions which transform according to the
first and second column of the two dimensional irrep. These
coefficients are all complex parameters.
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q has a nonspecial value. The operators we consider are
E, mg, my and m,m,, as defined in Table XIII. Note
that m? (z,y,z) = (¢ + 1,9, 2), so that m? = —1 for this
wavevector. Thus, the above set of four operators do
not actually form a group. Accordingly we consider the
double group which follows by introducing —FE defined
by m? = —E, (-E)? = E, and (- E)O(-E) = O. Since
addition has no meaning within a group we do not discuss
additive properties such as (E) + (—FE) = 0. Then, if we
define —O = (—E)O, we have the character table given
in Table XXII.

The Mn*t Wyckoff orbits contain two atoms and all
the other orbits contain four atoms. In either case we
may consider separately an orbit and a single component,
x, y, or z of spin. So the corresponding spin functions
form a basis set of n vectors, where n = 2 for the sin-
gle spin components of Mn** and n = 4, otherwise. In
each case, the operations involving m, and/or m, inter-
change sites and therefore have zero diagonal elements.
Their character, which is their trace within this space of
n vectors is therefore zero. On the other hand E and
—FE give diagonal elements of +1 and —1, respectively.
So their character (or trace) is £n and we have the last
line of the table for this reducible representation G.

In this character table we also list (in the last line) the
characters of these operations within the vector space of
wavefunctions of a given spin component over a Wyckoff
orbit of n sites. Comparing this last line of the table to
the character of the irreps we see that G contains only the
irrep I'y and it contains this irrep n/2 times. This means
that for the system of three spin components over 12
sites, we have 36 complex components and these function
generate a reducible representation which contains I'y 18
times. If there were no other symmetries to consider,
this result would imply that to determine the structure
one would have to fix the 18 complex-valued parameters.
The two dimensional representation can be realized by
Eq. (125). The basis vectors which transform as the first
and second columns, respectively of the two dimensional
representation are given in Table XXIII. One can check
the entries of this table by verifying that the effect of
m, and m, on the vectors of this table are in conformity
with Eq. (125).

However, after taking account of inversion symmetry
we have only 18 real-valued structural parameters of Ta-
ble XVI to determine.
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