
VOLUME 88, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2002

1264
Freezing of a Stripe Liquid
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The existence of a stripe-liquid phase in a layered nickelate, La1.725Sr0.275NiO4, is demonstrated through
neutron scattering measurements. We show that incommensurate magnetic fluctuations evolve continu-
ously through the charge-ordering temperature, although an abrupt decrease in the effective damping
energy is observed on cooling through the transition. The energy and momentum dependence of the
magnetic scattering are parametrized with a damped-harmonic-oscillator model describing overdamped
spin waves in the antiferromagnetic domains defined instantaneously by charge stripes.
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One of the key issues in current debates over copper-
oxide superconductors concerns the nature and relevance
of charge stripes [1]. It has been demonstrated in one
cuprate family that the holes doped into the CuO2 planes
can order in an array of periodically spaced stripes, sepa-
rating antiferromagnetic domains [2]. For charge stripes to
be relevant to superconductivity, they must be ubiquitous
among the cuprates, and for the latter to be true, they must
be able to exist in a liquid state. Indeed, theoretical mod-
els for such electronic liquid crystal phases have been pro-
posed [3,4]. The inelastic incommensurate magnetic scat-
tering observed in La22xSrxCuO4 [5,6] and YBa2Cu3O61x

[7] has sometimes been interpreted as evidence for dy-
namic stripes; however, this interpretation has been con-
troversial [8].

Here we present evidence for a stripe liquid phase in a
related system, La22xSrxNiO4. Ordered stripes have been
observed in this system over a large range of hole con-
centrations [9]. Although the maximum charge and spin
ordering temperatures occur for x � 0.33 [10], we have
chosen to study crystals of x � 0.275, which have the
advantage that the spin and charge-ordering wave vectors
do not coincide. Using neutron scattering, we follow the
magnetic inelastic scattering to temperatures as high as 1.7
times the charge-ordering transition, Tco, and demonstrate
the existence of a stripe liquid. (La22xSrxNiO4 is non-
metallic even at T ¿ Tco, as indicated by a peak in its
optical conductivity at �0.5 eV [11,12], so there can be
little controversy over possible alternative interpretations
involving Fermi-surface nesting.) We show that the v and
Q dependence of the data can be effectively parametrized
with a damped-harmonic-oscillator (DHO) model describ-
ing overdamped spin waves associated with the antiferro-
magnetic domains defined instantaneously by the charge
stripes. Using a spin-wave energy dispersion with an ef-
fective gap energy, we find that the gap energy is pro-
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portional to the inverse correlation length and varies lin-
early with temperature through Tco. On the other hand,
the behavior of the damping parameter changes abruptly
near Tco.

The neutron scattering measurements were performed
on the SPINS triple-axis spectrometer in the cold-neutron
guide hall at the NIST Center for Neutron Research
(NCNR). Initially, a single crystal of 4.4 g was used;
later, a second crystal of 6.3 g was mounted alongside
the first. Both crystals were grown at Kyoto University
and annealed at the University of Delaware in order to
achieve a stoichiometric oxygen concentration. (The first
crystal was used previously for the work reported in [13],
but without annealing.) The neutron spectrometer was
equipped with a vertically focusing monochromator and
horizontally focusing analyzer, both utilizing (002) reflec-
tions of pyrolytic graphite. Elastic scans of superlattice
peaks were performed with 5-meV neutrons. Inelastic
measurements were done in energy-gain mode, with
incident energies of either 5 or 13.7 meV. The sample
temperature was controlled with a displex refrigerator.

The stripe order in this sample is consistent with that
observed in previous studies of La22xSrxNiO4 [9]. Fig-
ure 1(a) shows the temperature dependence of the spin and
charge-order superlattice peaks. The spin order approaches
zero at Tso � 120 K, while the charge order disappears by
Tco � 190 K.

Our focus here is on the dynamic correlations, espe-
cially those at T . Tco. Figure 2 shows examples of
constant-energy-transfer scans �h̄v � 24 meV� through
the incommensurate magnetic peak positions �1, 6e, 0�
at temperatures (a) T . Tco, (b) Tco . T . Tso, and
(c) Tso . T . We clearly observe well-resolved peaks at all
temperatures. Given that the ordered state at T , Tco is
already well characterized in terms of periodically spaced
charge stripes separating antiferromagnetic domains,
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FIG. 1. (a) Temperature dependence of spin-order (SO) and
charge-order (CO) superlattice intensities. Arrows indicate ap-
proximate transition temperatures. Inset: scan of intensity vs Q
through superlattice peaks at �2e, 0, 5� and �1 2 e, 0, 5� show-
ing that e � 0.29 at 80 K. (b) Intensity at �1, 2e, 0� for an
energy gain of 2 meV as a function of temperature. Points
sampled at �1, 21, 0� indicate the background. The lines through
points are guides to the eye. (c) �H0L� zone of reciprocal
space, showing positions of magnetic (circles) and charge-order
(squares) peaks. Arrow indicates direction of scan in inset of (a).
(d) �HK0� zone, showing magnetic peaks. Arrow indicates scan
direction corresponding to Figs. 2(a)–2(c).

the continuous evolution of the inelastic magnetic scat-
tering [see Fig. 1(b)] provides direct evidence for the
existence of instantaneously correlated magnetic domains
in the disordered state. The fact that the scattering at
the commensurate antiferromagnetic wave vector �1, 0, 0�
is always a local minimum indicates that neighboring
antiferromagnetic domains maintain their antiphase rela-
tionship, which is caused by the segregation of the doped
holes to the domain walls. Thus, we feel that Fig. 2(a) is
firm evidence for a stripe-liquid phase.

The variation of the Q widths of the peaks in the con-
stant-E scans for h̄v � 0, 24, and 28 meV is plotted
in Fig. 3. For T & Tso, the widths are roughly tempera-
ture independent but vary substantially with energy. The
variation with energy is similar to what one might expect
from spin-wave dispersion, as observed previously [14].
At higher temperatures, the widths appear to vary lin-
early with temperature, and the dependence on frequency is
reduced.

The distribution of the magnetic-scattering strength
with frequency also evolves with temperature. Fig-
ures 2(d)–2(f) show the variation of the imaginary part
of the dynamic susceptibility, x 00�Q, v�, at several
temperatures; here, Q � Q0, where Q0 stands for an
incommensurate magnetic wave vector. x 00 is related to
the experimentally measured S�Q, v� via

S�Q, v� � �1 2 e2 h̄v�kBT �21x 00�Q, v�; (1)
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FIG. 2. Left side: Constant-energy scans for h̄v � 24 meV
for three different conditions: (a) 300 K, no static order;
(b) 165 K, charge but no spin order; (c) 90 K, spin and charge
order. Right side: constant-Q scans at Q � �1, 20.3, 0� for
temperatures (d) 260 K, (e) 170 K, (f) 140 K. The curves
through the data are fits as described in the text.

the correction for the detailed-balance factor was ap-
plied after subtracting the background, measured at
Q � �1, 20.9, 0�. The position of the maximum of x 00

as a function of energy corresponds to a characteristic
damping energy G, and one can see that G increases with
temperature.

To describe the data more quantitatively, we have chosen
to use the DHO model:

x 00�Q,v� �
X

Q0

2vgx0

�v2 2 v
2
Q�2 1 �2vg�2

, (2)

FIG. 3. (a) Half-width at half maximum (HWHM), without
resolution correction, for constant-E scans through magnetic
peaks: h̄v � 28 meV (stars); 24 meV (open circles); elastic
(filled circles). The solid line corresponds to fit parameter v0�c
(�k). (b) Results for effective spin-wave damping, G, from fits
of DHO model (see text).
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where the excitations are assumed to have the dispersive
form

v2
Q � v2

0 1 c2�Q 2 Q0�2. (3)

(Direct evidence for dispersive modes at high energies will
be presented in a complementary study [16].) To fit the
data, the model S�Q, v� was convolved with the spectrom-
eter resolution function. The fitting parameters are v0, g,
and x0, with the effective spin-wave velocity held fixed at
h̄c � 300 meV Å, the approximate value determined for
pure La2NiO4 [15]. To describe the Q dependence of the
data, the relevant combinations are v0�c and g�c; for the
energy dependence, as we will discuss, it is only the ratio
v

2
0�2g that matters.
The solid curves in Fig. 2 represent the fits to the data.

The parameter values obtained from such fits are displayed
in Fig. 4. For T . Tso, v0 varies linearly with tempera-
ture. In contrast, g is roughly constant up to T � Tco
where it begins to increase rapidly. x0 has a fairly weak
temperature dependence which is described approximately
by A��1 1 g�B�, where B � 120 meV. The temperature
dependence of g suggests that a major contribution to this
damping factor comes from the fluctuations of the charge
stripes [17]; it is consistent with the growth in the inverse
correlation length for charge stripes observed by x-ray scat-
tering in La22xSrxNiO4 with x �

1
3 [18]. The saturation

of g below Tco might be due in part to the quenched dis-
order associated with the randomly distributed Sr dopants.

Our scans versus frequency (Fig. 2) are measured at
Q � Q0, and most of the data correspond to v2 ø v

2
0 ,

in which case Eq. (2) simplifies to

x 00�Q0, v� �
x0

2g
?

v

v2 1 G2 , (4)

FIG. 4. Results for fitting parameters vs temperature: x0 (tri-
angles, right-hand scale), g�c (circles), and v0�c (squares).
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where G � v
2
0�2g. The values of G obtained from the

values of the fitted parameters are plotted in Fig. 3(b). At
T . Tco, G changes slowly and has a value of roughly
7 meV. On cooling through Tco, G abruptly starts to de-
crease, and becomes rather small by Tso. Since v0 varies
smoothly through this regime, the change in behavior at
�Tco is controlled by g. If g is a measure of charge-stripe
fluctuations, as discussed above, then it appears that the
abrupt decrease in G below Tco may be a direct result of
charge order. Low-frequency probes such as nuclear mag-
netic resonance [19,20] and muon-spin relaxation [21,22]
should be sensitive to the variations in G, and it appears
that such variations above Tso have been detected in studies
of related nickelates [19,21,22]. The sensitivity of mag-
netic damping to charge order may also be relevant to the
mechanism of the “wipe-out” effect observed in nuclear-
quadrupole-resonance studies in cuprates [23–25].

In order to get further insight into the significance of
the model parameters, we numerically integrated S�Q, v�
over frequency. The result corresponds to Q-dependent
peaks with a line shape that is approximately Lorentzian.
The half-width-at-half-maximum of this function should
correspond to the instantaneous inverse correlation length,
j21 � k, and we find that, to within 1%, k � 0.86v0�c.
This result, that the effective spin-excitation gap v0 is ap-
proximately equal to kc, is equivalent to the form proposed
for the paramagnetic state of the undoped Heisenberg an-
tiferromagnet [26,27].

It is of interest to consider the transport properties of
La22xSrxNiO4 in the regime T . Tco which we now asso-
ciate with the stripe-liquid phase; numerous single-crystal
studies of transport and optical properties have been
reported previously (see, e.g., [11,12,28]). Figure 5

FIG. 5. Resistivity of the present sample compared with that
of La22xSrxCuO4 with x � 0.05 [29] and x � 0.10 [2]. The
dashed line indicates the empirically determined critical resistiv-
ity for the superconductor-insulator transition in layered cuprates
[31,32]. (If the in-plane resistivity does not drop below the criti-
cal range of r � 0.4 0.8 mV cm, then the sample will not go
superconducting at any temperature.)
126401-3
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compares the temperature dependence of the in-plane
resistivity measured on our crystal with similar measure-
ments on two La22xSrxCuO4 samples [2,29]. We observe
that the resistivity of our nickelate crystal is only an order
of magnitude greater than that of underdoped cuprates at
300 K, and we expect that it will develop a “metallic”
temperature derivative at higher temperatures, as observed
above 400 K in La22xSrxNiO4 with x � 0.33 [11]. Fur-
thermore, at high temperatures the resistivities of all three
samples exceed a critical limit; to the extent that dr�dT
is positive, they qualify as “bad” metals [ 30]. We believe
it is plausible that the “bad” metallic behavior of the
cuprates might be associated with a stripe-liquid phase.
(Resistivity in stripe-ordered cuprates can be low [2].)

The comparable magnitudes of room-temperature resis-
tivity in the nickelates and cuprates make it plausible that
a stripe-liquid phase could be relevant to transport prop-
erties in both materials. There are certainly differences in
the two systems: the stripes inevitably order in the nick-
elates, whereas stripe order is generally avoided in the
cuprates. However, these differences might be associated
more with the magnitude of fluctuations rather than the na-
ture of instantaneous correlations. In La22xSrxCuO4 with
x � 0.14, the measurements of Aeppli and co-workers
[33] indicate that, using the present parametrization, h̄G �
10 meV at T � 35 K, with G increasing substantially at
higher temperatures. In that case, the relevance of quan-
tum critical phenonema has been proposed [34,35].

To conclude, we have presented experimental evidence
for the existence of a liquid phase of charge stripes
in a hole-doped nickelate. The magnetic correlations
evolve smoothly through the freezing transition, although
the damping of the fluctuations does not. The in-plane
resistivity, though nonmetallic, is relatively low in the
stripe-liquid phase.
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