
N U C L E A R  I N S T R U M E N T S  AND METHODS 165 (1979)  139-155 ;  (~) N O R T H - H O L L A N D  P U B L I S H I N G  CO. 

PRODUCTION OF ULTRA-COLD NEUTRONS USING DOPPLER-SHIFTED BRAGG 
SCATTERING AND AN INTENSE PULSED NEUTRON SPALLATION SOURCE 

T.W. DOMBECK, J. W. LYNN 

University of Maryland, College Park, Maryland 20742, U.S.A. 

S.A. WERNER 

University of Missouri, Columbia, Missouri 65201, U.S.A. 

T. BRUN, J. CARPENTER, V. KROHN and R. RINGO 

Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. 

Received 11 April 1979 

We present an analytic and a computer generated simulation of the production of ultra-cold neutrons (UCN) using Bragg 
scattering from a moving crystal to Doppler-shift higher velocity neutrons into the UCN region. The calculation was carried 
out with a view toward its application at the Intense Pulsed Neutron Source (IPNS) now under construction at Argonne 
National Laboratory. This method for the production of UCN appears well matched to a pulsed source, and we show that the 
UCN can be stored in a neutron bottle at the peak flux which can potentially be much higher than at the present high flux 
reactors. The predicted density of stored UCN indicates that a highly precise measurement of the neutron electric dipole 
moment (EDM) will be possible within the next few years. 

1. Introduction 
Methods to produce ultra-cold neutrons (UCN) 

have aroused considerable interest in recent years 
as potentially providing a means to carry out a very 
precise search for the electric dipole moment (EDM) 
of the neutron1-6). The reason for this is that UCN 
can be confined in a "bott le" for long periods of 
time, thus increasing the measuring time and hence 
the sensitivity to the neutron EDM by perhaps as 
much as four orders of magnitude7.8). In this paper 
we describe a technique in which UCN are gener- 
ated by Doppler-shifting cold neutrons 4,9-11) 
( - 1 0 A )  produced in a pulsed neutron source, 
down to ultra-cold velocities using Bragg reflection 
from a moving crystal. We show that the density of 
UCN which can be stored in a bottle is limited by 
the peak density in the source, and not by the 
time-averaged density. For this reason the pulsed 
neutron source appears very attractive for this appli- 
cation since peak fluxes exceeding 1016 n/cm 2' s are 
expected to become available within a few 
yearsU). 

The observation of a neutron electric dipole 
moment would be the first example in which P and 
T symmetries were violated in a particle interaction. 
CP nonconservation was observed in the K~-I(~ 
decay system~3), and many theories attempting to 
explain CP violation predict, as a consequence of 
the CPT theorem, a finite neutron EDM. Stimu- 

iated by this theoretical speculation, a number of 
precision experiments employing magnetic-reso- 
nance spectrometers have searched for the neutron 
EDM. The most recent measurement places an 
upper limit on its existence of 3 × 10 -24 e "  c m  14,15). 
This limit has already eliminated many theories 
which predicted larger EDM values, however, a few 
exceptions remain. Among them is the prediction 16) 
of - 0 . 2 × 1 0 - 2 4 e . c m  made by the renormalizable 
gauge theories 17) which have been outstandingly 
successful in the unification of the weak and elec- 
tromagnetic interactions. Other models using the 
"Higgs Boson Mechanism" predict values between 
10 -24 and 10-27e • c m  18). Still other models based 
on gauge theories rely on second-order weak inter- 
action effects to produce the PT violation and there 
are various predictions from them for an EDM 
between 10 -25 and 10-3°e • cm 19). Finally, there is 
the superweak theory2°), ascribing the PT violation 
to a AS=  2 interaction. It predicts an EDM of 
10 -27 e .  c m  or  lower21). 

The most precise method known to measure the 
EDM is based on a magnetic-resonance spectrome- 
ter of the Ramsey type 22) which uses separated rf 
coils. The precision in the EDM measurement is 
inversely proportional to the time the neutron 
spends in the spectrometer and the practical limits 
for the beam type of experiment are close to being 
achieved. An increase in sensitivity is possible if 
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the neutrons can be confined while the measure- 
ment is being made. In principle UCN can be trap- 
ped in a closed container for periods up to the 
neutron lifetime (N1000s). If such a container 
were used as the central part of the spectrometer in 
the EDM measurement, the neutrons could be 
confined as much as 60,000 times longer in the 
perturbing electric field than the neutrons in the 
most recent beam experiment. A corresponding 
increase in the spectrometer sensitivity would be 
expected. 

Ultra-cold neutrons produced in reactor beams 
have been stored s u c c e s s f u l l y  23"27) for periods up to 
150s. Storage densities of 100/1 have been re- 
ported 26) using copper, graphite, aluminum, and 
glass containers. The most recent UCN beam at the 
high flux reactor at the Institut Max Von Laue - 
Paul Langevin (ILL), Grenoble, France is capable of 
storing neutrons with a density of one per cm 3 5). A 
neutron bottle experiment has been proposed using 
this beam to perform an EDM measurement with a 
precision of 10 -26 e '  c m  28). 

The UCN source described in this paper is 
currently under construction and will be used in 
conjunction with the Argonne National Laboratory 
Intense Pulsed Neutron Source (IPNS)~2). This 
source produces short bursts of fast neutrons from a 
spallation target bombarded by high energy protons 
(500-1000 MeV). The neutrons are then slowed in 
a hydrogenous moderator. The planned UCN facili- 
ty will take advantage of the peak flux from the 
moderator to fill a bottle by Doppler-shifting pulses 
of neutrons from a velocity of about 400 m/s  down 
to the UCN region (0-7 m/s) using Bragg reflection 
from a moving mica crystal. A shutter will let 
neutrons into the bottle when the pulses arrive and 
close the bottle between pulses. In this way the 
bottle is filled by many pulses as if by a steady 
beam at the peak flux. The pulsed nature of the 
source results in a relatively unimportant increase 
in the filling time (~ 1 min) compared to that neces- 
sary at a steady-state source. 

In the following section we present a brief 
description of the apparatus and the experimental 
arrangement. In section 3 we will discuss analyti- 
cally the effectiveness of Doppler-shifting cold neu- 
trons down to ultracold velocities while in section 4 
we will treat this same problem using numerical 
Monte Carlo methods. The main advantage of 
doing this problem analytically is that we can more 
easily examine the qualitative dependence of the 
efficiency of producing and utilizing ultra-cold neu- 

trons on the various experimental parameters. How- 
ever, in order to carry the analytic calculation to 
completion, it is necessary to make certain approxi- 
mations which are not necessary an the numerical 
treatment. Agreement between the results of these 
two approaches has added significant confidence in 
our estimates of the ultra-cold neutron storage 
density achievable at the Intense Pulsed Neutron 
Source. 

2. Apparatus and beam characteristics 
The Doppler Shifter Assembly is shown in fig. 1. 

Neutrons leaving the spallation target are cooled by 
a cold hydrogenous moderator ( 10×10×5  cm 3) at 
20 K. The calculation of the neutron flux leaving 
the moderator involves specifics about the arrange- 
ment of the target and the moderator. However, it 
appears that with the proper placement of the 
moderator a time average thermal flux ~ of 
6 x l 0 1 t n / c m 2 . s  will be available at IPNS-I 12). 
The peak of the velocity distribution OT for a simi- 
lar type of moderator has been measured to be 
650 m/s 29) and the pulse width z is expected to be 
200 #s  and not to change much down to a velocity 
of 395 m/s. 

The neutrons from the moderator travel through 
the shielding wall in a beam tube containing He gas 
at room pressure (diameter ~ 10 cm). This tube can 
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Fig. 1. An overall schematic diagram of the apparatus to be used 
to search for the neutron EDM at the pulsed sources at Argonne 
National Laboratory. The Doppler-shifter (rotor) is currently 
being tested at the ZlNG-P' source. It is 2.4 m in diameter and 
turns at 30 Hz. 



PRODUCTION OF U L T R A - C O L D  NEUTRONS 141 

be constructed to act as a beam guide. The Doppler 
shifting crystal is mounted in a vacuum near the 
edge of a rotor operating at the same frequency and 
in phase with the arrival of neutrons from the A. 
moderator (30 Hz for IPNS). The rotational sense is 
such that the crystal moves away from the source 
when it is in the incident beam. The tangential 
velocity oR and the angle at which the crystal is 
mounted is set by the Bragg condition and the 
velocity space volume to be reflected as UCN. 

After Doppler-shifting, the UCN enter part of the 
bottle facility through a shutter device arranged B. 
close to the edge of the rotor. The shutter opens 
and closes in phase with the passing crystal and 
traps the neutrons in the bottle. After many pulses 
the bottle will arrive asymptotically at the maxi- 
mum density of stored'neutrons; i.e., when the 
number entering through the shutter equals the 
number of neutrons lost between pulses. 

The neutron bottle is capable of storing neutrons 
up to a certain velocity (Omax) which is determined c. 
by the limiting wavelength at which total internal 
reflection 6) occurs off the walls. (In table 1 we have 
listed a number of wall materials and their values 
of Omax.) Owing to component mixing on reflection 
from the walls the acceptance of the bottle in veloc- 
ity space is approximately a sphere with a volume 
4 n O3m~x. The velocity space volume reflected by the 
crystal should match this acceptance. 

The shutter consists of an auxiliary rotating disk 
perpendicular to the rotor and in phase with it. A 

TABLE 1 

Limiting velocities for total internal reflection of ultra-cold 
neutrons. 

Material Omax(m/s) a 

Be 6.9 

BeO 6.9 

C 5.8 

Cu 5.6 
AI 3.22 

a t ) m a  x = h/m x/(Na/n), where m is the neutron mass, N is the 
density of scattering centers, a is the coherent scattering 
length and h is Planck's constant. 

b Ferromagnetic materials have two limiting velocities depend- 
ing on the neutron spin direction relative to the magnetic 
field. 

TABLE 2 

Design parameters for the Doppler-shifter to be used at the 
Argonne Laboratory Intense Pulsed Neutron Source. 

Source 

Pulse rate 30 Hz 
Beam velocity 395 m/s  
Phase space density 0.66 n/cm 3. (m/s) 3 
Pulse width (fwhm) 200 /xs 
Beam diameter 10 cm 
Distance source to crystal 480 cm 

Rotor and Crystal 
Radius 120.2 cm 
Bra.gg angle 61.2 ° 
d-spacing 9.96 A Cl'hermica crystal) 
Mosaic spread (r/x) ½° 
Mosaic spread (r/y) 3 ° 
Crystal dimensions 5 cm×2  cm 
Crystal thickness 0.4 cm 
Shutter time interval 3 ms 

Bottle 
Bottle opening 5 cm × 6 cm 
Oma x (beryllium) 7 m/s 
Volume 10 1 

slot cut in the disk periodically opens the bottle 
entrance. The parameters for the source, rotor, crys- 
tal, and the shutter that will be used at Argonne 
Laboratory are given in table 2. 

The average phase space density ~(v) at the 
source can be computed from the time average flux 
and is given by 

1 e_(V/VT)2, 
~ (v)  = ~ 2X--~VT (1) 

where o T is the mean velocity corresponding to the 
moderator temperature (½ m o t  = kT).  Using the val- 
ues for 0 and o T given above, the time average 
phase space density is 0.004n/cm3.(m/s) 3 for 
IPNS-I. The peak phase space density is found by 
dividing eq. (1) by the duty factor fAT, where f is 
the frequency of pulses (30 Hz) and the AT is the 
effective pulse width (~  200 as, fwhm) yielding 

np(V) = 0.66 n/cm a" (m/s) a . (2) 

It is useful to calculate the maximum peak densi- 
ty of neutrons available for containment as a figure 
of merit to compare with the final stored density. The 
region of phase space which can be shifted from a 
velocity around 395 m/s  to the UCN range has a 
volume given by ~ XV3max. The density of neutrons 
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in this region follows from eq. (2) 

Pmax : np~2T133max ~ '  103 n/cm3 (for IPNS-I). (3) 

According to Liouville's theorem we cannot exceed 
eq. (3) in the final bottle density. Furthermore, this 
result is decreased by various inefficiencies which 
arise in the Doppler-shifting and collection process. 
In the following sections we attempt to identify and 
calculate these inefficiencies. 

3. A n a l y t i c a l  t r e a t m e n t  o f  the  Doppler-shifter 
The main physical characteristics of Bragg re- 

flection by a moving crystal are well-known and 
have been checked experimentally9-11,3°-33). The 
difficulty in applying the results of these papers 
directly to our problem arises from the fact the 
incident beam is pulsed and that the crystal is both 
rotating and translating. The analysis presented 
here is based on the geometrical opportunities and 
constraints achievable at the pulsed neutron source 
IPNS-I scheduled to begin operation at the Argonne 
National Laboratory in 1980. 

3 .1 .  VELOCITY TRANSFORMATIONS 

Consider a crystal mounted rigidly to a rotor of 
radius R rotating with angular frequency to as 
shown in fig. 2. The reflecting planes in the crystal 
are set at an angle/3 with respect to the local radius 
vector R of the rotor (see fig. 2a). The angle 
between the velocity vector oR and the central ray 
of the incident beam is also /3 when the crystal 
passes the beam center. It is important that this 
angle is not zero, as we shall see. 

If we Bragg-reflect neutrons of laboratory velocity 
OnE from a crystal moving with velocity OR, the 
effective incident velocity of the neutron in the 
moving system is 

VnR ~--- t ) n L -  10 R . (4) 

The velocity of the reflected neutrons in the 
moving system is determined by the Bragg rela- 
tion 

h r V.R = V.R + -- G, (5) 
m 

where G is the reciprocal lattice vector correspon- 
ding to the reflecting planes (IG[ = 2 n/d), and the 
magnitude of the incident and reflected velocity 
vectors in the moving coordinate frame must be 
equal, 

Iv'.RI = iv.Rl. (6) 

The laboratory velocity of the reflected neutrons is 

Lo 

._L 

t e r  
r a t i o n  

~'~ 

v.,. 

(At 

~SOURCE 
./4.A 

Fig. 2. This figure defines the symbols used in the text to 
describe the Doppler-shifter as viewed in the laboratory (A) and 
was viewed in velocity space (B). The velocity vector o R of the 
moving crystal makes an angle/3 with the beam center line (z) 
when the center of the crystal passes the beam center. The 
nominal Bragg angle 0 a is related to/3 by 0 a = ½ 7r-/3. 

then 

V'.L = V'nR+ YR. (7) 

It should be noted that the above equations 
require 

h 
VnL VnL + - -  G .  (8 )  

m 

A velocity-vector diagram of these equations is 
shown in fig. 2b. It will be noted from this diagram 
that the reflected neutron velocity in the laboratory 
frame O'nL is zero when the incident velocity O,L is 
directed antiparallel to the reciprocal lattice vector G 
and equal in magnitude to (h/m)G. This condition 
can, in principle, be met for any crystal. However, 
in order to keep the tangential velocity of the rotor 
down to some reasonable speed, it is desirable to 
select a crystal for which G is fairly small. This 
requires choosing a crystal which has as large a 
plane spacing d as possible. In terms of availability, 
strength and neutron reflectivity properties, syn- 
thetic mica seems to be the optimum choice. 
Another consideration is also important: in order to 
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utilize a reasonable beam area there will necessarily 
be a gradient of the velocity OR across the surface of 
the crystal. Consequently, the condition for Doppl- 
er-shifting neutrons down to zero velocity can only 
be met for some fraction of the crystal area at a 
given instant of time. This velocity gradient is, of 
course, smaller the lower OR, which also requires 17 
to be as small as possible. On the basis of the 
numbers for a rotor of practical dimensions, this 
consideration seems to rule out the commonly used 
neutron monochromators Cu, Be, and pyrolytic 
graphite for this application. 

3.2. EFFECTIVE VOLUMES IN VELOCITY SPACE 
Since the crystal is necessarily imperfect, having 

a mosaic structure, and the incident beam is diver- 
gent and polyenergetic, we must inquire about the 
volume of neutrons in velocity space actually 
reflected by the crystal. In fact, we need to know 
this volume at each instant of time t, and at each 
position (x,y) on the crystal face. We need also to  
calculate the intersection or overlap of this volume 
in velocity space with a sphere of radius area x 
centered at O'nL = 0. It is only neutrons within this 
sphere which are termed ultra-cold and can be 
stored in the neutron bottle. 

A 
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Fig. 3. This diagram shows the velocity space volumes effective 
in the Doppler-shifting process, and how the neutron distribu- 
tions as viewed in the laboratory (L) and in the moving (R) 
frames are related. The dimensions W z=2.35 W z and 
Wx= 2.35 W x are given by eqs. (10) and (9) respectively. The 
third dimension Wy = 2.35 Wy of volumes B' and C is given by 
eq. (11). 

Suppose the phase of the rotor is such that the 
center of the crystal is in the center of the beam 
when the center of the neutron pulse of wavelength 
,;t,L = ;t~,L (= 9.96 A for mica) arrives at the crystal. 
Call this time t = 0. Consider also, only the center 
point of the crystal ( x = 0 , y = 0 )  for now. Take 
point 0 to be the center of neutron velocity space as 
shown in fig. 3. The crystal will reflect neutrons of 
incident velocity OaR in the moving frame in the 
velocity-space volume B into the volume B'  with-an 
average efficiency decreasing with increasing dis- 
tance for the centroid of B. The volume of incident 
neutrons as viewed in the laboratory frame corre- 
sponding to the volume B is labelled A in this 
figure. Transforming reflected neutron velocities 
within B' back to the laboratory frame leaves them 
within the volume C centered at O',L = 0. The Bragg 
angle in the frame of the moving crystal is 0B. The 
dimensions of these volumes can be obtained from 
standard monochromator theory34), The dimensions 
of each of these volumes in the ox-o~ plane are 
equal, as shown in fig. 3. If we assume that the 
transmission function of the collimator is Gaussian, 
and that the reflectivity of the crystal is also Gaus- 
sian, then 

Wx = V°c~, (9) 
and 
W~ = VRrlx sinfl = 1 o VoL r/~ tan ft. (10) 

In the direction perpendicular to the plane of fig. 3, 
the volumes A and B are of height O~L~Zy, while the 
y-dimension of volumes B' and C is 

o 2 Wy = V.L~(qy + ~ ) .  (11) 

Here ~x and a~y are the Gaussian parameters specify- 
ing the in-plane and out-of-plane collimations, 
while r/x and r/y are the in-plane and out-of-plane 
Gaussian mosaic spread parameters. The numerical 
factor 2.35 (=  2 ~/2 In 2) relates the Gaussian param- 
eters to the full-width-at-half maximum (fwhm) 
in fig. 3 of each of these distributions. Thus, the 
boundaries of the volumes shown in fig. 3 are 
meant to be 50°/6 contours of probability. They are 
actually ellipsoids. The superscripts on OnL and OR 
indicates the nominal values of O,L and OR. 

The heights of the volumes B'  and C" are larger • , 
than those of the volumes A and B because the 
out-of-plane mosaic spread of crystal broadens the 
distribution of neutrons upon reflection in the y- 
direction. In fact, aside from a loss of neutron 
density due to the efficiency of Bragg reflection, the 
density of neutrons in velocity space is decreased 
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by the ratio 

r = (12) 

due to this effect. It is therefore clear that it is 
desirable to make the out-of-plane mosaic spread r/y 
small in comparison to the out-of-plane collimation 
~y. From eqs. (9), (10), and (11) we see that the 
volume C of neutrons in velocity space resulting 
from Bragg reflection is 

(vol)c = (2~35) 3 WxWyW ~ = ½(2.35)3~xr/x x 

x x / (~  + r/y) (V~,L) 3 tan ft. (13) 

The reflected intensity will be proportional to this 
volume and will therefore be zero at /3 = 0. Thus, 
direct back reflection in the moving frame will give 
zero intensity. (There will be a vanishingly small 
backward intensity due to the Darwin width, but no 
contribution from the crystal mosaic spread.) 

3 , 3 .  N U M E R I C A L  V A L U E S  O F  P A R A M E T E R S  

Before proceeding with a detailed analysis of the 
reflection efficiency as a function of time t and 
position (x ,y)  on the crystal face, we will first 
attempt to provide some qualitative feeling for the 
parameter involved. If we choose mica as the 
Doppler-shifting monochromator crystal, then the 
nominal incident neutron wavelength and velocity 
in the laboratory frame are: 

2,°L = dm~c, = 9.96A, (14a) 

and 
° = 395 m/s. (14b) /)nL 

The Bragg angle is chosen to be 61.2 ° giving a/3 
of 28.8 ° . This angle was chosen in order to have 
reflected a reasonable velocity space volume as 
given by eq. (13) while keeping the rotor design 
within practical limits. An optimal value of/3 would 
be 37 ° which yields an increase of 20% in velocity 
space volume at the expense of a higher rotor 
tangential velocity. 

Using /3 = 28.8 °, and the arrangement shown in 
fig. 3 we find 

o o VnR = VR = 225.4 m/s. (14c) 

If we phase the rotor to the pulsed source which 
operates at 30 Hz, then the radius of the rotor 
should be 

o R = VR/O) = 1.202 m. (15) 

Thus, the crystal will arrive back in the incident 
beam when the next pulse of neutrons comes from 
the source. 

It is clear that we should choose the parameters 
~x, ~Zy, r/x, and r/y so that the dimensions of the 
volume C in velocity space are comparable to the 
size of a spherical volume of  radius equal to the 
maximum velocity neutron which can be stored in 
a bottle. For a bottle made of Be this velocity is 
Omax=7 m/s.  To be explicit, suppose that the 
source area is WsX W s = 8.86 cm×8.86  cm and the 
crystal can be placed at distance L 0 =  4.8 m from 
the source; then 

2.35c~ x = 2.35~y = I/VdL = 0.0185 rad = 1.06 °. (16) 

Suppose also that the crystal has a mosaic width 
(fwhm) of 

2.35v/x = 0.052 rad --- 3 °. (17) 

The dimensions of the velocity space volumes as 
given by eqs. (9), (10), and (11) are then 

2.35 Wx = 7.31 m/s, 

2.35 Wy = 8.08 m/s, (18) 

2.35 Wz = 5.65 m/s. 

We have assumed 2.35 r/y to be -~°. We therefore see 
that W x, IVy, and W z can be made comparable to 
2 Omax~ 14 m/ s  with reasonable values of the colli- 
mation parameters and the mosaic spread parame- 
ters. It is clear from these numbers that it would be 
advantageous to be closer to the source (than 
L0 = 4.8 m), or to use a beam guide to aid in bring- 
ing the source out to the crystal. 

There is another important preliminary numerical 
consideration: the crystal should remain in the inci- 
dent beam for a large fraction of the time that 
neutrons of velocities within the sphere of  radius 
Omax, centered at O~L, are arriving from the source. 
The pulse width at the source for neutrons of veloc- 
ity O~,L = 395 m / S  is projected to be about 12.29) 

2" . . . . . .  = 200 ps. (19) 

The difference in arrival times (at the crystal) of 
neutrons of velocities V~L+Vm~x and v~ L-v~.x for 
Lo = 4.8 m is 

Atarriva I - Lo Lo 2Lo 
VnOL .~_ Vmax V~ L - -  Vmax - -  ~ /)max 

= 395 ps. (20) 

Thus, neutrons which are potentially useful for 
storage in a bottle will be arriving at the crystal 
over a time span 
"['total : T . . . . . .  "[- A t a r r i v a  I = 595 ps. (21) 
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The transit time of the center of the crystal across 
the beam of width W = 8.86 cm is 

W/sinfl = 773 #s. (22) A ttransit = o 
/)R 

We therefore conclude that the transit time of the 
crystal across the beam is sufficiently long to utilize 
all those neutrons arriving at the crystal location 
which are of velocities suitable for storage upon 
being Doppler-shifted down in velocity. 

3.4. MOTION OF THE CENTER OF THE VELOCITY SPACE 

VOLUME 

We continue now to fix our attention on the 
center of the crystal at x = 0, y = 0 (the origin of 
x , y  coordinates is fixed to the crystal). As a func- 
tion of time, this point moves across the beam. We 
will now calculate the "trajectory" of the center of 
the velocity space volume C in velocity space as a 
function of time t. We first note that during the 
time interval "t'total, the orientation of the crystal has 
changed by an angle (-/)'~'total = 6.4°. Thus, the vector 
G will have rotated by this same angle. The effect 
of this rotation on the shape of the velocity space 
volumes of Fig. 3 is very small, and will be 
neglected. However, the centers of these volumes 
will move as a function of time due to the rotation 
of G. This is an important effect. 

Let the symbol V,L(t) describe the position of the 
center of volume A as a function of time. [At t = 0, 
VnL( t )  = OnL. ] Similarly, let l?'nR(t) , V"nR(t), and V'nL(t) 
describe the position of the center of the volumes 
B, B', and C as a function of time respectively. 
According to eq. (4) we must have 

g n R ( / )  = V n L ( t ) -  VR( t  ) • ( 2 3 )  

Thus, the change in these velocity vectors, describ- 
ing the centroids of volumes A, B, and B' are 
related by 

1t VnR = A VnL - -  h V R . ( 2 4 )  

The magnitude of the velocity vector V R is 
constant; however, the direction of VR changes as 
the rotor turns. From geometry, we find 

Zt V R = (.otl)R [ - -  COS ] ~  --~ sin fl~,]. (25) 

We now resolve the vector A I",L into compo- 
nents: 

A V.L = A VnL x ~ + A VnLy ~ + A VnL~ ~'. (26) 

It is clear that for the center point of the crystal 
(x= 0, y = 0), which is under consideration now, 

that 

A VnLy = 0. (27) 

Since the center of the crystal has moved a distance 
o ~ t  in a time t in the x-direction, we can calculate 
the change in VnL ~ with the aid of figs. 2a and 3. By 
similar triangles, constructed in real space (fig. 2a) 
and velocity space (fig. 3), we have 

A V.L~o -- V.Rx t . (28) 
VnL Lo 

Therefore, 

(v~. sin fl) t 
° (29) A VnL x = /)nL, 

Lo 

where L0 is the distance from the source to the 
center of the crystal at t = 0. We now know the x 
and y components of the vector A V,L. We will now 
show that the z component is zero. At any time t, 
the centroids of the volumes B and B' are connected 
by the vector (h /m)G (Bragg's Law); therefore 

h 
V[,R(t) = V.R(t) + -~ G(t),  (30) 

and 

A V "  R = AVnR + L A G .  (31) 
m 

The length of the vector G is fixed. The change AG 
comes from the rotation of the crystal, namely 

AG = cotG.~. (32) 

If we square both sides of eq. (30) and recall that 
Bragg scattering in the moving frame is elastic, that 
is 

V "2 = V2R, (33) 

we then have 

2 Vna" G + h G2 = 0. (34) 
Yr/ 

The variation of this equation gives 

v ° . . ' A C + A V . . ' G  ° +---h A t ' G °  = 0 (35) 
m 

The last term of this equation is zero, since AG [eq. 
(32)] is perpendicular to O ° = - G z .  Writing out the 
components of the remaining dot products, we 
find 

o 

o V"R~' AGx = -- VR sin flogt, (36) A I/~R~ = G 

where we have used eq. (32) and the fact O~R = O~. 
Equating the z-components of eq. (24), we have 

A VnL z = A VnR z "F A VRz. ( 3 7 )  
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From eqs. (25) and (36) we see that 

AVnRz = -- AVR~, (38) 
so that finally we have 

A VnL~ = 0. (39) 

Consequently, the centroid of the volume A moves 
in the x direction in velocity space, namely 

A VnL -- (/)~ sin fl) t/)OL ~,  (40) 
Lo 

We need to use this result to find A V'nL. This is 
easily done, since 

A V'L = A V,L + __h AG. (41) 
m 

Using the fact that o~L = (h/m)G, and eqs. (32) and 
(40) we find 

V;L(t) = (V~ sin fl + w )  t V:L~2. (42) A 
\ Lo 

This is a very important result. It tells us that the 
distribution of Doppler-shifted neutrons in velocity 
space moves only in a direction perpendicular to 
the incident beam as the rotor turns. To obtain a 

iVnLz 

t= - / s o p s  t = - loops 

t =,~ so ,us  t = , l o o p s  

feeling for the size of this shift, suppose again that 
L 0 = 4 . 8 m ,  f l = 2 8 .8  ° , o9=2zc(30) rad/s,  and 
o~L = 395 m / s ;  then I•U;,LI -- 8.34 m / s  at t = 100/zs. 
Thus, we see the centroid of  the ultracold velocity 
distribution has shifted beyond Umax--~7m/s at 
a time t =  100/zs. However, this is only for the 
center point on the crystal surface. Other points 
(x,y) on the crystal will become increasingly impor- 
tant for various other times t. The overlap of the 
Doppler-shifted reflected volume C with a sphere of 
radius Vma x at various times at x = 0, y = 0 is shown 
in fig. 4a. The formulas for calculating the overlap 
at other positions (x,y) are derived in the next 
section. The time evolution of  the overlap volume 
at x = 2 cm, y = 0 is shown in fig. 4b. 

3.5. OTHER POINTS (x,y) ON THE CRYSTAL FACE 

We now wish to generalize the result for A F',L 
given by eq. (42) to an arbitrary point (x,y) on the 
crystal face. We again resolve ZlFnL into compo- 
nents as in eq. (26). From geometry, it is apparent 
that 

A VnLy ~-" ~ /.)n°L • (43) 
1-'o 

t= -sops t = o,us 
( ~  (A) 

O X=O 

t =÷ISO)US 

t = - I s o p s  t = - Ioo /us  t = - 5 o p s  

t =,Sops t = +  lOOpS t = +15OlJS 

t = OIJS 

(B)  

X : 2 c m  

Fig. 4. This figure shows the overlap (shaded region) of the Doppler shifted neutrons with a sphere of radius Oma x in the OxL-- O'zL 
plane. The top part (A) of the figure is for the point x = 0, y = 0 on the crystal face. The bottom part (B) of the figure is for a point 
x = 2 cm, y = 0. The machine parameters used to construct these figures are given in table 2. 
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Using geometrical arguments identical to those 
leading to eq. (29), we find that 

A V, Lx (V~ sin #) t + x vo L 
= Lo • (44) 

We now need to find AV~L~, which will turn out to 
be non-zero in this case. Because we are consider- 
ing a point (x,y) on the crystal which is further out 
on the rotor at, say 

R = R  o + A R  ~ R  o + x c o s f l ,  (45) 

the difference between V R and o;~ is now 

A VR = v~(-cosfl:~ + sinfl~)cot + 

+ cox cos fl(cos fl~ + sin fl~,). (46) 

The arguments leading to the expression for A V, R ~ 
given by eq. (36) are valid for all points (x,y).  Thus, 
we have, using eqs. (36) and (46), the result for 
a V~t~: 

A V~Lz = A V~Rz + A VRz = OgX COS fl sin fl = ½ ~ox sin 2 ft. 

(47) 

Eqs. (43), (44) and (47) are the components of the 
vector AV~L; therefore, using eq. (41) and eq. (32) 
we have 

I(v~ sin fl) t + x t l  
AWL(t  ) = V°L Lo + o9 ~ + 

Y o 
+ ~o V.Lj~ + ½09X sin2fl~. (48) 

This expression is the generalization of eq. (42) we 
have sought, z~VVnL h e r e ,  gives the position of the 
centroid of the velocity-space distribution of ultra- 
cold neutrons generated by Doppler-shifted Bragg 
scattering for each time t, and for each position 
(x ,y)  on the crystal face. 

3.6. THE EFFICIENCY OF THE DOPPLER-SHIFTER, •Ds 

The phase space density of neutrons no incident 
on the crystal is the same when viewed in the 
laboratory frame as when viewed in the frame of 
reference fixed to the moving crystal, that is 

no = n o ( r E ,  VnE, t) = n o ( r R ,  Vna , t ) .  (49)  

In the moving frame, the incident current density 
is 

JnR(rR,  VnR , t) = VnRno(rR,  i~nR , t ) .  (50)  

The reflected current density in the moving frame 
is 

J'nR(rR, V'nR , t) = eDSJnR(PR, VnR , t ) .  (51) 

This equation defines the efficiency of the Doppler- 
shifter. Under the Gaussian approximations we 
have assumed for the mosaic structure of the crys- 
tal, and the collimator transmission function, eDS is 
simply given by the probability contours of the 
volume B' of fig. 3. That is 

%s (6 V'.R) = r~o exp { -- 1 (6ff'nRx/Wx)2 _ _  

- -  ½ ( ( ~ f f ' n R y / W y )  2 - -  l ( ( ~ l . ) " n R z / ~ l ' Z z ) 2 }  , (52)  

where 

alfnR ~ V'nR(t ) --  V'nR(0 ) - -  A VnR(t), (53) 

Y0 is the unintegrated peak reflectivity of the crystal 
and r is given by (12). The efficiency Cos can equal- 
ly well be expressed in terms of the velocity 0'nL of 
the reflected neutrons in the laboratory frame: 

8os(VtnL) = F~) 0 exp {-l(v'.L x - A V~L~)2/W 2 - 

- I ( V . ' L ,  - aV;EO2/W  _ 

- ½(V'nL= -- A V'Lz)2/Wf}.  (54) 

This form will prove more useful to us than eq.: 
(52). It should be noted that eDS is also a function 
of x , y ,  t, since the location of the centroid AV',L is 
explicitly a function of these parameters as given in 
eq. (48). 

3.7. THE INCIDENT NEUTRON PHASE SPACE DENSlTY n 0 

If we approximate the neutron source pulse by a 
Gaussian function in time, having a f w h m - - z ,  
then the phase space density of neutrons arriving at 
the crystal will be: 

n o ( r E ,  VnL , t) ~ np x 

× exp - ,+ I' (55) 

Here 6V,L~ gives the difference between the beam- 
line velocity of a given incident neutron in the 
laboratory frame and the nominal incident velocity 
V°L, that is 

6VnLz = VnLz --  V°L (56)  

The peak neutron phase space density is n o . The 
factor LoaVnl~/(OSL): in the exponent of the expres- 
sion (55) accounts for the fact that incident 
neutrons of velocity greater than the nominal veloc- 
ity O°L arrive at the crystal at earlier times. From 
the geometry of fig. 3 it is easy to show that 

aVnLz • /)nLz" (57) 
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Thus, we can express no in terms of  the reflected 
neutron velocities in the laboratory frame. 

3.8. THE SOURCE DENSITY OF ULTRA-COLD 
NEUTRONS ~u.c. 

The current density J',R given by eq. (51) should 
be viewed as the source density S for Doppler- 
shifted neutrons. It gives the number of  neutrons 
"emi t t ed"  at the point (x,y) on the surface of  the 
crystal per cm 2 per sec at a time t per unit volume 
in velocity space. Each of  these neutrons appears as 
a very slow neutron when viewed in the laboratory 
frame of reference. That is, the magnitude of  the 
source vector S is the same in both the moving 
frame and the laboratory frame, only its direction is 
changed due to the coordinate transformation. 
Thus, we have 

t 

S = l~nL ~DS VnR no. ( 5 8 )  
/)nL 

or, using eqs. (51), (54), and (55) we see that 
t 

1 t t 2 2 S = v,___~L e x p { - ~ [ ( V n e ~ - A V ~ e x )  /W/, + 
/)'nL ryo 

+ (V'uLy-AVdi.y)21W~ + × 

x VRnp exp -- t + z/2.35) 2 . (59) 

In going from eq. (58) to (59) we have replaced V,R 
by its nominal value which is equal to the nominal 
rotor velocity v~, as can be seen from fig. 3. 

Only neutrons having speeds below some maxi- 
mum speed Oma~ can be stored in the bottle. We 
then are interested in 

. . . .  = [ "  S d  3 V'nL. (60) S 
Js  phere  

of radius 
t~max 

Instead of  assuming there is a precise cutoff speed 
Vma× we will approximate the neutron bottle capture 
probability by a Gaussian: 

1 r 2 2 
Pcapture ~ exp {--2(VnL ) //)c}, ( 6 1 a )  

where 
v c = 2Vmax/2.35. (61b) 
This approximation allows us to explicitly carry out 
the integration of eq. (60). Thus, we can write the 
source density S .... for ultra-cold neutrons as 

Suc = I exp { 

t ~  

• . __~(DnL//)c) } 1  ,2 2 S d  3 I)nL" ( 6 2 )  

The magnitude of  this current density can be 
analytically evaluated. The result is . 

S .... = r7o np v ~ t l x l y I  z (63) 
where 

Ij = exp { - ½ (C j -  B~/4 Ai)}, 

(j = X, y, or z). (64) 

The dependence of Suc. on x , y ,  and t is contained 
in the functions Aj, Bj, Cj. The functions are 
displayed in table 3. (For convenience we have 
defined r = r~/2.35.) Note that the time t appears 
explicitly in these expressions and also implicitly in 
d V', d Vy, A V~ [see eq. (48)]. Note also that we have 
suppressed the additional subscripts nL on the velo- 
cities. The results depend upon the mosaic and 
collimation parameters nx, ny, o~ x, and O~y through 
the definitions of  Wx, Wy, and W z [eqs. (9), (10), 
(11)], and explicitly on the pulse width r and the 
maximum velocity Vma x ( =  ½ 2.35 v~). 

Based on the instrumental parameters given in 
table 2, we have performed numerical calculations 
of S .... given by eq. (63). We find that S .... is o n l y a  
weak function of  the y-coordinate on te crystal face. 
The dependence of S~c on the x-coordinate at 
various times t is shown in fig. 5. As the rotor 

TABLE 3 

Expressions for the functions of A j, Bj, Cj. 

Aj Bj Cj 

y + - Wv2 

(1  ' L2o ~ ( 2Lot 2At:'.~ 

AK 2 

A 412 

(AV-'2 ?)  ~+~ 
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S M . C .  

(rile mZ-sec) 

o 2.0 o 2.0 
X {cm) 

Fig. 5. This figure shows the ultra-cold neutron source intensity 
Su.c. at various times t as a function of  position x across the 
crystal face. The parameters of  table 2 were used as input 
data. 

turns and brings the crystal into the beam, ultra- 
cold neutrons are first generated from the left-hand 
side of the crystal (x>0,  see fig. 2). At t = 0, the 
crystal is at the beam center line, and the emission 
of ultra-cold neutrons is symmetric in x across the 
crystal face. As the rotor continues to turn (t>0) 
the right-hand side (x<0) becomes the primary 
source of ultra-cold neutron production. For Itl ~> r, 
the edges of the collimator will shadow a part of the 
crystal. For a collimator of width W (at the crystal), 
the x-coordinate of the collimator edges projected 
onto the crystal is given by 
xL  = ½ W -  RO sin fl, (65a) 

on the left, and 
xrt = - ½ W -  RO sin,8, (65b) 

on the right. At t = - 1 8 0 / ~ s ,  XL=6.39cm, and 
xR= -2 .47cm.  At t =  +180/~s, XL=2.47cm and 
xR=- -6 .39cm.  Since the ultra-cold neutron pro- 

duction is small outside this time frame 
( - 1 8 0 ~ s < t < 1 8 0 / ~ s )  we conclude that the effects 
of this collimator shadowing consideration are mini- 
mal for a crystal of width ~< 5 cm. For a crystal of 
width 2 cm, we have integrated the curves of fig. 5 
over the crystal face to obtain the total production 
rate of ultra-cold neutrons. We display the results 
of this calculation as a function of the rotor angle 
0 = oat in fig. 6. If we integrate this curve over the 
time t, we have the total ultra-cold neutron produc- 
tion per pulse; the result is 

ultra-cold neutrons/pulse = 6000 (IPNS-I). (66a) 

This number should be compared with the total 
number of neutrons in the velocity space volume A 
(fig. 3) integrated over time. This is the maximum 
number of neutrons coming from the source which 
could potentially be Doppler-shifted to ultra-cold 
velocities; it is approximately 

N m a  x = n p  "~7~VmaxV°nL'Ca ~-- 76000. (IPNS-I). (66b) 

Here, A (=  5 cm × 2 cm) is the area of the crystal. 
Thus, the overall efficiency is about 8%. The main 
sources of the inefficiency are that the mosaic 
spread of the crystal (3 ° ) is too small and the colli- 
mation (o~x, 7y) is also too small. Using a beam 
guide and a 6 ° mosaic crystal, we expect that this 

~ J J ~ I 
ANALYTICAL CALCULATION 

t . . . .  MONTE CARLO CALCULATION 
CROSS HATCHED REGION INDICATES 
NUMBER ENTERING BOTTLE 

4x lO  7 / / ~ \  

// X,, 
// 
II \\ 

-3 -2  -I 0 I 2 

0 (deg) 

Fig. 6. The total ultra-cold neutron production rate, which is the 
integration of the curves of  fig. 5 over the crystal area, is plotted 
here as a function of  the rotor angle 0 = oat (solid curve). The 
y-dimension of the crystal was taken to be 5 cm, while the 
x-dimension was 2 cm. Also shown are the results for the Monte 
Carlo simulation (dashed curve). The cross-hatched region is the 
number of  neutrons arriving in the bottle. Parameter values were 
set using table 2. The crystal reflectivity ~'0 was taken to be 
100%. 
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efficiency could be improved by as much as a factor 
of 5. (It is possible to artificially increase the mosaic 
spread in one direction by using an assembly of 
thinner crystals with wedges between. For example, 
refer to the appendix.) 

4. Monte Carlo computer simulation 

In this section we describe a more exact numeri- 
cal calculation of the Bragg reflection process to 
produce UCN and their subsequent collection in a 
neutron bottle. The calculation was carried out for 
the specific arrangement shown in fig. 1 and the 
parameters in table 2, and was checked using the 
analytic formulae developed in the previous sec- 
tion. 

4.1. GENERAL DISCUSSION 
In order to avoid many of the approximations 

used above to describe the details of the Bragg 
scattering process, the computer simulation was 
carried out at a microscopic level. The crystal was 
pictured as a collection of small mosaic blocks 
Gaussianly distributed in angle about the nominal 
normal to the crystal face and each capable of 
reflecting neutrons with 10096 probability if the  
Bragg angle were satisfied to within the Darwin 
width (refer to the appendix). The crystal was 
assumed to have finite dimensions, and to have a 
mosaic angular spread r/x in the x-direction and r/y 
in the y-direction. Finally, once a neutron was 
reflected its depth of penetration into the crystal 
was noted and the neutron was permitted to under- 
go multiple reflections. As the flight path within 
the crystal could be fairly long, the absorption 
probability was also considered. 

The Monte Carlo simulation begins with neu- 
trons at the source, allowing them to propagate 
through the beam tube resulting in a time-broaden- 
ing of the pulse at the crystal due to the spread in 
incident velocities. The rotor angle changed with 
time according to 0 = ogt+o~ with the phase of the 
rotor ~z being a variable. It was set externally by 
optimizing the number of neutrons reflected into 
the sphere in velocity space of radius Omax. Neutron 
trajectories after reflection were checked to deter- 
mine if the neutron arrived at the bottle entrance 
during the time the shutter was open. The phase 
angle between the shutter and the rotor was also a 
variable and set externally by optimizing the total 
number of neutrons collected in the bottle per 
pulse. 

4.2. SCATTERING PROCESS SIMULATION 

For a given incident neutron in the crystal frame, 
with a velocity vector O,a oriented with direction 
cosines cos ~x and cos ~y, the probability of finding 
a mosaic block satisfying Bragg condition (5) is 35) 

P ( x , y )  = 2ru/~q, exp ,..- ~1,~-~ + ~--'f,,]_.l (67) 

The probability of scattering at a point in the 
crystal at distances between / and I+d/  along a 
trajectory is given by 

ptdl  = e -t~" Zsd l ,  (68) 

where Z" s is the probability of scattering per unit 
length which can be calculated using eq. (67) 

.Ss = QP(x ,  y) (69) 

For 17.3/It neutrons and a Bragg angle of 61.2 °, Q 
is 7.9 cm -1 for the synthetic mica crystal described 
in the appendix36). This yields an average penetra- 
tion depth of 0.0162cm for a crystal with a 3 ° 
mosaic spread. The average distance traveled by a 
neutron inside the crystal, including multiple re- 
scattering, was found to be about ~ mm. 

It was assumed that the crystal did not rotate 
during the time period (including all rescatters) that 
the neutron spent inside the crystal. This last 
approximation was reasonable as the probability for 
scattering changed by only 10% for a rotor angular 
change experienced in a 10-4s  time period. For 
neutrons moving at 225 m/s in the crystal frame 
this would correspond to a total flight path of 2 cm 

I ' O I ~  

N ~0"8 

--~ [ \ ONE REFLECTION " \ /  
~ MONTE CARLO PROGRAM 

ONE REFLECTION 
~ 0 .4~-  ~ (' MONTE CARLO PROGRAM 

/ '7S-  i O0 ~ '  () 1.4 1,6 1.8 2.0 "-0,0 0.2 0.4 0.6 O. . 1.2 
~" sh/sin 2# 8 

Fig. 7. This figure shows a comparison between the Monte Carlo 
simulation of multiple reflections within the crystal and the 
analytic calculation taken from ref. 37. The slight differences 
observed are due to the finite crystal size taken in the Monte 
Carlo simulation whereas the calculation assumed a semi-infinite 
crystal. 
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inside the crystal, far from the average flight path 
indicated above. 

The Monte Carlo results were compared with a 
published analytic calculation of a multiple scatter- 
ing problem 37) and the results are shown in fig. 7 
for single and triple reflections. The explanation of 
the coordinate h is also shown in the figure. The 
curves are in good agreement. These results lend 
confidence that the program was adequately simu- 
lating the details of the scattering process in the 
crystal. 

4.3. NORMALIZATION 

Neutrons were randomly generated across the 
surface of the source shown in fig. 1 within some 
velocity volume zlvx, ZJ[)y, AD z around a nominal v~ 
setting of 395 m/s. The time variation of the pulse 
at the source was assumed to be Gaussian in a 
manner which was used to obtain eq. (55). Thus the 
phase space density ns at the source was assumed to 
be 

n s ( x ,  y ,  z ,  v x ,  v r ,  v~, t) = n p e  - t 2 / 2 ~  . (70) 

w h e r e  r/p is the peak phase space density and 
zg=z/2 .35  (as in the previous section). As the 
average 0,L~02L the overall normalization used in 
the Monte Carlo calculation for each generated 
neutron was 

Norm = npAvxAvyAvzTZr 2vzLzg/NG, (71) 

where r s was the source radius and N o the number 
of neutrons generated in the program. 

Np = ultra-cold neutrons collected/pulse = 1300. (73) 

Comparing eqs. (72) and (73) shows that the collec- 
tion efficiency is about 19%. This is the efficiency 
expected as the solid angle subtended by the bottle 
opening is ~ 0.4 of a sphere while the finite time 
the door remains open (3 ms) allows only 50% of 
the neutrons heading toward the bottle to enter. It 
should be noted that the collection efficiency does 
not effect the final density of stored neutrons as 
this depends on the flux of UCN coming off the 
crystal which remains constant for many millise- 
conds until the reflected cloud of UCN diffuses 
away. However, the filling time is effected by the 
collection rate. 

In fig. 8 the velocity distribution of  neutrons in 
the bottle is shown for Omax = 7 m/s. Their mean 
speed is ~ = 4.4 m/s. The deficiency of neutrons 
above 6 m/s  is caused by a smaller velocity space 
volume being reflected than can be captured in the 
bottle. This mismatch was noted earlier in the 
previous section and can be corrected by a larger 
mosaic spread and the use of a guide tube in the 
beam. 

For a given Np rate, the final density Pmax to 
which the bottle can be filled depends on the loss 
rate out of the bottle, i.e., the loss of neutrons out 
of the door when the shutter is open plus the losses 
contributing to the overall bottle storage time, rB. 
This storage time is characterized by an exponential 
decay e -'/~B . As noted earlier rB should be 1000 s 
optimally, but has been measured to be much less. 

4.4. RESULTS 
In fig. 6 we make a comparison between the 

predicted Monte Carlo production rate of ultra-cold 
neutrons S as a function of rotor angle and the 
analytic results presented in the previous section. 
The shapes of the curves agree but the computer 
simulation is 14% higher and predicts the total 
UCN production rate of 

ultra-cold neutrons/pulse = 7000. (72) 

The reason for the disagreement is due to the 
approximations made in the analytic calculation 
where we ignored the time variation of the distance 
from the source to the crystal, and we approxi- 
mated the collimation and Pcapture [eq.  (61)] by Gaus- 
sians. 

Also shown in fig. 6 is the number of neutrons 
collected in the bottle (cross-hatched region). This 
number per pulse is 

2 0  
I I I I I I 

V=4.4 rnls 

u ' l  
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Fig. 8. The velocity distribution of neutrons in the bottle is 
plotted. The average velocity is 4.4 m/s for Oma x = 7 m/s. The 
parameters in table 2 were used as input to the Monte Carlo 
program, dN/do is the number of neutrons per unit velocity 
increment. 
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Therefore, we present the values for #max as a func- 
tion of rB. 

The loss through the shutter is computed using 
gas kinetics assuming that the UCN behave as an 
ideal gas inside the bottle. From elementary statis- 
tical physics 38) the loss rate per unit time through a 
shutter with an area A is 

v = ¼ p A ~  (74) 

where p is the neutron density in the bottle at time 
t and ~ is the mean speed of the neutrons in the 
bottle. 

For rR, N o and eq. (72), with D taken from fig. 8; 
/9ma x was estimated for IPNS and plotted in fig. 9. 
The density approaches saturation for ZTN300 S 
and is 

P .... = 120 n/cm 3 . (75) 

This does not imply that zs values larger than 300 s 
are not desirable. This is clearly dependent on 
experimental details and can be very important in 
an EDM measurement, where the sensitivity varies 
inversely to r. 

In table 4 the asymptotic densities and filling 
times are listed. For a 101 bottle these times are 
generally on the order of minutes or about 6000 
pulses. The total number of stored neutrons N o is 
predicted to be 1.2x 106. 

In the above calculation we have assumed that 
the crystal reflectivity is 100°/6 though it may be 

1 5 0  I i , ~ I 
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Fig. 9. The expected asymptotic storage density o f  neutrons in 
the bott le after many pulses is plotted versus the bott le storage 
t ime, r B. The parameters input for the Mon te  Carlo program 
were set using table 2. The crystal ref lectivi ty was taken to be 
I00%. 

TABLE 4 

Bottle filling rates and stored densities a. 

Omax(m/s) eDS b' N~ Pmax(n/cm3) d rF(S) e 

5 0.11 580 70 230 
7 0.10 1300 120 200 

a Assumes a 101 bottle with a 30 cm 2 openinjz. 
b Assumes a 5 c r u x 2  cm thermica crystal with r/y=3 °, r/x= 1/2 °, 

0 B = 61.2 ° and shutter speed of  3 ms. This is the efficiency 
of scattering into a sphere in velocity space of  radius Oma x. 

c Number of neutrons per pulse entering the bottle. 
d Asymptotic density of  stored neutrons. 
e Filling time to arrive at the asymptotic density. 

considerably less (refer to the appendix). There will 
also be absorption losses in the crystal holder and 
losses of neutrons due to the loose fit of the shutter 
over the bottle mouth. The sum of these effects 
could reduce the stored density by a factor of 2 or 3. 

5. Conclusions 
The two independent calculations presented 

above are in good agreement for the production of 
ultra-cold neutrons using Doppler-shifting at the 
Intense Pulsed Neutron Source. Given the range of 
uncertainties the density of stored neutrons is 
predicted to be between 40 and 120 n/cm 3. Using 
these numbers to estimate the sensitivity in a 
proposed EDM experiment4), we conclude that a 
measurement with a statistical uncertainty near 
10-27e. cm can be performed. However, a practical 
experiment also requires various systematic effects 
to be reduced in order to achieve this sensitivi- 
ty4,8,14,28). 

The Doppler-shifting method described in this 
paper is well matched to a pulsed source as the 
Bragg reflecting crystal is only effective over a short 
period of time. However, there is an advantage in 
using this method to produce UCN even at a stea- 
dy state source in that the primary transport veloc- 
ity is much higher (~400 m/s) and the UCN are 
produced closer to the experimental area. The 
absorption losses of UCN that can be severe in a 
reactor beam are much reduced. 

There are a number of inefficiencies that have 
been identified in the Bragg scattering off a moving 
crystal. The total efficiency of scattering into a 
sphere of radius Vmax was found to be ~10%. 
Using a guide tube in the incident beam and a 
broader mosaic spread could yield a factor of 5 
increase in neutron density. The remaining ineffi- 
ciency is due to the velocity differential produced 
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across the crystal by the differential in radius on the 
rotor and the time slewing of the incident pulse. 
Also, a Bragg angle of 61.2 ° is not the optimal 
value for the maximum efficiency. Building a larger 
rotor and moving nearer the source would help 
reduce these losses. However, such modifications 
are limited by practical considerations. 

The bottle collection efficiency was found to be 
,~20% of the UCN produced. As noted in the 
previous section this does not effect the final densi- 
ty in the bottle, however the filling time is 
increased. Using reflectors placed around the rotor 
more of the solid angle can be reflected toward the 
bottle opening. In this manner a factor of 2 shor- 
tening of the filling time may result. 

The shutter mechanism insures that the bottle is 
filled as if by an incident beam at the peak flux of 
the source. Pulsed neutron sources can be expected 
to improve their peak intensities in years to come 
and a corresponding increase in density of stored 
UCN can be expected. On the other hand, it is 
doubtful that much higher thermal fluxes from 
steady state reactors are possible due to heat trans- 
fer limits and construction and operating costs. 

There are a number of additional advantages 
working at a pulsed source over a steady state reac- 
tor. Background levels are in general reduced as the 
time-average flux is much lower. As the heat load 
and radiation damage are smaller in pulsed sources, 
better cold moderators may be possible to construct 
and operate than have been possible for reactors 
resulting in an increase in flux at the longer wave- 
lengths needed for the Doppler-shifter. 
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Appendix 
Details of  Bragg scattering by a crystal 

Bragg scattering off a mosaic crystal can be char- 
acterized by two parameters: The peak reflectivity 
70 and the effective, in-plane mosaic width, g]e ff 

(rocking curve width). If we approximate the rock- 
ing curve by a Gaussian then the reflectivity is 

?(A) = Yo e-a~/2"2°rf, (76) 

where ,4 is the orientation of the crystal with 
respect to the nominal Bragg setting. In Darwin's 
mosaic crystal model, the probability per unit path 
length for a neutron to be Bragg reflected within 
the crystal is 

Zs(A) = QW(A), (77) 

where W(,4) is the distribution function describing 
the orientation of mosaic grains, and Q is the crys- 
tallographic quantity: 

~.3 IF[2 
Q = 2 2 ~  (78) Vce . sin 

V~e . is the volume of the unit cell, 0h is the Bragg 
angle, ~, is the neutron wavelength, and F is the 
structure factor. If we assume that the mosaic 
grains are distributed in a Gaussian way, then 

1 -a2/2 . .~  
W(A) = x/(2~z)r/, e (79) 

For synthetic mica (Thermica)36), having the chem- 
ical formula KMg3A1Si3OI2F 2, the d-spacing is 
9.963 A, the density is 2.67 g/cm 3, and 
Q = 7.9 cm-~, 
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Fig. 10, This histogram is the "rocking curve" for a piece of 
Thermica described in the appendix. The measurements were 
made at the National Bureau of Standards reactor in a 2.24 A 
neutron beam. The sample dimensions were 1"× 1" and 0.01" in 
thickness. 
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for a wavelength of 17.3 A (0B= 60°). The absorp- 
tion length for this crystal is calculated to be 79 cm. 
For a crystal of thickness T, placed in the symmet- 
ric Bragg reflection geometry, this model gives a 
reflectivity 

QW(A) T/sin 0B (81) 
7(A) = 1 + QW(A)T/sinOB' 

for the case of zero absorption. Thus, experimental- 
ly, one approximates this expression by eq. (76). 

"Rocking curve" measurements were made on 
samples of Thermica placed in a 2.24 A wavelength 
neutron beam at the National Bureau of Standards 
(NBS) reactor. For a 0.01" thickness the "rocking 
curve" for a 1"× 1" piece is shown in fig. 10. The 
measured fwhm after unfolding the beam diver- 
gence was found to be 0.27 ° and the peak reflectiv- 
ity was 4.2%. Thinner pieces yielded mosaic 
spreads from 1/4 ° to 1/2 ° but lower reflectivities. 

As indicated in the text a crystal with a small 
mosaic in y and a 6.0 ° mosaic in x would best 
match the beam arrangement described in fig. 1 
and table 2. A composite crystal was fabricated with 
thin (0.010") pieces of Thermica sandwiched be- 
tween thin (0.005") wedges of a luminum arranged 
to give a 6 ° spread in angle in the x-direction and 
no additional spread in y. The assembly composed 
of 15 such sub units was tested in the NBS beam. 
The results are shown in fig. l 1 and show that the 
mosaic spreads are different, the spread being about 

6 ° (fwhm) in the x-direction and about 1.25 ° in the 
y-direction. The peak reflectivity is N5% at 
2.24 A .  

The peak reflectivity at 17.3 A will be much 
higher. Using eq. (81), we can estimate this increase 
by writing 

Q w (0) T _ c23 
sin 0 B sin 0B sin 2 0B" (82) 

At 2 = 2.24 A, 0B = 6.45 °. For the assembly of crys- 
tals 70 = 0.05 at this wavelength; this requires the 
constant c to be 

c = 1.11 x 10 -4 , (83) 

where it has been expressed in A. At 17.3A 
(0B = 60°), we then have 

QW(O)T 1.11 x 10-4(17 .3 )  3 
- = 0.76. (84) 

sin 0B sin 60 ° sin 120 ° 

Thus, according to eq. (81) 

7(0) = 70 = 0.43. (85) 

A transmission measurement was performed us- 
ing 18.7 A neutrons incident on a Thermica crystal 
assembly similar to that described above. The 
reflectivity was found to be 47% for a ½" total 
thickness of Thermica. This result implies that the 
quantity 70 in eqs. (59) and (63) may be nearer a 
value of 0.5 rather than 1.0 as assumed in the 
calculations, in the text. 
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Fig. 11. The two histograms presented here are the "rocking 
curves" for an assembly of thin Thermica crystals separated by 
wedges of aluminum as described in the appendix. There were 
15 such sub-units having one 0.01" piece of mica sandwiched 
between 0.005" pieces of aluminum. The resulting curves indi- 
cate a larger mosaic width in x than in y as desired. 
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