I ntroduction to Per|

Ingtructor: Dr. Nicholas C. Maliszewskyj
Textbook: Learning Perl on Win32 Systems (Schwartz, Olson & Chrigtiansen)
Resources.

Programming Perl (Wall, Chrigiansen, & Schwartz)
Perl in aNutshdl (Sever, Spainhour, & Patwardian)

Perl Mongers http:/mwww.perl.org/

Comprehensive Perl Archive Network http://www.cpan.org

Introduction

History & Uses
Philosophy & Idioms
Resources

Per| Basics

Script Naming
Language Properties
Invocation

Built-In Data Types

Scalars, lists, & hashes
Variable contexts

Special variables (defaults)

Scalars

Numbers
Strings

Basic Operators

Types of operators
Operator precedence

Control Structures

| f-el sif-el se,unl ess
Loops: do,whi | e,until,
for,foreach

Labels: next,| ast

The infamousgot o

Lists
Initializing
Accessing elements
Special operators

Associative Arrays (Hashes)
Keys and values

Initializing
L ooping over elements
Sorting

9. Pattern Matching

Regular expressions
Matching and substitution
Atoms and assertions

10. Subroutines and Functions

Structure & Invocation
Parameter passing
Scope

11. Filesand |/O

Understanding filehandles
Predefined filehandles

(STDI N, STDOUT, STDERR)
Opening, closing, reading,
writing

Formats

Manipulating files

12. Modules
Extending Perl functionality
Obtaining and installing
Object-oriented Perl

13. CGI Programming

CGlI Concepts

Generating HTML
Passing parameters
Simple Forms

Using the CGl.pm module

14. Advanced Topics
To be determined

Introduction

What is Perl?

Depending on whom you ask, Perl stands for “ Practical Extraction and Report Language’
or “Pathologicdly Eclectic Rubbish Ligter.” It is a powerful glue language useful for

tying together the loose ends of computing life.

History

Perl is the naturd outgrowth of a project darted by Lary Wadl in 1986. Origindly
intended as a configuration and control system for sx VAXes and sx SUNs located on
opposite ends of the country, it grew into a more generd tool for system adminigtration
on many plaforms Since its unvelling to programmers at large, it has become the work

of alarge body of developers. Larry Wall, however, remainsits principle architect.

Although the firgt platform Perl inhabited was UNIX, it has snce been ported to over 70
different operaing sysems including, but not limited to, Windows 9x/NT/2000, MacOS,

VMS, Linux, UNIX (many variants), BeOS, LynxOS, and QNX.

Uses of Perl

agkrowbdE

Tool for generd system adminigtration

Processing textua or numerica data

Database interconnectivity

Common Gateway Interface (CGl/Web) programming
Driving other programs! (FTP, Mall, WWW, OLE)

Philosophy & Idioms

The Virtues of a Programmer
Perl is alanguage designed to cater to the three chief virtues of a programmer.

Laziness - develop reusable and generd solutions to problems

Impatience - develop programs that anticipate your needs and solve problems
for you.

Hubris - write programs that you want other people to see (and be able to
mantain)

There are many means to the same end

Perl provides you with more than enough rope to hang yoursdf. Depending on the
problem, there may be severd “officid” solutions. Generdly those that are gpproached
using “Perl idioms’ will be more efficient.

Resources

The Perl Indtitute (http://www.perl.org)
The Comprehengve Perl Archive Network (http://www.cpan.org)
The Win32 port of Perl (http://Aww.activestate.comVActivePerl/)

Perl Basics

Script names
While generdly speaking you can name your script/program anything you want, there are
anumber of conventional extensions gpplied to portions of the Perl bedtiary:

. pm - Perl modules

. pl - Perllibraries (and scripts on UNIX)

. pl x - Perl scripts

Language properties
Perl is an interpreted language — program code is interpreted at run time. Perl is
unique among interpreted languages, though. Code is compiled by the interpreter
before it is actudly executed.
Many Perl idioms read like English
Free format language — whitespace between tokens is optional
Comments are single-line, beginning with #
Statements end with asemicolon (;)
Only subroutines and functions need to be explicitly declared
Blocks of statements are enclosed in curly braces{ }
A scripthasno“mai n()”

Invocation

On platforms such as UNI X, thefirgt line of a Perl program should begin with
#!'/usr/ bi n/ perl

and thefile should have executable permissions. Then typing the name of the script will

cause it to be executed.

Unfortunately, Windows does not have ared equivaent of the UNIX “shebang” line. On
Windows 95/98, you will have to cal the Perl interpreter with the script as an argument:
> perl nyscript.plx

On Windows NT, you can associate the .plx extension with the Perl interpreter:
> assoc . pl x=Per|
> ftype Perl=c:\nyperl\bin\perl.exe %% %
> set PATHEXT=%ATHEXT% . pl X
After taking these steps, you can execute your script from the command line asfollows:
> nyscri pt
The ActivePer| digribution indludesapl 2bat utility for converting Perl scriptsinto
batch files.

Y ou can dso run the interpreter by itsdf from the command line. Thisis often useful to
execute short snippets of code:

perl —e ‘code’
Alternativey, you can run the interpreter in “debugging” mode to obtain ashell-like

environment for testing code scraps.
perl —-de 1

Data Types & Variables

Basic Types
The basic data types known to Perl are scalars, lists, and hashes.

Scdar $f oo Smplevariablesthat can be anumber, astring, or areference.
A scdarisa“thingy.”

Lig @ o0 Anordered aray of scaars accessed using a numeric
subscript. $f oo[0]

Hash % 00 Anunordered set of key/value pairs accessed using the keys
as subscripts. $f oo{ key}

Perl uses an internd type cdled a typeglob to hold an entire symbol table entry. The
effect is that scdars, lists, hashes, and filehandles occupy separate namespaces (i.e,
$f oo[0] isnot part of $f oo or of % 00). The prefix of atypeglob is *, to indicate “dl
types.” Typeglobs are used in Perl programs to pass data types by reference.

You will find references to literds and variables in the documentetion. Literals are
symbaols that give an actua vaue, rather than represent possible vaues, as do variables.
For examplein $f oo = 1, $f oo isascdar variableand 1 isan integer literd.

Varidbles have a vaue of undef before they are defined (assigned). The upshot is that
accessng vaues of a previoudy undefined variable will not (necessarily) rase an

exception.

Variable Contexts

Perl data types can be treated in different ways depending on the context in which they
are accessed.

Scaar Accessing dataitems as scaar vaues. In the case of ligts and
hashes, $foo[0] and $foo{ key}, respectively. Scalars also have
numeric, string, and don't-care contexts to cover Stuaionsin
which conversions need to be done.

Lig Treeting lists and hashes as atomic objects

Boolean Used in Stuations where an expression is evauated as true or
fdse. (Numeric: O=fdse; String: null=fase, Other: undef=fase)

Void Does not care (or want to care) about return value

Interpolative | Takes place indgde quotes or things that act like quotes

Special Variables (defaults)

Some variables have a predefined and specia meaning to Perl. A few of the most
commonly used ones are listed below.

$_

$0

$$

$!
@A\RGV
@ NC

YENV
Sl G

The default input and pattern-searching space

Program name

Current process ID

Current vdlueof er r no

Array containing command-line arguments for the script

The array containing the list of placesto look for Perl scriptsto
be evaluated by thedo, r equi r e, or use congructs

The hash containing the current environment

The hash used to st Sgnd handlers for various Sgnds

Scalars

Scdars ae smple variables that are either numbers or drings of characters. Scaar
variable names begn with a dollar sign followed by a letter, then possbly more letters,
digits, or underscores. Variable names are case-sengtive.

Numbers

Numbers are represented internaly as either signed integers or double precison floating
point numbers. Foating point literals are the same used in C. Integer literasinclude
decima (255), octd (0377), and hexadecimd (Oxff) values.

Strings

Strings are Smply sequences of characters. String literds are delimited by quotes:
Snglequote ‘string’ Encloseasequence of characters
Doublequote “string” Subject to backdash and variable interpolation
Back quote “command’ Evauaesto the output of the enclosed command

The backdash escapes are the same as those used in C:

\n Newline \e Escape

\r Carriage return \\ Backdash

\ 't Tab \” Double quote
\'b Backspace \’ Single quote

In Windows, to represent a path, use either “c: \\t enp” (an escaped backdash) or
“c:/tenp” (UNIX-syle forward dash).

Strings can be concatenated using the“. ” operator: $f oo = “hel l 0” . "worl d”;
Basic I/O
The easest means to get operator input to your program is using the “diamond” operator:

$i nput = <>;

The input from the diamond operator includes anewline (\n). To get rid of this pesky
character, use either chop() orchonp(). chop() removesthelast character of the
gring, whilechonp() removes any line-ending characters (defined in the specia
varigble $/). If no argument is given, these functions operate on the $_ variable.

To do the converse, Smply use Perl’s print function:
print $output.”\n”;

Basic Operators

Arithmetic
Example Name Result
$a + $b Addition Sumof $a and $b
$a * $b Multiplication Product of $a and $b
$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a tothe power of $b

String
Example Name Result
$a . “string” Concatenation Sring built from pieces
“$a string” Interpolation String incorporating the vdue of $a
$a x $b Repeat String in which $a isrepeated $b times

Assignment
The basic assignment operator is“=":$a = $b.

Perl conformsto the C idiom that Ivalue operator= expression
isevauated as: Ivalue = Ivalue operator expression
So that $a *= $b isequivdentto $a = $a * $b
$a += $b $a = $a + $b

“\ nn

Thisdso worksfor the string concatenation operator: $a .

Autoincrement and Autodecrement

The autoincrement and autodecrement operators are pecia cases of the assignment
operators, which add or subtract 1 from the vaue of avariable:

++$a, $a++ Autoincrement Add 1to $a
--%a, %a-- Autodecrement Subtract 1 from $a

Logical
Conditions for truth:
Any gring istrue except for “” and “0”
Any number is true except for O
Any referenceistrue
Any undefined vdueisfdse

Example Name Reault

$a && $b And Trueif both $a and $b aretrue
$a || $b Or $a if $a istrue $b otherwise

I $a Not Trueif $a isnot true

$a and $b And Trueif both $a and $b aretrue
$a or $b Or $a if $a istrug $b otherwise
not $a Not Trueif $a isnot true

Logica operators are often used to “short circuit” expressons, asin:
open(FILE, "< input.dat”) or die “Can’t open file”;

Comparison

Comparison Numeric Sring Result
Equa == eq Trueif $aequa to $o
Not equal I = ne Trueif $anot equa to $b
Lessthan < |t Trueif $alessthan $b
Greater than > gt True if $a greater than $b
Less than or equal <= l e Trueif $anot greater than $b
Comparison <=> cnp 0if $aand $b equa

1if $agreater

-1if $b grester

Operator Precedence

Perl operators have the following precedence, listed from the highest to the lowest, where
operators at the same precedence leve resolve according to associativity:

Asociativity Operators Description
Left Termsand
list operators
Left -> Infix dereference operator
++ Auto-increment
- Auto-decrement
Right \ Reference to an object (unary)
Right I~ Unary negation, bitwise complement
Right + - Unary plus, minus
Left =~ Binds scalar to amatch pattern
Left I~ Same, but negates the result
Left * | %X Multiplication, Divison, Modulo, Repest
Left + - . Addition, Subtraction, Concatenation
Left >> << Bitwise dhift right, left
< > <= >= Numerical relationd operators
It gt le ge Stringrdationd operators
== = <=> Numerical comparison operators
eq ne cnp String comparison operators
Left & Bitwise AND
Left | ~ Bitwise OR, Exclusve OR
Left && Logicd AND
Left | | Logicd OR
.. In scalar context, range operator
In array context, enumeration
Right 2! Conditiond (if ?then : else) operator
Right = += -= etc Assignment operators
Left , Comma operator, <o list element
Separator
=> Same, enforces |eft operand to be string
Right not Low precedence logical NOT
Right and Low precedence logicad AND
Right or xor Low precedence logica OR

Parentheses can be used to group an expression into aterm.

A ligt consgs of expressons, variables, or lists, separated by commas. An array variable
or an array dice many dways be used instead of alig.

Control Structures

Statement Blocks
A statement block is smply a sequence of statements enclosein curly braces:

{
first _statenent;
second_st at enment ;
| ast _st at enent

}

Conditional Structures (If/elsif/else)

The basc congruction to execute blocks of Statements is the i f datement. The i f
datement permits execution of the associated statement block if the test expression
evduaes as true. It is important to note that unlike many compiled languages, it is
necessary to enclose the statement block in curly braces, even if only one statement is to
be executed.

The generad form of an if/then/else type of control satement is asfollows:

i f (expression_one) {
true_one_statenent;

} elsif (expression_two) {
true_two_statenent;

} else {
all _false_statenent;

}

For convenience, Perl dso offers acongtruct to test if an expresson isfdse
unl ess (expression) {
fal se_stat enent;
} else {
true_statenent;
}

Note that the order of the conditional can beinverted aswell:
statenment if (expression);
statenment unl ess (expression);

The*“ternary” operator is another nifty oneto keep in your bag of tricks:
$var = (expression) ? true_value : false_val ue;
It isequivdent to:
if (expression) {
$var = true_val ue;
} else {
$var = fal se_val ue;
}

10

Loops
Perl provides severa different means of repetitively executing blocks of statements.

While
The basic while loop tests an expression before executing a statement block
whi |l e (expression) {
st at enent s;
}

Until

The until loop tests an expression a the end of a statement block; statements will be

executed until the expression evauates as true.
until (expression) {
st at enent s;
}

Do while

A statement block is executed at least once, and then repeatedly until the test expression
isfdse
do {
st at enent s;
} while (expression);

Do until

A statement block is executed at least once, and then repeatedly until the test expression

istrue.
do {
st at enent s;
} until (expression);

11

For
The for loop has three semicolonseparated expressons within its parentheses. These
expressons function respectively for the initidization, the condition, and re-initidization
expressons of the loop. The for loop
for (initial_exp; test_exp; reinit_exp) {
st at enent s;
}

This structure is typicaly used to iterate over arange of values. Theloop runs until the
test _expisfdse
for ($i; $i<10;3$i++) {
print $i;
}

Foreach
The foreach statement is much like the for statement except it loops over the dements of
alist:
foreach $i (@one_list) {
st at enent s;
}

If the scalar loop variable is omitted, $_ is used.

Labels

Any datement block can be given a labe. Labds are identifiers that follow variable
naming rules. They are placed immediately before a statement block and end with a
colon:
SOMELABEL: {
st at enent s;
}

Y ou can short-circuit loop execution with the directivesnext and| ast :
next <kips the remaning satements in the loop and proceeds to the next
iteretion (if any)
| ast immediady exitstheloop in question
r edo jumpsto the beginning of the block (restarting current iteration)

Next and last can be used in conjunction with a label to specify a loop by name. If the
labd is omitted, the presumption is that next/last refers to the innermost enclosing loop.

Usudly deprecated in most languages, the goto expression is nevertheess supported by
Perl. 1t isusudly used in connection with alabd
got o LABEL;

to jump to a particular point of execution.

12

Indexed Arrays (Lists)

A ligisan ordered set of scdar data. List names follow the same basic rules as for
scaars. A referenceto alist hastheform @ oo.

List literals

Lid literds consst of comma-separated vaues enclosed in parentheses:
(1,2,3)
(“foo”, 4.5)

A range can be represented using alist congtructor function (such as*. . ”):
(2..9) =(1,2,3,4,5,6,7,8,9)
(%a..$b) = (%a, $a+l, ..., $b-1, $b)

In the case of string vaues, it can be convenient to use the “ quote-word” syntax
(@] (“fred”,”barney”,”betty”,”w |l m");
@ gwm fred barney betty wilm);

Accessing List Elements

List eements are subscripted by sequentia integers, beginning with O
$f oo 5] isthesxthdement of @ oo
The specid varidble $#f 00 providesthe index vaue of the last ement of @ oo0.

A subset of dementsfrom alis iscaled adice.
@ o0[0, 1] isthesameas($f oo[0], $f oo[1])

You can aso accessdices of li literds.
@oo = (gM fred barney betty wilma))|[2, 3]

13

List operators and functions

Many lig-processing functions operate on the paradigm in which the lig is a stack. The
highest subscript end of the list isthe “top,” and the lowest is the bottom.

push Appends avaueto the end of the list
push(@yl i st, $newal ue)

pop Removes the last dement from the list (and returnsiit)
pop(@wylist)

shift Removes the firg dement from the ligt (and returnsit)
shift(@rylist)

unshi ft Prependsavaue to the beginning of the list
unshi ft(@wylist, $newal ue)
splice Instsdementsinto alist a an arbitrary position
splice(@ylist, $offset, $repl ace, @ew i st)

Ther ever se function reverses the order of the dements of alist

@ = reverse(@);
The sort function sorts the dements of its argument as strings in ASCII order. You can
aso customize the sorting dgorithm if you want to do something specid.

@ = sort(@);

The chonp function works on lists as well as scalars. When invoked on a lig, it removes
newlines (record separators) from each eement of its argument.

14

Associative Arrays (Hashes)

A hash (or associative array) is an unordered set of key/value pairs whose ements are
indexed by their keys. Hash variable names have the form % oo.

Hash Variables and Literals

A literd representation of ahash isalist with an even number of eements (key/vaue
pairs, remember?).
% oo
% oo

gwm fred wi |l ma barney betty);
@ ool i st ;

To add individua eementsto ahash, dl you have to do is st them individuadly:
$foo{fred} = “wilm”;
$f oo{ barney} = “betty”;

Y ou can a0 access dices of hashesin amanner Smilar to the list case:
@oo{“fred”,”barney”} = gm w |l m betty);

Hash Functions

Thekeys function returnsalist of al the current keys for the hash in question.
@ ashkeys = keys(%hash);
Aswith dl other built-in functions, the parentheses are optiond:
@hashkeys = keys %hash;
Thisis often used to iterate over al dements of a hash:
foreach $key (keys %hash) ({
print $hash{$key}.”\n";
}

Inascdar context, thekeys function gives the number of dementsin the hash.
Conversdly, theval ues function returnsalist of dl current values of the argument
hagh:

@nhashval s = val ues(%ash);
Theeach function provides another means of iterating over the dementsin a hash:

while (($key, $value) = each (%ash)) {
st at enent s;
}

Y ou can remove dements from ahash using thedel et e function:
del ete $hash{‘ key’};

15

Pattern Matching

Regular Expressions

Regular expressions are patterns to be matched againgt a string. The two basic operations
performed using patterns are matching and substitution:

Matching | pattern/

Substitution s/ pattern/ newstring/

The smplest kind of regular expresson is a literd sring. More complicated expressons
indude metacharacter s to represent other characters or combinations of them.

The [..] congtruct is used to list a set of characters (a character dass) of which one will
match. Ranges of characters are denoted with a hyphen (-), and a negation is denoted
with acircumflex (). Examples of character classes are shown below:
[a- zA- Z] Any sngle letter
[0-9] Any digit
[~0-9] Any character not adigit
Some common character classes have their own predefined symbols.
Code | Matches
. Any character
\d A digit, such as[0- 9]
\D A nondigit, sameas[* 0- 9]
\'w A word character (dphanumeric) [a- zA- Z_0- 9]
\'W A nonword character ["a- zA- Z_0- 9]
\'s A whitespacecharacter [\t\n\r\f]
\'S A nortwhitespace character [\t\n\r\f]

Regular expressons aso dlow for the use of both variable interpolation and backslashed
representations of certain characters:
Code | Matches

\n Newline
\'r Carriage return
\ t Tab

\ f Formfeed
\/ Litera forward dash

Anchors don't match any characters; they maich places within astring.

Assertion | Meaning

n Matches at the beginning of string

$ Matches a the end of string

\'b Matches on word boundary

\B Matches except a word boundary

\A Maiches at the beginning of string

\Z Matches at the end of gtring or before anewline
\z Matches only a the end of string

16

Quantifiers are used to pecify how many instances of the previous eement can match.

Maximal | Minimal Allowed Range

{n, m {n, m? | Must occur at least n times, but no more than mtimes
{n,} {n,}? Must occur at least n times

{n} {n}? Must match exactly n times

* * 9 0 or moretimes (sameas{ 0, })

+ +? 1 or moretimes (sameas{ 1, })

? ?7? Oor 1time(sameas{ 0, 1})

It B important to note that quantifiers are greedy by nature. If two quantified petterns are
represented in the same regular expresson, the leftmog is greediest. To force your
quantifiers to be non-greedy, append a question mark.

If you ae looking for two possble paterns in a dring, you can use the dternation
operator (|). For example,

[you| me| hi m] her/;
will maich againgt any one of these four words. You may dso use parentheses to provide
boundaries for dternation:

[And(y| rew)/;
will match e@ther “Andy” or “Andrew”.

Parentheses are used to group characters and expressons. They dso have the effect of
“remembering” pats of a mached patern for further processing. To recal the
“memorized” portion of the dring, include a backdash followed by an integer
representing the location of the parentheses in the expression:

[fred(.)barney\1/;
Outsde of the expresson, these “memorized” portions are accessble as the specid
vaiables$1, $2, $3, etc. Other specid varidbles are asfollows:

$& Part of string matching regexp
$ Part of string before the match
$ Part of string after the match
Regular expression grouping precedence
Parentheses () (?:)
Quartifiers ? +* {mn} ?? +? *?
Sequence and abc M $ VA \NZ (?=) (?!)
anchoring
Alternation |

To sdect a taget for matching/subgtitution other than the default variable ($_), use the
=~ operator:
$var =~ /pattern/;

17

Operators
n pattern/ gi nosx
The “match” operator searches a dring for a pattern match. The preceding “m” is
usudly omitted. The trailing modifiers are as follows
Modifier | Meaning
g Match globdly; find dl occurrences
i Do case-insengtive matching
m Treat gring as multiple lines
0 Only compile pattern once
S
X

Treat gring asasngleline
Use extended regular expressions

s/ pattern/repl acenent/ egi nosx
Searches a dring for a pattern, and replaces any match with replacement. The
tralling modifiers are dl the same as for the match operator, with the exception of
“e”, which evduaes the right-hand Sde as an expresson. The subditution
operator works on the default variable ($_), unless the =~ operator changes the

target to another variable,

tr/ patternl/pattern2/cds
This operator scans a string and, character by character, replaces any characters
matching pat t er n1 with thosefrom pat t er n2. Traling modifiers are:
Modifier | Meaning
C Complement patternl
d Déelete found but unreplaced characters
S Squash duplicated replaced characters
This can be used to force letters to al uppercase:
tr/a-z/ A-Z/;

@ields = split(pattern, $input);
Split looks for occurrences of a regular expresson and bresks the input dring at
those points. Without any arguments, split breaks on the whitespacein $:
@wrds = split; isequivaent to
@words = split(/\s+/,%$);

$output = join($delimter,@nlist);

Join, the complement of lit, takes a lig of vaues and glues them together with
the provided ddimiting string.

18

Subroutines and Functions

Subroutines are defined in Perl as:
sub subnanme {

statenment 1;

statenment _2;

}
Subroutine definitions are globd; there are no local subroutines.

Invoking subroutines

The ampersand (&) is the identifier used to cal subroutines. They may adso be cdled by
appended parentheses to the subroutine name;
name() ;
&nane;
You may use the explicit r et ur n statement D return a vaue and leave the subroutine a
any point.
sub nyfunc {
statenment _1,
if (condition) return $val;
st at ement _2;
return $val ;

}

Passing arguments

Arguments to a subroutine are passed as a single, flat list of scaars, and return vaues are
passed the same way. Any arguments passed to a subroutine comeinas @ .

To passlists of hashes, it is necessary to pass references to them:

@eturnlist = ref_conversion(\@nlist, \% nhash);
The subroutine will have to dereference the arguments in order to access the data values
they represent.

sub nyfunc {

nmy($inlistref, $i nhashref) = @;
my(@nlist) = @inlistref;
ny(% nhash) = %i nhashref;

st at enent s;

return @esult;

}

Prototypes alow you to design your subroutines to take arguments with congraints on
the number of parameters and types of data.

19

Variable Scope
Any variables used in a subroutine that aren’t declared private are globd variables.

The nmy function declares variables that are lexicaly scoped within the subroutine. This

means that they are private variables that only exig within the block or routine in which
they are caled. The | ocal function declares variables that are dynamic. This means that

they have globd scope, but have temporary vaues within the subroutine Most of the
time, use nmy to locdlize variables within a subroutine.

20

Files and 1I/O

Filehandles

A filehandle is the name for the connection between your Perl program and the operating
system. Filehandles follow the same naming conventions as labels, and occupy their own
namespace.

Every Perl program has three filehandles that are automatically opened for it: STDIN,
STDOUT, and STDERR:

STDIN Standard input (keyboard or file)
STDOUT Standard output (print and write send output here)
STDERR Standard error (channel for diagnostic output)

Filehandles are created using the open() function:
open(FILE,"fil enanme”);

Y ou can open files for reading, writing, or gppending:
open(FI LE,”> newout.dat”) Writing, cregting anew file
open(FI LE, ">> ol dout.dat”) Appendingto exigingfile
open(FILE, "< input.dat”) Readingfromexidingfile

Asan asde, under Windows, there are a number of waysto refer to the full path to afile:
"c:\\tenp\\file” Escapethebackdashin double quotes
‘c:\temp\file’ Use proper path in single quotes
“c:/tenmp/file” UNIX-style forward dashes

It is important to redize tha cdls to the open() function are not aways successtul. Perl
will not (necessarily) complain aout usng a filehandle crested from a faled open() .
Thisiswhy we test the condition of the open statement:

open(F,”< badfile.dat”) or die “open: $!”

Y ou may wish to test for the existence of afile or for certain properties before opening it.
Fortunately, there are anumber of file test operators available:

File test Meaning

-e file File or directory exists

-T file Fleisatext file

-w file Fleiswritable

-r file Fleisreadable

-s file File exigts and has nonzero length

These operators are usudly used in a conditiond expression:
if (-e nyfile.dat) {
open(FILE, "< nmyfile.dat”) or die “open: $!'\n”;
}

Even more information can be obtained about agiven fileusangthest at () function.

21

Using filehandles

After a file has been opened for reading you can read from it usng the diamond operator
just as you have dready done for STDIN:
$ = <FILE>; or
while (<FILE>) {
st at enent s;
}

To print to your open output file, use the filehandle as the first argument to the print
gtatement (N.B. no commas between the filehandle and the string to print).
print FILE “Look Ma! No hands!\n”;

To change the default output filehandle from STDOUT to another one, use select:
sel ect FILE;

From this point on, dl cdls to print or write without a filehandle argument will result in
output being directed to the sdected filehandle. Any specid varigbles related to output

will aso then gpply to this new default. To change the default back to STDOUT, sdect it:
sel ect STDOUT,;

When you are finished using afilehandle, doseit usng clos():
cl ose(FI LE);

22

Formats

Perl has a farly sophisticasted mechaniam for generating formeatted output. This involves
usng pictorid representations of the output, cdled templates, and the function wri t e.
Using aformat congsts of three operations:

1. Defining the format (template)

2. Loading datato be printed into the variable portions of the format

3. Invoking the format.

Format templates have the following generd form:
format FORMATNAME =
fieldline
$val ue_one, $val ue_t wo,

Everything between the “=" and the“.” is considered part of the format and everything
(inthefieldlines) will be printed exactly asit appears (whitespace counts). Fieldlines
permit variable interpolation viafieldholders:

H, ny name is @<<<<, and |I’'m @ years ol d. Fiedline

$nanme, $age Valueline
Fieldholders generdly begin with a @and consst of characters indicated aignment/type.

@<< Four character, left-judtified fidd

@>> Four character, right-judtified field

@ || Four character, centered field

@ . ## Six character numeric field, with two decima places

@ Multi-line fidd (on line by itsdf — for blocks of text)

< Five character, “filled” field (“chews up” associated variables)

The name of the format corresponds to the name of a filehandle. If write is invoked on a
filehandle, then the corresponding format is used. Naturdly then, if you're printing to
gsandard output, then your format name should be STDOUT. If you want to use a format
with a name other than that of your desred filehandle, set the $~ variable to the format
name.

There are specia formats which are printed at the top of the page. If the active format
name is FNAME, then the “top” format name is FNAME_TOP. The specid variable $%
keeps a count of how many times the “top” format has been cdled and can be used to
number pages.

23

Manipulating files & directories

The action of opening afile for writing creates it. Perl aso provides functionsto
manipulate files without having to ask the operating sysemto doit.

unl i nk(fil enane)
Deete an existing file. Unlink can teke aligt of files, or wildcard as an argument
aswdl: unlink(<* .bak>)

rename(ol dnanme, newnane)
Thisfunction renames afile. It is possble to move filesinto other directories by
gpecifying a path as part of the new name.

Directories aso have some specid function associated with them

nkdi r (di rname, node)
Create anew directory. The “mode’ specifies the permissions (set thisto 0777 to
be safe).

rdi r (di rnanme)
Removes (empty) directories

chdi r (di r name)
Change current working directory to dirname

File and directory attributes can be modified aswell:

chnmod(perm ssion, |list of files)
Change the permissions of files or directories:
666 = read and write
444 = reed only
777 = read, write, and executable

utime(atinme, nmime, list of files)

Modify timestamps on files or directories. “aime” isthe time of the most recent
access, and “mtime’ is the time the file/directory was last modified.

24

Modules

Namespaces and Packages

Namespaces dore identifiers for a package, including variables, subroutines, filehandles,

and formats, so that they are didinct from those of another packege. The default

namespace for the body of any Perl program is mai n. You can refer to the variables from

another package by “qudifying” them with the package name. To do this, place the name

of the package followed by two colons before the identifier’ s name:
$Package: : var nanme

If the package name is null, the mai n package is assumed.

Modules
Modules are Perl’s answer to software packages. They extend the functiondity of core
Perl with additional compiled code and scripts. To make use of a package (if it's instdled
on your system), call the use function:

use CG ;
This will pull in the module€s subroutines and variables a compile time. use can dso

take aligt of srings naming entities to be imported from the module:
use Module gw(constl1l const2 funcl func2);

Perl looks for modules by searching the directories listed in @ NC.

Modules can be obtained from the Comprehensive Perl Archive Network (CPAN) a
http://www.cpan.org/ modul es/

or from the ActiveState Site:
http://mww.A ctiveState.com/packages/zips

To ingdl modules under UNIX, unarchive the file containing the package, change into
its directory and type:

perl Makefile.PL

make

make i nstall
On Windows, the ActivePerl digtribution makes use of the “Perl Package Manager” to
ingdl/remove/update packages. To indtdl a package, run ppm on the .ppd file associated

with the module:
ppminstall nodul e.ppd

25

Object-Oriented Perl

In Perl, modules and object-oriented programming go hand in hand. Not al modules are
written in an object-oriented fashion, but most are. A couple of definitions are warranted
here:
An object is samply a referenced thingy that happens to know which dass it
belongs to.
A classis smply a package that happens to provide methods to deal with objects.
A method is smply a subroutine that expects an object reference (or a package
name, for class methods) asiits first argument.

To create an object (or instance of a class), use the class condructor. Usudly the class
congtructor will be a function named “new,” but may be cdled “Create’ for some Win32
modules. For example,

$tri = new Triangle::Ri ght (sidel=>3, side2=>4);
The congructor takes a list of arguments describing the properties of the object to be
created (see the documentation of the module in question to determine what these should
be) and returns a reference to the created object.

An example of aclass congtructor (internd to the modue) is shown below:
package critter; # declare the name of the package

sub new {
ny $class = shift; # Get class nane
ny $self = {}; # Initialize the object to nothing

bl ess $self, $class; # Declare object to be part of class
$self->_initialize();# Do other initializations
return $self;

}

Methods (subroutines expecting an object reference as ther fird argument) may be
invoked in two ways.

Packagenane- >construct or (args) - >met hod_nanme(ar gs)
Or:

$obj ect = Packagenane->constructor(args);

$obj ect - >net hod_nane(args) ;

Methods are smply declared subroutines in the package sourcefile.

26

Common Gateway Interfaces

Perl is the mog commonly used language for CGl programming on the World Wide
Web. The Common Gaeway Interface (CGI) is an essentid tool for cresting and
managing comprehensve webgtes. With CGIl, you can write soripts that creste
interactive, user-driven gpplications.

Simple CGI Programs

CGl programs ae invoked by accessng a URL (uniform resource locator) describing
their coordinates:

http://ww. myconmpany. cont cgi - bi n/ program pl x
even though the actua location of the script on the hard drive of the server might be
something like:

c: \webserver\ bi n\ program pl x

The smplex CGI programs merdy write HTML data to STDOUT (which is then
displayed by your browser):

print << ENDOFTEXT,;

Content-type: text/htm

<HTM.>

<HEAD><TI| TLE>Hel | o, Worl d! </ TI TLE></ HEAD>
<BODY>

<Hl1>Hel | o, Worl d! </ Hl1>

</ BODY>

</ HTM_>

ENDOFTEXT

CGl.pm

CGl.pm is a Pearl module written to fecilitete CGI programming. It contains within itsdf
the wherewithd to generate HTML, parse arguments and environment variables, and
mantan date over multiple transactions. Another festure which is not to be
underestimated is the ability to rdiably run CGI programs from the command line for the
purposes of debugging. A smple example of the CGl.pm module in action is shown

below:
use Cd ;

$query = CA::new(); # create CGA object

$bday = $query->paranm(“birthday”); # get paraneters
print $query->header(); # generate Content-type |ine
print $query->p(“Your birthday is $bday”);

27

Passing Parameters

CGI programs redly shine, however, when they take arguments and format their output
depending on those arguments. To pass arguments to a CGIl script, ampersand-ddimited
key-vdue parsto the URL:

htt p: // www. myconpany. coni cgi - bi n/ i cecr eam pl x?f | avor =m nt &ont ai ner =cone

Everything after the question mark is an argument to the script.

Environment variables provide the script with data about the server, client, and the
arguments to the script. The latter are avalable as the “QUERY_STRING” environment

variable. Thefollowing example prints al of the environment variables:
Print all of the necessary header info
print <<ENDOFTEXT,
Content-type: text/htm

<HTM_>

<HEAD><TI TLE>Envi ronnent Vari abl es</ Tl TLE></ HEAD>
<BODY>

<CENTER><H1>Envi ronnment Vari abl es</ Hl></ CENTER>
<TABLE>

<TR><TH>Var i abl e</ TH><TH>Val ue</ TH>

ENDOFTEXT

Now | oop over and format environnment vari ables

foreach $key (sort keys %ENV) ({
print "<TR><TD>$key</ TD><TD>$ENV{ $key} </ TD></ TR>\ n";
}

print "</ TABLE></BODY></ HTM.>\ n";

CGl.pmis paticularly good at extracting parameters in a platform-independent way:
use C3;

$query = CA::new);
print $query->header();
print $query->start_html (-title=> Form Paraneters');
print $query->hl(' Form Paraneters');
foreach $name ($query->param()) {
$val ue = $query- >param $nane) ;
print "$name => $val ue\ n";
print $query->br(); # Insert a line break

}
print $query->end_htm ();

28

Database Access

There are two primary means of accessng databases under Perl. The first (and oldest)
makes use of the DBM (Database Management) libraries available for most flavors of
UNIX. The second (and more powerful) dlows for a platform-independent interaction
with more sophidicated database management sysems (DBMS's) such as Oracle,
Sybase, Informix, and MySQL.

DBM

A DBM is a dgmple database management facility for most UNIX sysems It alows
programs to dore a collection of key-vdue pars in binay form, thus providing
rudimentary database support for Perl. To use DBM databases in Perl, you can associate a
hash with a DBM database through a process smilar to opening afile

use DB File;
ti e(%ARRAYNAME, “DB_File”, “dbnfil enanme”);

Once the database is opened, anything you do to the hash isimmediately written to the
database. To break the association of the hash with thefile, usetheunt i e() function.

DBI/DBD

DBl is a module that provides a condgtent interface for interaction with database
solutions. The DBI gpproach relies on database-gecific drivers (DBD’s) to trandate the
DBI cdls as needed for each database. Further, actua manipulation of the contents of the
database is performed by composng statements in Structured Query Language (SQL)
and submitting them to the database server.

DBI methods make use of two different types of handles
1. Database handles (like filehandles)
2. Statement handles (provide means of executing statements and manipulating their
results)

Database handles are created by theconnect () method:
$db_handl e = DBI - >connect (‘' DBl : mysql : dbnane: host nane’ ,
$user name, $password);

and destroyed by thedi sconnect () method:
$result = $db_handl e- >di sconnect ();

Thefirg asgument totheconnect () method isastring describing the data source,

typicaly written in the form:
DBl : dri ver _nane: dat abase_nane: host _nane

Statement handles are created by the pr epar e() method

$st _handl e = $db_handl e- >prepare($sql)
where $sql isavaid SQL statement, and “destroyed” using thef i ni sh() method.

29

The SQL statement is then executed usng theexecut e() method
$result = $st_handl e- >execut e();

and the results obtained using any of thef et ch() methods:
@ry = $st_handl e->fetchrow array(); # fetch a single row of the
query results

$hashref = $st_handl e->f et chrow_hashref ();
Y%hash = %hashref;

Note that you do not directly access the results the SQL statement, but obtain them one
row a atimeviathef et ch() methods.

The following script connects to aMySQL database and prints the contents of one of its
tables:

use DBI

use strict:

ny($dsn) = ‘DBIl:nysql:test:local host’'; # Data source nane
ny($usernane) = ‘user’; # User nane

ny($password) = ‘secret’; # Password

ny($dbh, $st h) ; # Dat abase and st atenent handl es
nmy(@ry); # array for rows returned by query

connect to database
$dbh = DBI - >connect ($dsn, $usernane, $password);

issue query
$sth = $dbh- >prepare(‘ SELECT * FROM t abl enane’);
$st h- >execut e();
read results of query, then clean up
while(@ry = $sth->fetchrow array()) {
print join(“\t”, @ry), “\n”;
}
$st h->finish();

$dbh- >di sconnect () ;

30

