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PREFACE

This book grew out of my twenty years as a Small-Angle Neutron Scattering practitioner
mostly at the National Institute of Standards and Technology. I helped build, maintain,
improve and schedule the 30 m SANS instruments. I also acted as local contact for a
multitude of user experiments and strived to keep a healthy research program of my own
using the SANS technique.

Many notes were accumulated over the years relating to topics as varied as instrumentation,
experimental work and theoretical calculations. These topics were stimulated by questions
from users, by lecturing needs or just by personal curiosity and research interests.

This “SANS Toolbox” has been put together in a tutorial format with a broad intended
audience. It is meant to be for a wide variety of users of the SANS technique as well as for
hardcore practitioners such as instrument scientists.

This work is dedicated to my colleagues and collaborators, to my dear children and to my
sweetheart wife Fatima.

“When you reach the heart of maturity, you find beauty in everything”.
Quote from Khalil Jibran.

Boualem Hammouda
Gaithersburg, Maryland
November 2008



Chapter 1 - INTRODUCTION

Nanometer scale structures include sizes from the near atomic (nanometer) scale to the near
optical (micrometer) scale. This includes most structures of interest to science for the past
100 years, i.e., since the advent of non-optical probes such as diffraction methods and
electron microscopy. Before this period, the optical microscope was the main tool for
observation.

Diffraction methods include neutron scattering which has found wide use in the
characterization of materials. Partial deuteration has made neutron scattering unique. Use of
deuterated molecules in a non-deuterated environment is comparable to the staining method
used in electron microscopy and helps enhance the contrast of particular structural features.

Small-angle neutron scattering (SANS) is a well-established characterization method for
microstructure investigations in various materials. It can probe inhomogeneities in the
nanometer scale. Since the construction of the first SANS instrument over 35 years ago, this
technique has experienced a steady growth. SANS instruments are either reactor-based using
monochromated neutron beams or time-of-flight instruments at pulsed neutron sources.
SANS has had major impact in many fields of research including polymer science, complex
fluids, biology, and materials science. This technique has actually become a "routine"
analytic characterization method used even by non-experts.

This book is intended to help SANS users acquire (or brush up on) basic knowledge on the
technique and its applications. Readers need not be experts in the various subjects covered
here. Basic knowledge in areas like nuclear physics, basic chemistry, statistical mechanics
and mathematics is of course helpful. The covered topics are organized into broad categories
(parts) which are divided into chapters. Each chapter contains a number of related topics
included as sections. Helpful questions (and answers) are included at the end of each chapter.
The outlines of the various parts are color coded; blue has been chosen for introductory (or
essential knowledge) sections.

After a brief review of basic neutron properties, the various methods of neutron production
and various neutron sources are introduced first along with discussion of neutron flux. The
major neutron sources are listed along with their overall characteristics. Production of cold
neutrons (essential for SANS applications) is discussed along with description of cold
neutron remoderators. Basic elements of neutron scattering follow. These include advantages
and disadvantages of the technique, scattering lengths and cross sections, coherent/incoherent
scattering contributions, and example calculations. This is followed by discussion of
elastic/inelastic and coherent/incoherent neutron scattering. Elements of Quantum Mechanics
are used to derive the scattering cross section.

The SANS technique is described next. SANS instrumentation is examined in no great detail
focusing on the major components and pointing out differences between reactor-based and
spallation source-based instruments. Neutron velocity selectors and area detectors are
included here along with their calibration and discussion of their performance. SANS
resolution and the various elements of instrumental smearing are described next. These
include contributions from the instrument focusing geometry, wavelength spread and
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detector resolution as well as the effect of gravity on neutron trajectories. Instrumental
resolution is also discussed when refractive optics (neutron lenses or prisms) are included.

Description of the various elements of SANS data correction and data reduction are included
next. The main SANS data interpretation methods include standard plots, the use of
empirical models and nonlinear least-squares fits to realistic models. Representative SANS
data are presented. Elements of SANS data modeling include calculations of the radius of
gyration, of the single-particle form factor and of inter-particle structure factors. The effect
of polydispersity is also discussed. Since "most SANS spectra look alike", SANS is a heavily
model-dependent method. The major theories used to interpret SANS data are discussed
including the Random Phase Approximation (RPA) for polymer systems and the Ornstein-
Zernike (OZ) equation for particulate scattering.

The major SANS research topics are covered in turn in a series of chapters. These various
“parts” include: Polymers, Complex Fluids, Biology, and Other Topics that includes
Materials Science. In each chapter, typical topics borrowed from the research efforts of this
author are described at the tutorial level. The part on “SANS from Polymers” includes
polymer solutions, polymer blends and copolymers. The Random Phase Approximation
approach is described in detail and applied to realistic homogeneous polymer mixtures. The
thermodynamics of phase separation are described for multi-component homogeneous
polymer mixtures. The part on “SANS from Complex Fluids” includes a discussion of the
phase diagram for micellar systems and contains chapters on ionic and nonionic “self-
assembling systems”. The main scattering features include single-particle and inter-particle
contributions. Material balance equations help in the understanding of some details of the
probed structures. The part on “SANS in Biology” introduces elements of biology then
covers representative basic topics such as a phospholipid membranes, the helix-to-coil
transition in DNA and the structure of a protein complex.

The “Other SANS Topics” part is covered next. These include the effect of pressure or shear
on nanoscale structures, solvation in mixed solvents, and molecular orientation of polymeric
materials. SANS measurements involving in-situ pressure or in-situ shear have been the
focus of research for many years. The effects of pressure on phase separation and miscibility
are discussed. In-situ shear allows investigations of the rheology and structure
simultaneously.

Chapters covering review of the literature in the four main SANS research areas have been
included. These draw heavily from papers published (over the past seven years) from use of
the NIST Center for Neutron Research.

Two other small-angle neutron scattering techniques are discussed in no-great detail in the
part on “Even Lower SANS Scales”. These are the Ultra small-angle (USANS) range
probing structures as large as 20 microns and the merging VSANS technique (V is for very
small-angle) which bridges the two probing ranges.

A gallery of interesting SANS data images is included. These images have been collected by
this author over several years. They are included here in order to show the full richness of the
SANS technique and for their esthetic value. Some brief concluding topics are covered along



with two appendices; one on “Useful Mathematical Expressions” and the other on “Elements
of Quantum Mechanics”. These appendices gather material used throughout.

This document is meant to be used in a pdf (not print) format so that it could be searched for
subject or author keywords. For this reason, no indexes have been included at the end of the
book. It is also meant to be used in an environmentally friendly way which helps minimize

printing.
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Chapter 2 - THE NEUTRON PROBE

1. WHAT ARE NEUTRONS?

The neutron was discovered by Chadwick in 1932. It has zero charge, a mass of 1.0087
atomic mass unit, a spin of 1/2 and a magnetic moment of -1.9132 nuclear magnetons. It has
a half life of 894 seconds and decays into a proton, an electron and an antineutrino. Its
interactions with matter are confined to the short-range nuclear and magnetic interactions.
Since its interaction probability is small, the neutron usually penetrates well through matter
making it a unique probe for investigating bulk condensed matter. Since the neutron can be
reflected by some surfaces when incident at glancing angles, it can also be used as a surface
probe. Neutrons are scattered by nuclei in samples or by the magnetic moments associated
with unpaired electron spins (dipoles) in magnetic samples. The nuclear scattering potential
is short range so that most neutron scattering can be described by "s wave" scattering (zero
orbital angular momentum) and the scattering cross section can be described by the first Born
approximation. Higher order term in the Born expansion series are required for neutron
reflection from surfaces. Reflection involves the refraction (not diffraction) limit.

Some useful properties follow:

Mass: m = 1.675*10* gm
Magnetic Moment: p,, = 6.031%10" eV/gauss

81.787
Energy: E[meV] PIAT]
Wavelength: A [A] = 3955/v [m/sec]
Velocity: v =1 m/msec (at \=4 A)
Useful relationship: mvA =h.

Thermal neutrons correspond to 25 meV energies and 1.8 A wavelength.

2. WHY USE NEUTRONS?

Neutrons are both a bulk and a surface probe for investigating both structures and dynamics.
Some of the advantages of neutrons as a probe for condensed matter follow.

-- Neutrons interact through short-range nuclear interactions. They are very penetrating and
do not heat up (i.e., destroy) samples. Neutrons are good probes for investigating structures
in condensed matter.

-- Neutron wavelengths are comparable to atomic sizes and inter-distance spacings. Neutron
energies are comparable to normal mode energies in materials (for example phonons,
diffusive modes). Neutrons are good probes to investigate the dynamics of solid state and
liquid materials.
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-- Neutrons interactions with hydrogen and deuterium are widely different making the
deuterium labeling method an advantage.

Someone once stated that “neutrons never lie!”

QUESTIONS

1. The neutron decays into what particles? How about the proton? Does it decay?
2. Why are neutrons a good probe to investigate condensed matter?

3. Can neutrons get reflected from surfaces at large angles like light does?

4. Define the electronvolt (eV) in terms of the SI energy unit, the joule (J).

ANSWERS

1. The neutron decays into an electron, a proton and an anti-neutrino. The proton is stable. Its
decay has not been observed.

2. Neutrons are a good probe to investigate condensed matter because it is very penetrating
(due to its charge neutrality) and to its just-right typical wavelengths and kinetic energies.

3. Neutrons can be reflected from surfaces only at low glancing angles. They cannot be
reflected at large angles from surfaces.

4. The electrostatic energy is the product of the charge by the applied voltage. The
electronvolt is the energy of 1 electron in a potential of 1 volt. The charge of 1 electron is
1.602*10"” coulomb. Therefore, 1eV = 1.602*10" J.
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Chapter 3 - NEUTRON SOURCES

1. INTRODUCTION

Since the early days of neutron scattering, there has been an insatiable demand for higher
neutron fluxes. Neutron sources are based on various processes that liberate excess neutrons
in neutron rich nuclei such as Be, W, U, Ta or Pb. Presently, the highest fluxes available are
around a few *10'° n/cm’sec. Even though various neutron sources exist, only a few are
actually useful for scattering purposes. These are:

-- continuous reactors
-- spallation sources
-- some other neutron sources.

Only minor improvements in flux increase of continuous reactors are expected because of the
saturation of the technology (i.e., limit of heat removal rate and operating safety
considerations). Pulsed sources are expected to go to higher fluxes (non-continuous operation
allows for a better heat removal rate).

Continuous reactors operate in a continuous neutron generation mode whereas spallation
sources function in a pulsed (or time-of-flight) mode.

Continuous Reactors

collimation scattering detection
I 0 0

onochromation

single wavelength
intensity
at sample
time
intensity

at detector
time

Measure some of the neutrons all of the time



Pulsed Sources

~ scattering ‘
collimation detection

| o [
t >

I
chopper

wavelength range
time-of-flight

intensity
at sample

time
intensity
at detector
time

Measure all of the neutrons some of the time

Figure 1: The two main types of neutron sources: continuous reactors and pulsed sources.
Schematic representations of SANS instruments are shown.

2. NUCLEAR FISSION REACTIONS

Some heavy nuclides undergo fission reaction into lighter ones (called fission products) upon
absorption of a neutron (Duderstadt-Hamilton, 1974; Lamarsh, 1977). Known fissile nuclides
are U-233, U-235, Pu-239 and Pu-241, but the most used ones are U-235 and Pu-239. Each
fission event releases huge energies (200 MeV) in the form of kinetic energy of the fission
fragments, gamma rays and several fast neutrons. Fission fragments are heavy and remain
inside the fuel elements therefore producing the major source of heat while energetic
gammas and fast neutrons penetrate most everything and are carefully shielded against.
Gamma rays and fast neutrons are a nuisance to neutron scatterers and are not allowed to
reach the detectors as much as possible. After being slowed down by the moderator material
(usually light or heavy water) neutrons are used to sustain the fission reaction as well as in
beam tubes for low energy (thermal and cold) neutron scattering.
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Fission Chain Reaction
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Figure 2: Typical fission chain reaction.

3. NUCLEAR REACTORS

Nuclear reactors are based on the fission reaction of U-235 (mainly) to yield 2-3
neutrons/fission at 2 MeV kinetic energies. Moderators (DO, H,0O) are used to slow down
the neutrons to thermal (0.025 eV) energies. Reflectors (D,0, Be, graphite) are used to
maintain the core critical by reflecting neutrons back into the core. Electrical power
producing reactors use wide core sizes and low fuel enrichment (2-5 % U-235), while
research reactors use compact cores and highly enriched fuel (over 90 % U-235) in order to
achieve high neutron fluxes. Regulatory agencies encourage the use of intermediate
enrichment (20-50 %) fuel in order to avoid proliferation of weapon-grade material. Note
that the relative abundance of U-235 in natural uranium is 0.7 %.

Nuclear research reactors have benefited from technological advances in power producing
reactors as well as in nuclear submarines (compact cores operating with highly enriched fuel
and foolproof safety control systems). The most popular of the present generation of reactors,
the pressurized water reactor (PWR), operates at high pressure (70 to 150 bars) in order to
achieve high operating temperatures while maintaining water in its liquid phase.

Neutrons that are produced by fission (2 MeV) can either slow down to epithermal then
thermal energies, be absorbed by radiative capture, or leak out of the system. The slowing
down process is maintained through collisions with low Z material (mostly water is used
both as moderator and coolant) while neutron leakage is minimized by surrounding the core
by a reflector (also low Z material) blanket. Most of the fission neutrons appear

. C. -14 .
instantaneously (within 10 sec of the fission event); these are called prompt neutrons.
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However, less than 1 % of the neutrons appear with an appreciable delay time from the
subsequent decay of radioactive fission products. Although the delayed neutrons are a very
small fraction of the neutron inventory, these are vital to the operation of nuclear reactors and
to the effective control of the nuclear chain reaction by "slowing" the transient kinetics.
Without them, a nuclear reactor would respond so quickly that it could not be controlled.

A short list of research reactors in the USA used for neutron scattering follows:

-- HFIR-Oak Ridge National Laboratory (100 MW), a horizontal cold source has recently
been installed.

-- NIST-The National Institute of Standards and Technology (20 MW), contains third
generation cold neutron source.

-- MURR-University of Missouri Research Reactor (10 MW), does not contain a cold
neutron source.

These reactors were built during the1960's but have undergone various upgrades.
There is one major research reactor in Canada:

-- CRNL-Chalk River, Canada (135 MW).
A short list of research reactors in Europe follows:

-- ILL-Grenoble, France (57 MW),

-- NERF-Petten, Netherland (45 MW),
-- FRM-II Munich, Germany (20 MW),
-- KFKI-Budapest, Hungary (15 MW),
-- LLB-Saclay, France (14 MW),

-- HMI-Berlin, Germany (10 MW),

-- Riso-Roskilde, Denmark (10 MW),

-- VVR-M Leningrad, Russia (10 MW).
-- GKSS Geesthacht, Germany (5 MW).

A short list of research reactors in Asia follows:

-- DRHUVA-Bombay, India (100 MW),

-- CIAE-Beijing, China (60 MW),

-- NLHEP-Tsukuba, Japan (50 MW),

-- Bhabha ARC-Bombay, India (40 MW),

-- HFANAR, KAERI, Hanaro, Korea (30 MW)
-- JRR3-Tokai Mura, Japan (20 MW),

-- HWRR-Chengdo, China (15 MW),

One reactor exists in Oceania. It is the Bragg Institute, ANSTO, Australia (20 MW).
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Most of these facilities either have or are planning to add a cold source in order to enhance
their cold neutron capability and therefore allow effective use of SANS instruments.

4. THE NIST THERMAL NEUTRON INSTRUMENTS

The NIST Center for Neutron Research (CNR) facility has a split-core geometry whereby
thermal neutron beam tubes do not look at the fuel elements directly. This helps minimize
epithermal neutrons and gamma radiation in the beams. There is a host of thermal neutron
instruments located in the confinement building. These comprise triple axis instruments for
inelastic neutron scattering, a powder diffractometer, a single crystal instrument also used for
texture studies, a neutron radiography station, and a Bonse-Hart USANS instrument.
Location of the cold neutron source is optimized. It is located at the peak flux position within
the reflector region. A set of neutron guides transport cold neutrons to a guide hall.

NIST Thermal Instruments

cold
neutron
O ~source

NG4
NG5

%NG7

@ USANS

U

Figure 3: Schematics of the NIST confinement building showing the thermal neutron
scattering instruments and the cold neutron source along with the beginning of the cold
neutron guides leading to the current guide hall. The USANS instrument is located on a
thermal neutron beam tube.

5. THE NIST GUIDE HALL
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The NIST CNR current guide hall contains a set of seven guides looking at the cold source.
Cold neutron instruments include three SANS instruments, three reflectometers, a time-of-
flight instrument, a cold triple axis, a backscattering spectrometer, a neutron spin-echo
spectrometer and other fundamental physics stations (interferometry, measurement of the
neutron half-life, etc).

All the guides are straight (with no curvature) and looking at the cold source directly. Guide
dimensions are 12 cm*5 c¢cm for some and 15 cm*6 cm for others. The guides’ inner surfaces
are coated with either natural Ni or Ni-58 on the sides and with either Ni-58 or supermirror
coating on the top and bottom. The critical angle for natural Ni is 0.1 °/A, that for Ni-58 is
0.115 °/A and that for supermirror coating is 0.3 °/A. This critical angle for total reflection

increases with neutron wavelength as 6.= y.A where y. = ,/pb/m is given in terms of the

atomic number density p and scattering length b of the reflecting material. Neutron guides
are anchored onto a thick concrete base in order to decouple them from the rest of the guide
hall. Neutron guides are encased in jackets that are evacuated or filled with helium. Neutron
losses in neutron guides are estimated to be around 1 % per meter.

Filters are used to remove epithermal neutrons and gamma radiation from the neutron guides.
Crystal filters include beryllium for neutrons and bismuth for gamma rays. They are kept at
liquid nitrogen temperature. Optical filters are also used to steer the neutron beam out of the
direct line-of-sight from the cold source and with minimum losses. Optical filters are
characterized by high transmission gains over crystal filters for long wavelength neutrons.

Note that other facilities use curved guides that avoid the use of filters completely. Curved
guides however transmit neutrons above a cutoff wavelength that depends on the guide
curvature and width. A curved guide of width W and radius of curvature R has a
characteristic angle W, = +2W /R . This is the minimum angle that the guide subtends (in
the horizontal plane) in order to get out of the direct line-of-sight. This curved guide has a
cutoff wavelength A, = ¥ /y. below which no neutrons are transmitted.
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The NIST Guide Hall

NGI NG3-30 m SANS
)
G
NG4 a

NG7-30 m SANS

Figure 4: Schematics of the NIST current guide hall. Note the two 30 m SANS instruments
on the NG3 and NG7 guides.
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Figure 5: Photograph of the NIST CNR guide hall. The confinement building wall is at the
rear end of the picture. The red color scattering vessel of the NG7 30m SANS instrument is
seen to the left.

A guide hall addition is under construction at NIST. It will be looking at the same cold
source from another port and will provide an additional 3 curved guides to the panoply.

6. THE HFIR GUIDE HALL
The High Flux Isotope Reactor (HFIR) located at Oak Ridge National Lab has built two

SANS instruments and a horizontal cold source. These are 35 m and 30 m long respectively
and both use 1 m*1 m size area detectors.
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The HFIR Guide Hall

CG3 BioSANS

Figure 6: Schematic representation of the HFIR guide hall with the two 30 m SANS
instruments. The CG2 SANS instrument is slightly longer.

7. SPALLATION SOURCES

Beams of high kinetic energy (typically 70 MeV) hydrogen ions are produced (by linear
accelerator) and injected into a synchrotron ring to reach much higher energies (500-800
MeV) and then steered to hit a high Z (neutron rich) target (W-183 or U-238) and produce
about 10-30 neutrons/proton with energies about 1 MeV. These neutrons are then
moderated, reflected, contained, etc., as in the case of nuclear reactor. Most spallation

sources operate in a pulsed mode. The spallation process produces relatively few gamma rays
15 16
but the spectrum is rich in high energy neutrons. Typical fast neutron fluxes are 10 -10

n/sec with a 50 MeV energy deposition/neutron produced. Booster targets (enriched in U-
235) give even higher neutron fluxes.
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Spallation Nuclear Reaction
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neutron scattering

Figure 7: Spallation nuclear reaction.
Spallation sources in the USA:

-- IPNS (Argonne National Lab): 500 MeV protons, U-238 target, 12 pA (30 Hz), pulse

width = 0.1 psec, flux = 1.5"‘1015 n/sec, operating from 1981 till the end of 2007 when it was
shutdown.

-- WNR/PSR LANSCE (Los Alamos): 800 MeV protons, W target, 100 pA (12 Hz), pulse
16
width = 0.27 psec, flux = 1.5*10 n/sec, operating since 1986.

-- SNS (Oak Ridge National Lab): 1.3 GeV, Hg target, 2 mA (60 Hz), pulse width = 0.945
psec, operation started in 2006.

Spallation sources elsewhere in the world:

-- ISIS (Rutherford, UK): 800 MeV protons, U target, 200 pA (50 Hz), pulse width = 0.27
16
psec, flux =4*10 n/sec, operating since 1984.

-- KENS (Tsukuba, Japan): 500 MeV protons, U target, 100 pA (12 Hz), pulse width = 0.07
14
psec, flux =3*10 n/sec, operating since 1980.

-- SINQ, Paul Scherrer Institut (PSI), Switzerland, 590 MeV protons, Pb target, 1.8 mA, flux
14
=5*10 n/sec, operating since 2002.
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The Intense Pulsed Neutron Source

NEUTRON
' SCATTERING
/‘\ TARGET

"'

L I

Figure 8: Schematic of the IPNS spallation source and instruments hall. Note the two SANS
instruments (SASI and SAND).
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Los Alamos Neutron Scattering

A,

LQD

Figure 9: Schematic of the LANSCE (LANL) instruments hall. Note the SANS (LQD)
instrument on the right hand side.

8. SOME OTHER NEUTRON SOURCES

“Pulsed reactors” include a moving element of fuel (or reflector material) which moves
periodically causing regular variation of the reactivity. A fast rising burst of neutrons occurs

when the reactivity exceeds prompt critical. One such reactor exists at:

-- IBR-II (Dubna, Russia), with mean power of 2 MW, pulse width of 50 usec, repetition rate
15
of 5 Hz. Neutron in pulse fluxes are of order of 5*10 n/cm2sec.

Stripping (p,n) nuclear reactions can be used to produce neutrons. The following reaction:
p+°Be>n+’B

is used to produce pulsed neutrons at the following facility:
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-- The Low Energy Neutron Source at the University of Indiana with pulse width between 5
usec and 1 msec.
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QUESTIONS

1. When was the first research reactor built?

2. Name a few applications of nuclear research reactors besides neutron scattering.

3. Why can’t neutron sources be designed for much higher fluxes?

4. What is the origin of delayed neutrons?

5. Are there nuclear reactors that use non-enriched uranium?

6. Name the research reactor and the spallation source closest to your home institution.
7. Instruments at pulsed sources use a range of wavelengths whereas reactor-based
instruments use single wavelength. How could the same scattering information be obtained
from these two different types of instruments?

8. Why are most SANS instruments installed in neutron guide halls?

9. What is a dosimeter?

ANSWERS

1. The first nuclear reaction was performed by Enrico Fermi and his team in a sports facility
close to the University of Chicago stadium in 1942. This is the first nuclear reactor built in
the US called CP1 for Chicago Pile 1. A series of reactors were built at Oak Ridge, Los
Alamos, Brookhaven, and Argonne National Labs and were referred to as CP2 to CP5. The
first university-based research reactor was built in 1955 at Penn State University. The second
one was built in 1957 at the University of Michigan.

2. There are many practical applications of nuclear research reactors besides neutron
scattering. A few are mentioned here: neutron activation analysis, radioisotopes production,
neutron radiography, transmutation doping of silicon, coloration of gemstones, etc.

3. Neutron sources cannot deliver much higher fluxes because they are at their limit of heat
removal rate from the core (cooling rate).

4. Delayed neutrons are emitted from the decay of fission fragments. Their half-lives range
from seconds to minutes.

5. The Canadian CANDU design uses U-238 (natural uranium).

6. There are two main research reactors in the US, one at the NIST Center for Neutron
Research and one at the Oak Ridge High Flux Reactor.
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7. Reactor-based neutron scattering instruments use some of the neutrons all of the time
while spallation source-based instruments (time-of-flight) use all of the neutrons some of the
time. They both measure scattered neutrons intensity with increasing scattering variable Q.
8. SANS instruments are located mostly in guide halls because they are long (30 m).
Moreover guide halls are characterized by low neutron and gamma background.

9. A dosimeter is a special type of detector to monitor radiation levels and doses. It is worn
by experimenters.
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Chapter 4 - COLD NEUTRON MODERATORS

1. COLD NEUTRON SOURCE

"Cold" (slow) neutrons are often needed for better spatial resolution in scattering applications
(long wavelength scattering). Atoms with low Z (such as H or D) are good moderators
making them ideal as cold source material. Cold neutrons are generated in a neutron
remoderator also called "cold source" using either hydrogen or deuterium in the liquid form,
supercooled gas form, or solid form (methane or ice). The Maxwellian neutron spectral
distribution (peaking at 1.8 A for thermal neutrons) is shifted to lower energies by neutron
slowing down (through inelastic scattering) processes. The mean free path (average distance
between collisions) of neutrons in hydrogen (0.43 cm) is smaller than in deuterium (2.52
cm).

Liquid cold sources (hydrogen or deuterium) operate at low temperature (around 20 K) and 2
bar pressure (Russell-West, 1990). Vacuum and helium jackets isolate the remoderating
liquid from the surrounding. Supercritical gas cold sources (hydrogen or deuterium) operate
at 40 K and 15 bars of pressure (one phase system); thicker walls are necessary for the
containment of the higher gas pressure. Solid methane at 50 K and solid ice at 35 K have
been used as cold source material. Radiation damage in solid state cold sources produces
stored (so called "Wigner") energy due to ionization. In order to avoid sudden release of this
energy (explosion!), a recombination of radiolysis products is induced in the cold source
material by warming it up on a regular basis (once every couple of days).

Use of a cold source yields high gains (one to two orders of magnitude) at high wavelengths.

The Cold Neutron Source

NGO

\

g/mii

Figure 1: The NIST liquid hydrogen cold source and neutron guide system.
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Figure 2: Schematic view of the liquid hydrogen cold source with optimized re-entrant
geometry.

2. COLD NEUTRON SPECTRUM

Neutrons are produced by fission with energies around 2 MeV, then they slow down to form
a Maxwellian spectrum distribution which is peaked around the moderator temperature kT

(in energy units).

The neutron flux @(E) is the number of neutrons emitted in all directions per second and per
unit energy at neutron kinetic energy E.

(DO
o(E) = 1 E exp(-E/k, T). (1)

Its integral is the neutron current (total number of neutrons produced by the cold source per
second):

®, = [dE@(E). ()
0

Neutron conservation is expressed as @(E)dE = ¢@(A)dA . The neutron kinetic energy E can be

. h* )1 . dE h? \(=2)
expressed in terms of the wavelength AL as E=| — |—. Using — =| — , ®(A) can
P 8 (2mj?f g dr (2mj 5 o)

be expressed as:
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20, Ay
P(h) =D, ' exl{—k—z : 3)

2

The variable A, =

has been defined for simplicity in notation and h is Planck's
2mk T

constant. (1) is the neutron current per unit wavelength. Its units are n/s.A. The angular
spectral neutron distribution simply referred to as neutron flux (or current density) is given
A
by o( )2
4rnL,
steradian (symbol sr) is the unit of solid angle.

at a distance Lo from the cold source. Its units are n/cm?.s.sr.A. Note that the

For high neutron wavelength A, ¢(A) decreases as 1/%5. A cold source effectively shifts the

Maxwellian peak to higher wavelengths therefore increasing the population of cold neutrons
and yielding better small-angle neutron scattering resolution. For elastic scattering, this
means the ability to resolve larger structures (close to micron size).

The spectral neutron distribution of the NIST Center for Neutron Research cold source is
plotted (Williams-Rowe, 2002).

NCNR Hydrogen Cold Sources
10" \ \ \

Proposed NCNR Cold Source
Current NCNR Cold Source

(n/cm?.s.ster.A)
[N (Y
O»—\ o»—!
I I

Spectral Neutron Distributions
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O»—\
I

109 | | |
0 5 10 15 20

Neutron Wavelength (A)

29



Figure 3: Spectral neutron distributions for the current and the proposed NIST Center for
Neutron Research cold sources. The current one supplies neutrons to the current guide hall
and will supply the guide hall addition. The proposed smaller and brighter cold source
(referred as “peewee’’) will supply cold neutron to one instrument inside the confinement
building.

REFERENCES

G.J. Russell, and C.D. West, “International Workshop on Cold Neutron Sources”, Los
Alamos National Lab, March 5-8 (1990).

R. E. Williams and J. M. Rowe, “Developments in Neutron Beam Devices and an Advanced
Cold Source for the NIST Research Reactor”, Physica B 311, 117-122 (2002).

QUESTIONS

1. What are the main types of cold neutron sources?

2. What is the primary safety issue associated with solid cold sources?
3. What is the boiling temperature of hydrogen?

4. What is the spectral distribution of cold neutrons?

5. Why are cold neutrons necessary for the SANS technique?

6. What is the definition of the steradian?

ANSWERS

1. Cold sources are of the liquid, gas or solid types. Most of them use eith liquid hydrogen or
deuterium to slow down neutrons to cold energies.

2. Solid state cold sources (either solid methane or solid heavy ice) store Wigner energy that
needs to be released by annealing the cold source. If not annealed, the solid cold source could
explode.

3. Liquid hydrogen boils at 21 K.

4. Cold neutrons follow a Maxwellian spectral distribution with a tail varying like 1/A° where
A is the neutron wavelength.

5. Cold neutrons are characterized by long wavelengths A which yield lower scattering

: 4t . .
variables Q = Tnsm[gj (at fixed scattering angle 6). Lower Q values correspond to longer

d-spacing in the probed structures.

6. The steradian (symbol sr) is the unit of solid angle. The sr is equal to the square of the
radian (symbol rad) which is an angular unit. Note that an angle of 3.14159 rad corresponds
to180 °.
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Chapter 5 - NEUTRON FLUX ON SAMPLE

Flux on sample is an important factor in characterizing the performance of a neutron
scattering instrument. It depends on many factors as discussed here.

1. THE COLD NEUTRON SOURCE SPECTRUM

The liquid hydrogen neutron cold source is characterized by the following angular spectrum
distribution (neutrons/cm®.s.A.ster):

4 2
(P(k) _ (I)O 2}\’"1" exp(— }\’T ] (1)

4nL,>  4nL,> A 22

It is also referred to as the “Maxwellian” distribution. A is the neutron wavelength and Ay is a
cold source constant defined asA; =h/,/2mk,T . At can be expressed as:

amr=A T, . (2)

The constant A = 30.9A\/E , Te 1s the cold source effective temperature T, = 32 K. Note that
the cold source real temperature is the condensation temperature of hydrogen (around 20 K).
Therefore Ar= 5.5 A is a good estimate in our case. The cold neutron wavelength distribution
is therefore peaked around 3.5 A and falls off with a 1/A° tail. The normalization factor D,

is determined through flux measurements.

2. NEUTRON FLUX ON SAMPLE

The neutron current on sample (neutrons/s) can be estimated for a typical SANS instrument
configuration as:

AQ, AQ A, A
([)(}L)A}\. 1 2 — (P(A’) AN 1 2 (3)
4n 4n len® L, L,

A 1s the wavelength spread, AQ; is the solid angle subtending the source aperture defined
by the area A; and AC); is the solid angle subtending the sample aperture defined by the area
Aj, Lo and L, are the cold source-to-source aperture and source aperture-to-sample aperture
distances respectively.
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Figure 1: Typical pre-sample SANS collimation geometry. This figure is not to scale.
Vertical scale is of order of centimeters while horizontal scale is of order of meters.

This quantity can be expressed as:

AQ AQ, Dy At [ g’

P(L)AL = exp( . ]Ax A Ay

L, L,

4
4t 4nm 8u? N @

with Ar= 5.5 A. In order to make the neutron flux expression match the measured flux at the
NG3 SANS instrument the following factor is chosen:

@,

o =1.65%10"”%n/cm’s. (5)
T Ly

The estimated flux (or current density) on sample (n/cm?’.s) is given by:

o) . AQ AQ, @, A’ A’ [Ak} A,
A) = AL = SIS ey Il W E'S
o) A, 4 4rn 87-52L02 At exP % A le ©)

1.507*10" 3025\ ALY A,
o) =207 -2 )(TL—]

Consider a typical neutron wavelength and wavelength spread:
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Neutron wavelength: L = 6 A.
Wavelength spread: AAM/A =0.15.

So that:
d(6A)= 7.53*10“{%} n/cm’.s (7)
1

This expression is used in the following section.

3. CASE OF SPECIFIC CONFIGURATIONS
Consider two instrument configurations both using:

Neutron wavelength: A = 6 A.
Wavelength spread: AA/A = 0.15.

The first configuration corresponds to high flux on sample:
Source aperture radius: R; = 2.5 cm.

Area of source aperture: A} =7 2.52=19.63 cm”.
Source-to-sample distance: L; = 3.82 m.

So that ¢(6A) =1.01*10" n/cm’.s for the high flux configuration.

The second configuration corresponds to low flux on sample:
Source aperture radius: R; = 1.9 cm.

Area of source aperture: A; =7 1.9% = 11.34 cm’.
Source-to-sample distance: L; = 16.22 m.

So that ¢(6A) = 3.24*10° n/cm’.s for the low flux configuration.

4. MEASURED FLUX ON SAMPLE

The two previously considered cases correspond to two specific configurations on the NG3
30 m-SANS instrument at NIST. Flux on sample measurements were made for these two
configurations described above and for a range of wavelengths. These results are plotted
here.
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Figure 2: Measured neutron flux on sample with varying wavelength for the high flux
configuration (R; = 2.5 cm, L; = 3.82 m) and the low flux configuration (R;=1.9 cm, L; =
16.22 m). Estimates values are also plotted.

Note that the neutron current on sample (n/s) is obtained by multiplying the neutron flux by
the area of the sample aperture A, (= nR,?%). In our notation, that quantity is given
by (L) = ¢(A)A, . Note that d(L) and ¢p(A) are not per unit wavelength, but are calculated at

wavelength A.

Considering a sample aperture of radius R, = 0.635 cm, the following neutron currents can be
estimated:

®(6A) =1.28*10" n/s for the high flux configuration.

®(6A) =4.10%10° n/s for the low flux configuration.

These are reasonably high numbers for a SANS instrument (Cook et al, 2005).

5. NEUTRON BEAM MONITOR COUNT RATE



The neutron beam monitor count rate is measured on a regular basis for increasing
wavelength. Measurements shown here were taken on the NG3 30 m SANS instrument at the
NIST CNR before the optical filter was installed. The beam monitor is a low-efficiency
fission counter and is placed just after the velocity selector. It detects neutrons through their
absorption in a thin U-235 plate. The absorption cross section varies like “1/v” (v being the

neutron velocity). It is proportional to the neutron wavelength A, i.e., 6,(A) = cA where c is a
constant.

The measured monitor count rate m() is compared to the following empirical expression:
22510’ 737Y
m(%) = Texp - T . (8)

The multiplicative constant depends on the fission counter used. Note the characteristic A-
dependence. The tail drops out like 1/A°. Recall that the cold source spectrum drops out like
1/)°. Use of a velocity selector (with constant AA/L) changes the tail of the transmitted
spectrum to 1/A*. Therefore, the tail of the corrected monitor count rate varies like
m(L)/oa(L) ~ 1/A* where 6,()) is the neutron absorption cross section. The wavelength
dependence of the monitor count rate/wavelength and the neutron current density are the
same. It is not clear as to why the constants in the exponential are different.
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Figure 3: Variation of the neutron beam monitor count rate divided by the neutron
wavelength with increasing wavelength.
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QUESTIONS

1. What is the neutron current?

2. What is the neutron flux (or current density) at the sample?

3. What is the highest neutron flux on sample for 6 A neutrons at the NG3 SANS instrument?
4. How do neutron fluxes compare with x-ray fluxes?

5. Is the neutron current crossing the sample aperture the same as the detector count rate?

ANSWERS

1. The neutron current is the number of neutrons per second.

2. The neutron flux at the sample is expressed in n/cm?.s. It is independent of sample area.

3. The highest neutron flux on sample for 6 A neutrons at the NG3 SANS instrument is
around 10’ n/cm?.s. It is obtained for a high-Q high flux configuration.

4. Neutron fluxes are orders of magnitude lower than x-ray fluxes. Even fluxes for a rotating
anode x-ray source are higher than the highest neutron source fluxes.

5. The neutron current crossing the sample aperture is not the same as the detector count rate
because of loss due to attenuation in the scattering flight path, due to neutrons that are
scattered outside of the detector solid angle and due to the detector absorption cross section
and non-perfect detector efficiency.
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Chapter 6 - INTRODUCTION TO NEUTRON SCATTERING

Neutron scattering is the technique of choice for condensed matter investigations in general
because thermal/cold neutrons are a non-invasive probe; they do not change the investigated
sample since they do not deposit energy into it.

1. CHARACTERISTICS OF NEUTRON SCATTERING
A few advantages of neutron scattering are included here.

-- Neutron scattering lengths vary "wildly" with atomic number and are independent of
momentum transfer Q. This is used to advantage in deuterium labeling using the fact that the

scattering lengths for hydrogen and deuterium are widely different (b,, =-3.739 * 10_13 cm

and b, = 6.671 *10_13 cm respectively). The negative sign in front of b, means that the

scattered neutrons wavefunction is out of phase with respect to the incident neutrons
wavefunction.

-- Neutrons interact through nuclear interactions. X-rays interact with matter through
electromagnetic interactions with the electron cloud of atoms. Electron beams interact
through electrostatic interactions. Light interacts with matter through the polarizability and is
sensitive to fluctuations in the index of refraction. For this, neutrons have high penetration
(low absorption) for most elements making neutron scattering a bulk probe. Sample
environments can be designed with high Z material windows (aluminum, quartz, sapphire,
etc) with little loss.

-- In neutron scattering, scattering nuclei are point particles whereas in x-ray scattering,
atoms have sizes comparable to the wavelength of the probing radiation. In the very wide
angle (diffraction) range, x-ray scattering contains scattering from the electron cloud,
whereas neutron scattering does not. In the SANS range, this is not the case.

-- Neutrons have the right momentum transfer and right energy transfer for investigations of
both structures and dynamics in condensed matter.

-- A wide range of wavelengths can be achieved by the use of cold sources. Probed size
range covers from the near Angstrom sizes to the near micron sizes. One can reach even
lower Q's using a double crystal monochromator (so called Bonse-Hart) USANS instrument.

-- Since neutron detection is through nuclear reactions (rather than direct ionization for

example) the detection signal-to-noise ratio is high (almost 1 MeV energy released as kinetic
energy of reaction products).
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Figure 1: Neutrons are scattered from nuclei while x-rays are scattered from electrons.
Scattering lengths for a few elements are compared. Negative neutron scattering lengths are
represented by dark circles.

A few disadvantages of neutron scattering follow.

-- Neutron sources are very expensive to build and to maintain. It costs millions of US
dollars annually to operate a nuclear research reactor and it costs that much in electrical bills
alone to run a spallation neutron source. High cost (billions of dollars) was a major factor in

the cancellation of the Advanced Neutron Source project in the mid 1990s.

-- Neutron sources are characterized by relatively low fluxes compared to x-ray sources
(synchrotrons) and have limited use in investigations of rapid time dependent processes.

-- Relatively large amounts of samples are needed: typically | mm-thickness and 1 cm
diameter samples are needed for SANS measurements. This is a difficulty when using
expensive deuterated samples or precious (hard to make) biology specimens.

2. TYPES OF NEUTRON SCATTERING
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There are four main types of neutron scattering.

(1) The simplest type consists in a measurement of the sample transmission. This
measurement requires a monochromatic beam (or the time-of-flight method), some
collimation and a simple neutron detector (end-window counter). Transmission
measurements contain information about the sample content and the relative fractions of the
various elements. For example, the relative ratio of carbon to hydrogen in crude oils (the so-
called cracking ratio) could be measured accurately.

(2) Elastic neutron scattering consists in measuring the scattered intensity with varying
scattering angle. This is a way of resolving the scattering variable Q = (4n/A) sin(6/2) where
A is the neutron wavelength and 0 is the scattering angle. This is performed by either step-
scanning or using a position-sensitive detector. The main types of elastic scattering
instruments are diffractometers (either for single-crystal, powder diffraction or for diffuse
scattering from amorphous materials), reflectometers and SANS instruments.
Diffractometers probe the high Q range (Q > 0.5 A™") whereas reflectometers and SANS
instrument cover the low-Q range (Q < 0.5 A™). They all investigate sample structures either
in crystalline of amorphous systems.

(3) Quasielastic/inelastic neutron scattering consists in monochromation, collimation,
scattering from a sample, analysis of the neutron energies then detection. The extra step uses
a crystal analyzer (or the time-of flight method) in order to resolve the energy transfer during

scattering. In this case both Q = 125 —k . and E = E; — E; are resolved. Quasielastic scattering

corresponds to energy transfers around zero, whereas inelastic scattering corresponds to
finite energy transfers. The main types of quasielastic/inelastic spectrometers are the triple
axis, the time-of-flight, and the backscattering spectrometers. These instruments cover the
peV to meV energy range. They investigate sample dynamics and structure. Inelastic
instruments are used to investigate phonon, optic and other types of normal modes.
Quasielastic instruments are used to investigate diffusive modes mostly.

(4) The spin-echo instrument is another type of quasielastic spectrometer. It is singled out
here because it measures correlations in the time (not energy) domain. It uses polarized
neutrons that are made to precess in the pre-sample flight path, get quasielastically scattered
from the sample, then are made to precess again but in the other direction in the post-sample
flight path. A neutron spin analyzer keeps track of the number of spin precessions. The
difference in the number of spin precessions before and after the sample is proportional to
the neutron velocity change during scattering and therefore to the energy transfer. Scanned Q
ranges are between 0.01 A™ and 0.5 A" and probed times are in the nanoseconds range. This
instrument is useful for investigating diffusive motions in soft materials.
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Figure 2: Schematic representation of the four types of neutron scattering methods.

3. DIFFRACTOMETER TYPES

The main types of diffractometers include (1) single-crystal and powder diffractometers, (2)
diffuse and liquid scattering instruments, (3) small-angle neutron scattering instruments and
(4) reflectometers. All of these diffractometers correspond to “double axis” diffraction, i.e.,
they are schematically represented by a monochromator (first axis) and diffraction from the
sample at an angle 0 (second axis). Types (1) and (2) probe the high Q scale with Q > 0.1 A’
(i.e., small d-spacings d < 60 A). The third and fourth type probe the lower Q scale 0.4 A" >
Q>0.001 A' (i.e., 16 A <d <6000 A). The measurement window for SANS instruments
and reflectometers covers from the near atomic sizes (near A) to the near optical sizes (near
um). Type (1) measures purely crystalline samples whereas the other types are used mostly
for amorphous systems. SANS however can measure both amorphous and crystalline
samples. Types (1), (2) and (3) measure bulk samples whereas type (4) (reflectometers)
measure surface structures only. Similar discussions can be found elsewhere (Price-Skold,
1986).
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QUESTIONS

1. Name a couple of advantages of neutron scattering.

2. Neutrons interact with what part of the atom?

3. Name a couple of disadvantages of neutron scattering.
4. Name the four types of neutron scattering instruments.
5. What type is the SANS instrument?

ANSWERS

1. Neutrons are very penetrating, they do not heat up or destroy the sample, deuterium
labeling is unique. They have the right wavelengths (Angstroms) and kinetic energies (neV
to meV) to probe structures and dynamics of materials.

2. Neutrons interact with the nuclei.

3. Neutron sources are characterized by low flux compared to x-ray sources. Relatively large
amounts of sample (gram amounts) are required for neutron scattering measurements.

4. The four types of neutron scattering instruments are: transmission, elastic,
quasielastic/inelastic and neutron spin echo.

5. The SANS instrument is a “diffractometer” for diffuse elastic neutron scattering.
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Chapter 7 - NEUTRON SCATTERING THEORY

Elements of neutron scattering theory are described here. The scattering amplitude, scattering
lengths and cross sections are introduced and discussed.

1. SOLUTION OF THE SCHRODINGER EQUATION

Neutron scattering theory involves quantum mechanics tools such as the solution of the
Schrodinger equation even though the scattering problem is not a quantum mechanical
problem (no bound states are involved). A simple solution of the Schrodinger equation
involving perturbation theory is presented here. This is to so-called Born approximation
method.

Figure 1: Incident plane wave and scattered spherical wave.

The Schrodinger equation is expressed as follows:

Hyy; =E;y; (1)
Hy =Ey
H=H +V.

H is the full Hamiltonian operator, H; is the incident neutron kinetic energy operator and V is
the neutron-nucleus interaction potential. E; and E; are the eigenvalue energies for the
incident neutron and for the scattered neutron. ¥; and ¥ are the eigenfunctions for the
incident (non-interacting) neutron and for the interacting neutron-nucleus pair.
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H=— ="V (2)
2m  2m
p= inV is the momentum operator.
21. 2
E. = LS .
2m

E; is the incident neutron kinetic energy and k; is its incident wavenumber. ‘¥; is the solution
of the homogeneous differential equation:

(H, —E,)¥,(F) = —f—m(vz +k)W,(F) =0. 3)

The solution is an incident plane wave Y, (r) = exp(ilzi .I') using vector notation. The full
differential equation is written as:

2
- ;’—m(v2 +k,)W(F) =—V(HW(). “)

Its solution is an integral equation of the form:

m
2mth?

W(T) = W, (F) +( )j di'G(F - F)VE)F(F) (5)

Here G(r —1') is a Green’s function satisfying the following differential equation:
. /P -
(H—-E{)G(r) = ———(V" +k)G(r) = 5(1) (6)
2m
ks is the scattered neutron wavenumber. Its solution is a spherical outgoing wave of the form:

exp(ik,r)

G(r) = (7

In order to verify this result, the following relations valid in spherical coordinates are used:

N_o(.1)_1
V@‘@r[r rj 2 ®
V{z) _ L[grz(gﬂ@ 5.

r) r*|lor \or)|\r

Therefore:
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W(E) = W, (F) +( m) [ar 2P T2 gy (o)
2nh |T—1'|

Vector 1' is within the sample and T is far from the sample so that r >>r’ and therefore one
. .- r.r'
can approximate |r —r'|=r——.
r

G(F -7 = exp(ik,r) exp[_ ik r.r j _ exp(ik,r) exp(—iEs.f') 0
r r r

Here, the scattered neutron wavevector f(s has been defined as f(s =k /r.

The general solution of the Schrodinger equation is an integral equation that can be solved
iteratively through the expansion:

m
2mth?

P(5) = V. (F) + ( jj dF'G(F - T)VE )Y, (F) +

(222} [dFGE-F)VE[d"GE-F)W,E+..  (11)

Keeping only the first integral term corresponds to the first Born approximation which can be
presented in the form:

W(F) =¥ (F)+ (2:;2 jj dF'G(F - T)V(E) P, () (12)

P (F) = exp(ik, ) + eXp(iksr)( = J [ di'exp(-ik, F)V(F") exp(ik, ')
r 2nh

W (F) = exp(iK, .F) + %ﬂ‘sr)f(e) :

The scattering amplitude f(0) has been defined as:

m
2nh?

£(0) = ( } [dF'exp(-iQ.f)V(F") (13)

Q =1ES—12i is the scattering vector. f(0) is the Fourier transform of the interaction potential
V(r’). f(0) has been assumed to be independent of the azimuthal angle.
The first Born approximation applies to thermal/cold neutrons neutron scattering

corresponding to "s wave" scattering (i.e., corresponding to a zero orbital angular quantum
number). This includes all of neutron scattering except for neutron reflectivity whereby
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higher order terms in the Born expansion have to be included. Neutron reflectometry
involves refraction (not diffraction).

Q characterizes the probed length scale and its magnitude is given for elastic scattering in

terms of the neutron wavelength A and scattering angle 0 as Q = (4n/A) sin(0/2). For small
angles (SANS), it is simply approximated by Q = 21t0/A. Since Q is the Fourier variable (in
reciprocal space) conjugate to scatterer positions (in direct space), investigating low-Q
probes large length scales in direct space and vice versa.

In summary, the solution of the Schrodinger equation is an incident plane wave plus a
scattered spherical wave multiplied by the scattering amplitude.

2. SCATTERING CROSS SECTIONS

The microscopic differential scattering cross section is defined here. It represents the fraction
of neutrons scattered into solid angle dQ2 with a scattering angle ©.

\ 4

Figure 2: Representation of neutrons scattered with angle 6 inside a solid angle d(2.

Consider incident neutrons of wavenumber k; and scattered neutrons of wavenumber k,. The
incident neutron flux also called current density (neutrons/cm?.s) is given by:

i =2i—hm(\lfﬁ\lfi g =T (14)

Here * represents the complex conjugate and ‘¥, = exp(ilzi .) is the incident plane wave.
Performing the simple operation VY = ilEfP , one obtains ji: mEi / m . Similarly for the
scattered neutron flux:

i)

ﬁﬂ(ﬁx*—x*ﬁx)- (15)

J
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Where y =¥ - V¥ = £(0). Here also, performing the differentiations, one obtains:

exp(ik,r)
r
~ 2
-k [f(0)
Jy=———

S

. Note that the current densities ji and js have units of velocity (speed). In
m r

order to obtain the standard units for a current density (neutrons/cm?.s), one has to divide by
the volume formed by a unit area and the distance travelled by the neutrons per second.

The differential neutron scattering cross section is defined as:

240k
dGS(O)zJSrJd :k—§|f(e)|2 dQ (16)

i

This is the ratio of the neutron flux scattered in dQ2 over the incident neutron flux. Within the
first Born approximation (also called the Fermi Golden Rule):

do,(0) _k, >
o K | £(0) | (17)

do,(0) Kk, 2
dQ  k, '

(2;;2 jj dr'exp(—iQF )V (F')

This cross section contains information about what inhomogeneities are scattering and how
they are distributed in the sample. The microscopic scattering cross section is its integral

over solid angles: o, = _[ ((:1?25

-24
JdQ . Cross sections are given in barn units (1 barn = 10

2
cm ).

Given the (atomic) number density N/V (number of scattering nuclei/cm ) in a material, a

-1
macroscopic cross section is also defined as: X5 = (N/V) o (units of cm ). SANS data are
often presented on an "absolute" macroscopic cross section scale independent of instrumental
conditions and of sample volume. It is given by dZy/dQ = (N/V) do/dQ.

3. THE BRA-KET NOTATION

The <bralket> approach is useful for simplifying notation. Consider the following
definitions:

<7k, >=exp(ik,.F) (18)
<1 |¥>=Y(r)

<r|V=V()

<T|G|T)=G(E-T1")

<TF|T)=8(F-T).
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Define the following closure relations:
[I7>dit< =1
j|12>dk<f<|=1. (19)

The integrations are over all direct T or reciprocal k space. The scattering amplitude is
expressed as:

m
2mth?

£(0) = ( j [ dF*exp(-iQF)V(F') (20)

- (2:;2 )j di'exp(—ik .t") exp(ik, I )V(F").

Using the <bra|ket> notation, f(0) can be also manipulated to the form:

f(e)=(2;2j<125|V|121>. Q1)

The scattering cross section is therefore given in terms of the transition probability
<k, |V]k; > as:

2

<ES|( mzjV|Ei> .
2nth

do,(0) k,
dQ k.

1

(22)

This result ignores the effect of spin interactions and therefore does not apply to scattering
from magnetic systems.

4. SIMPLE MODEL FOR NEUTRON SCATTERING LENGTHS

A simple argument is used here in order to appreciate the origin of the scattering length
(Squires, 1978). Consider a neutron of thermal/cold incident energy E; being elastically

scattered from a nucleus displaying an attractive square well potential -V (note that V, >>
E;). Recall the Schrodinger equation for this simplest potential.

2m

2
[ ! vzw(r)}w(r)ﬂsw(r). (23)

The Schrodinger equation can be solved in 2 regions (inside and outside of the well region).
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Figure 2: Neutron scattering from the quantum well of a nucleus.
Outside of the well region (i.e., for r > R) where V(r) = 0, the solution has the form:

_sin(kyr) b exp(ik,r)
~ kir r

1

v (r) (s-wave scattering). (24)

Here b is the scattering length and for elastic scattering ks= k; = {/2mE, /%. Note that in this

case, the scattering amplitude is simply f(0) = -b. Note also that the incident plane wave has

1 in(k.
been averaged over orientation: % [dpexp(ik;rp) = % .
-1 I

1

Inside of the well (r <R) where V(r) = -V the solution is of the form:
v )= A9 i g = J2m(E, <V, )/ (25)
qr

Note that this wavefunction ™ (r) represents a randomly oriented plane wave
sin(qr) 11! . . o .
2 [dpexp(iqrp) |. The boundary conditions (continuity of the wavefunction and

qr -1
its derivative) are applied at the surface (r = R):
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In Out
v (=R)=y  (=R) (26)

i In _ _i Out —
dr[w ](r—R)—dr[w It=R).

Oul
Here k;r =k r=,/2mE;r / h <<1 (nuclear interactions are short ranged) and therefore y -
1 - b/r. Finally:

PRLICL 27)
qR R
cos(gR sin(gR b
Aq @R) (qz):_z.
qR qR R

In another form:

A= ! (28)
cos(qR)
b _ - tan(qR)
R qQR
The solution of this transcendental equation:
b - tan(qR) (29)
R qgR

gives a first order estimate of the scattering length b as a function of the radius of the
spherical nucleus R and the depth of the potential well V.
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Figure 3: Solution of the Schrodinger equation subject to the boundary conditions.

Due to the steep variation of the solution to the above transcendental equation, adding only
one nucleon (for example, going from H to D) gives a very large (seemingly random)
variation in b. The scattering length can be negative like for H-1, Li-7, Ti-48, Ni-62, etc. The
H and D nuclei have been added to the figure knowing their scattering lengths (by=-0.374
fm and bp = 6.671 fm) and assuming Ry= 1 fm and Rp= 2 fm. The Fermi (1 fm = 10" cm)
is a convenient unit for scattering lengths. The neutron-nucleus interaction potential can be
estimated for the case of H as V=30 MeV. These are huge energies compared to the
thermal neutron kinetic energy of 25 meV.

The scattering length itself can be complex if absorption is non negligible: b = br —iby.

Neutron absorption is small for most organic materials. It has been neglected completely in
the simple model discussed above.

Since no nucleus is completely free, bound scattering lengths should be used instead: byoynd =
bfee (A + 1)/A, where A is the atomic number. Free and bound scattering lengths are
substantially different only for low mass elements such as hydrogen.

5. MEASUREMENTS OF NEUTRON SCATTERING LENGTHS
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Note that the index of refraction n is related to the material atomic density p (atoms/cm’), the
neutron scattering length b, and the neutron wavelength A as:

n:l—@ﬁ. (30)
21

The scattering length b can be measured by measuring the index of refraction n using optical
methods. Note that most materials have an index of refraction less than one for neutrons and
greater than one for light.

Neutron interferometry methods are another way of measuring scattering lengths.

REFERENCES

G.L. Squires, “Introduction to the Theory of Thermal Neutron Scattering” Dover
Publications (1978).

QUESTIONS

1. What is the neutron scattering length of an element?

2. What is the scattering cross section of an element? How does it relate to the scattering
length?

3. What is the differential scattering cross section?

4. What is the strength of typical neutron-nucleus interaction potentials? What is a typical
neutron kinetic energy?

5. Write down the Schrodinger equation.

6. What is the first Born approximation? What type of neutron scattering is not well modeled
by the first Born approximation?

7. What is a simple description of the solution of the Schrodinger equation in terms of
waves?

ANSWERS

1. The neutron scattering length of an element represents the apparent “size” of this element
during scattering.

2. The scattering cross section of an element is the apparent area that it offers during
scattering. The scattering cross section o is related to the scattering length b as ¢ = 4ntb?.

3. The differential scattering cross section is the cross section per unit solid angle do/dQ.

4. Typical neutron-nucleus interaction potentials are of order MeV. Typical neutron kinetic

energies are of order meV (thermal neutron energy is 25 meV).
2

5. The Schrodinger equation is [ 5 V2 + V()] w(r) = E y(r) where the first term is the

m
kinetic energy, the second term is the potential energy, V(r) is the neutron-nucleus
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interaction potential, E is the so-called system energy and y(r) is the so-called eigenfunction.
This equation can also be written as Hy = Ey where H is the system Hamiltonian.

6. The first Born approximation corresponds to keeping only the first term in the expansion
solution of the Schrodinger equation. The first Born approximation does not model
reflectivity well.

7. The solution of the Schrodinger equation corresponds to an incident plane wave and a
scattered spherical wave.
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Chapter 8 - ELASTIC AND QUASIELASTIC/
INELASTIC NEUTRON SCATTERING

Structures are investigated using elastic scattering instruments whereas dynamics are probed
using quasielastic/inelastic scattering instruments.

1. DEFINITIONS

Defining the momentum and energy for the incident neutron as (Ei , Ei) and for the scattered

neutron as (f(s , Es), the momentum transfer (scattering vector) is Q = f(s — Ei and the energy

transfer is E = E¢-E; during the scattering event. Elastic scattering occurs when there is no
energy transfer E = 0 (zero peak position and peak width). Inelastic scattering occurs when
there is a transfer of both momentum and energy. Qasielastic scattering is a form of inelastic
scattering where the energy transfer peak is located around E = 0 (zero peak position but with
a finite peak width). In practice, the peak width is always limited by the instrumental energy
resolution.

scattered neutrons

momentum f(s , energy Es

»

incident neutrons
momentum k., energy E;

ko, g Q= ES - Ei momentum transfer

»E = E.-E; energy transfer

Figure 1: Schematic representation of the momentum and energy initial state (E ., Ei) and
final state (f(s , Es).

2. SCATTERING SIZES AND ENERGY RANGES

The various elastic and quasielastic/inelastic neutron scattering instruments have specific
window ranges in the (Q,E) space.
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Figure 2: Schematic representation of the various elastic and quasielastic/inelastic neutron
scattering instrument windows in (Q,E) space.

3. DIFFRACTION AND REFRACTION

Most neutron scattering methods operate in the “diffraction” mode. They involve single
scattering and avoid multiple scattering events. Neutron reflectometry on the other hand
operates in the “refraction” mode. It involves a large number of incremental scattering events
that tend to steer the incident neutron beam until it is completely reflected. Describing
reflection therefore involves a completely different theoretical basis than all other (single)
scattering methods. The focus here will be on these methods that do not involve reflection.
Within the first order perturbation theory, the so-called “master formula of neutron
scattering” is derived next.

4. THE MASTER FORMULA OF NEUTRON SCATTERING
The single-scattering theory is based on the first Born approximation (the so-called Fermi

Golden rule) describing s-wave scattering (Schiff, 1955; Bee, 1990). This corresponds to
most forms of neutron scattering except for neutron reflectometry which requires higher
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order terms in the Born expansion. Defining an initial state for the neutron-nucleus system as
li>= |Ei n> where IZi is the incident neutron momentum and n; is the initial nuclear state and
a scattered state as [s> = |ES ng>, the double differential neutron scattering cross section can
expressed as:

d’c  k m )
=3k A% > O(E—-6&, +6; 1
1640 ki| S|(2nh2] (Q)[1>" &( s &) (D

2
m k bag bag 2
(271712) PRI | V()| |73( )

im0y
Here m is the neutron mass, and Py, is the probability of finding a scattering nucleus in initial
state [n;>. &, and &, are the energy states of the nucleus before and after scattering and V is
the interaction potential. Note that due to the conservation of energy &;— &= E; — Es~ E
where E; and E; are the incident and scattering neutron energies and E is the transferred

energy. Averaging over initial states and summing up over final states has also been
performed.

Since neutron-nucleus interactions are short ranged, the following Fermi pseudo-potential is

used.
2
V(r):(z"h ]ibﬁ(f—fj). )
m jj
2 —
V(Q) = (m ]ib  exp(—iQF,)
m Jj

Here b; is the scattering length for nucleus j and N is the number of scattering nuclei in the
sample. The following closure relation is introduced:

[IF>di<Fl=1. 3)
The <bralket> notation is used as follows:

<7 |k, >=exp(ik, F) 4)

<k, | T >=exp(-ik,.F)

The transition matrix element is calculated as:

<Kk, |(2:;12)V(Q)|f<i >=¥b; <k |[F>[8(F-F)dF<F|k;> (5)
]
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=¥ b, exp(-iQJ)
]

Here Q = f(s - f(i and a property of the Dirac Delta function have been used. Moreover a
special representation of the Delta function is used to express the following term as:

6(E—85+6i)=2h—n fodtexp(_l(E_fls+gi)tJ. (6)

—o0

Finally the Heisenberg operator helps represent time dependence as follows:

jr (0)ex (‘;“j )

Here H is the scattering system Hamiltonian.

5(t) = exp(

H[n>= &, [n>, Hne>= & [ng>. (8)

Putting all terms together, the cross section is expressed as follows:

2
So ks Tl )on 5o cokirobob 0

kS
= k_iS(Q’E) : ©)

This is the most general neutron scattering cross section within the first order perturbation
theory. The dynamic structure factor S(Q,E) has been defined in terms of the scattering
density n(Q,t) as follows:

N pug —
n(@Q.0 =1, exp(-iQ(1)) (10)
J=
2 e iEt
S(Q, E)——jdte ( - j<n( Q,0)n(Q,t) >. (11)
The averaging notation ani <ng|...|n; > has also been simplified to <...>. The

summations are over scattering nuclei. Note that at this level the scattering lengths are still
included in n(Q,t) and in S(Q,E).
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Note that the differential cross section used in elastic scattering is related to the

ds(Q)
dQ

2
double differential cross section % used in quasielastic/inelastic scattering through
an integral over energy transfers.
2
W0(Q) _ (g '0(QE) 12
dQ dEdQ

There are many definitions for S(Q,E) in the literature.

5. THE VARIOUS STRUCTURE FACTORS

Many textbooks discuss the various structure factors (Bacon, 1962; Marshall-Lovesey,
1971). The Fourier transform of S(Q,E) is in the time domain.

iEt

S(Q,0) = [dE exp(7]S(Q, E) (13)

S(Q.t) is the time-dependent density-density correlation function also called time-dependent
structure factor.

S(Q,E) is measured by most quasielastic/inelastic neutron scattering spectrometers such as
the triple axis, the backscattering and the time-of-flight instruments. S(Q,t) is measured by

the neutron spin echo instrument.

The initial value S(Q,t = 0) is the so-called static scattering factor S(Q). S(Q) is what
diffractometers and SANS instruments measure. Note that S(Q) is also expressed as:

S(Q) =S(Q,t=0)= [ S(Q,E)dE. (14)

Elastic scattering does not really mean with energy transfers E = 0 (zero peak and zero
width); it rather means integrated over all energy transfers (summing up over all energy
modes).

S(Q) is the density-density correlation function.
S(Q) =<n(-Q)n(Q) > (15)

It is related to the pair correlation function g(r) through the space Fourier transform:

S(Q)=1+N j dr exp(iQ.1)[g(¥) —1]. (16)
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Here N = N/V is the particle number density. Note that some authors define S(Q)

differently. Note also that the scattering lengths have still not been separated out. These will
be averaged for each scattering unit to form the contrast factor which will be multiplying

S(Q).
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QUESTIONS

. What is the difference between quasielastic and inelastic scattering?

. Define the terms in the following expression: Q = \/ k.’ +k. —2k.k, cos(d).

. What is “s-wave scattering”? What does it correspond to?

. Can reflectometry data be described by the first Born approximation?

. What is the Fermi pseudo-potential?

. What is the differential cross section? How about the double differential cross section?
. Write down the double differential cross section (the Master formula) for neutron
scattering.

~N NNk W N =

ANSWERS

1. Quasielastic scattering is characterized by energy transfer peaks centered at zero energy
(with finite widths). Inelastic scattering is characterized by energy transfer peaks centered at
finite energy (uev to meV).

2. ki and ks are the incident and scattered neutron momentums and 0 is the scattering angle.
3. s-wave scattering corresponds to a zero angular orbital momentum (1 = 0). It corresponds
to single (not multiple) scattering.

4. Reflectometry involves refraction (not single diffraction). It cannot be described by first
Born approximation. Higher order terms of the perturbation theory would have to be
accounted for.

5. The Fermi pseudo-potential describes the short range neutron-nucleus interactions. It is
formed of a series of Dirac Delta functions.

6. The differential cross section is do/dQ. The double differential cross section is d*c/dQdE.
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2
k
d'o = —=S(Q.,E). Here k, and k; are
dEdQ k.

1

the scattering and incident neutron momentums and S(Q,E) is the dynamic structure factor.

7. The double differential cross section is written as:
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Chapter 9 - COHERENT AND INCOHERENT NEUTRON SCATTERING

Neutron scattering is characterized by coherent and incoherent contributions to scattering.
Coherent scattering depends on Q and is therefore the part that contains information about
scattering structures, whereas SANS incoherent scattering is featureless (Q independent) and
contains information about the material scattering density only. Here only elastic scattering is
considered.

1. COHERENT AND INCOHERENT CROSS SECTIONS

The coherent and incoherent parts of the elastic scattering cross section are separated.
Consider a set of N nuclei with scattering lengths bj in the sample. The scattering cross

section is given by:

do(6) _
Qo

m

21th?

|f(6)|2:( j < [dfexp(=QHVIO P . (1)

Here f(0) is the scattering amplitude, Q= 125 -k . 1s the scattering vector and V(1) is the
Fermi pseudopotential describing neutron-nucleus interactions:

2
V() {fo ]ib@(f—fi). @)

Here T, is the position and b, the scattering length of nucleus i. Therefore, the differential

scattering cross section is the sum of the various scattering phases from all of the nuclei in
the sample properly weighed by their scattering lengths:

do(0) v
do —ZZ

b,b, < expliQ.( - 7))> 3)

where <...> represents an “ensemble” average (i.e., average over scatterers’ positions and
orientations).

Consider an average over a "molecule" consisting of a number m of nuclei:

i (4)

1
m 5

()=

This average could be over one monomeric unit for macromolecular systems or over all
atoms in one molecule for a single component molecular system.
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Define average and fluctuating parts for the scattering lengths b={b}+ 6b. and positions

L=R_+ §ai as well as the following:

f{ : position of the center-of-mass of molecule a
§ : relative position of scatterer i inside molecule o

m: number of nuclei per molecule
M: number of molecules in the sample (Note that N = mM).

Figure 1: Parametrization for two scattering molecules.

The various terms of the scattering cross section can be separated as

do(6) _ i [tb} + 8b, b} + b, ] < expliQ.(F - 7 )> %)

dQ o
do (0 W - N =
d( ) _ by Z< expliQ, )+ > 5b,8b, < expliQf, )> +2(b}) b, < expliQf, )>
1,] L)
where t, =1, — 1. If T, is approximated by liuﬁ which is equivalent to S . <<R_ (all nuclei

of one molecule are located very close to each other) the term

58b, < expliQ )>= (i Sbij <expliQR 4 )=0 (©6)
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N
can be neglected. This is due to the definition of the center-of-mass {5b,} =>8b; =0.

N —
The term ZSbiSb i < exp(iQ.fij ) > contributes only when i=j. When i# j,

ij

ij

N . N N - =
> b,5b, < expliQ.E, ) >= (ZSbij Y8b, |<expliQR 5 )>=0
i j
Therefore the scattering cross section can be written simply as the sum of two contributions:

do(6) _ (b2 i< exp(i#-fij)> +i 3b.” (7)

dQ
:[dc(e)} +{do(0)}
aQ |, aQ | -

The last term is the incoherent cross section for the whole sample:

do(0) 2 2 2
——| ={0b"}={b"}—{b}". 8
[ 10 } {ob"} = {b”} —{b} ®)
Note that these are cross sections per atom. Cross sections can also be defined per molecule

do(0)

instead as m where m is the number of atoms per molecule.

Incoherent scattering has two contributions: one from spin incoherence and the other from
isotopic and composition incoherence (also called disorder incoherence). Note that in x-ray
scattering, there is no equivalent for spin-incoherence and that contributions from disorder
(mostly composition disorder) scattering are “coherent”, not “incoherent”. This argues that
disorder “incoherence” could be referred to as disorder “coherence” for x-rays. Since most
call it “incoherent” disorder in neutron scattering, and since this contribution is Q-
independent in the SANS range, it will be referred as “incoherent” here. Spin-incoherence
and disorder incoherence will be described in turn in the next sections.

2. SPIN INCOHERENCE
Nuclei with nonzero spin contribute to spin incoherence since neutron and nuclear spins
could be either parallel or antiparallel during the scattering process. The neutron is a Fermion

with spin 1/2 which couples to the nuclear spin I to give:

-- 21 + 2 states (for which the scattering length is noted b, ) corresponding to parallel neutron
and nuclear spins, or
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-- 21 states (for which the scattering length is noted b.) corresponding to antiparallel neutron
and nuclear spins.

There are 2(21 + 1) total states with the following weighing factors:

e ) I G0 B 21 I

= = = = . 9
To2QI+1) 21+1 T2021+1)  2I+1 ®

Note that W+ W_=1. In the case of the hydrogen nucleus (I = 1/2), W, corresponds to a
triplet state and W_ corresponds to a singlet state.

number of
spin operators eigenvalues degenerate
states
i. 1 I+12 2(1+1/2)+1=21+2
2
A-12 2(I-1/2)+1=21

Figure 2: Representation of the neutron spin 1/2 with its up and down values and the nuclear

spin 1.

The averages over spin states are calculated for coherent and spin-incoherent scatterings
using:

_(I+Db, +1Ib_

{b} = W+b+ +W_b_ —T (10)
b = Wb+ Wb _(+Db,” +1b.°
o T 21+1 '

Either the two scattering lengths b, and b. or the other two scattering lengths b, and b; could
be tabulated for each (isotope) element. Most often, it is the b, and b; scattering lengths that
are tabulated. Tables are based on measurements made using thermal neutrons.

b, ={bl=W,b, +W. b_ (11)

b, =/(b>} —{b}> =W, W_(b, ~b_).

For the scattering from hydrogen (pure H-1) nuclei:

b, =-3.7406 fm, b; = 25.274 fm, o, = 1.7583 barn, ; = 80.27 barn.
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The corresponding microscopic cross sections are obtained as 6, = 47 bc2 and c; =4n biz .

The b, and b. scattering lengths can be calculated from b, and b; as follows:

b, =b, + Ebi =b, erfibi (12)
W, I[+1

b_=b, - /W*bi =b, —W/I—Hbi.
W._ I

For hydrogen (I=1/2), b= 10.851 fm and b.=-47.517 fm. A spin-dependent scattering
length is expressed in terms of the neutron and nuclear spin operators § and 1 as:

25.1

b, + ——=—D0;.
JIA+1)

In order to separate out the coherent and incoherent components, three options present
themselves. (1) Use of polarized neutrons along with polarization analysis. Polarization
analysis is not easy to achieve due to the large divergence angles in the SANS scattered
beam. (2) Aligning the nuclear spins along with using polarized neutrons. Aligning nuclear
spins is extremely difficult and has not matured to be a viable alternative. Note that the field
of magnetism involves aligning electron (not nuclear) spins. (3) Using deuterium labeling.
Deuterium labeling is used routinely to minimize the incoherent signal from hydrogen atoms
(deuterium has a low incoherent component).

(13)

3. COHERENT SCATTERING CROSS SECTION

The coherent scattering cross section is given by the integral of the differential cross section
over solid angle:

Consider the case of a generic molecule A;,,B, made out of m atoms of element A and n
atoms of element B. Define the number fractions fo = m/(m+n) and fg = n/(m+n) obeying
fa+fg=1. The coherent scattering cross section per atom for molecule A,,B, is given by:

6. (A B,)=4n{b}’ =4n(f,b, +f,b,)>. (14)

Consider the case of water (H,O) with by = -3.739 fm, bp = 5.803 fm, fy =2/3 and fo = 1/3
yielding o.(H,0) = 4n(-2*3.739/3 + 5.803/3)* fm” = 0.039 barn. Note that by = -3.739 fi for
hydrogen with natural abundance of H-1, H-2 (D), and H-3 (T), whereas by = -3.7406 fm for
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pure H-1. Recall that 1 barn = 102* cm? and 1 fm = 10" cm. This is the cross section per
atom. The cross section per H,O molecule is 3*0.039 = 0.117 barn.

Similarly for heavy water (D,0O) with bp = 6.671 fm, one obtains c.(D,O) = 5.12 barn. The
cross section per D,O molecule is 3*5.12 = 15.35 barn.

4. INCOHERENT SCATTERING CROSS SECTION

Every element in the periodic table has a spin incoherence scattering cross section except if
the nuclear spin is zero. Mixing isotopes and/or different elements contributes composition
incoherence as well. Consider the A,,B, molecule again.

The spin incoherence cross section per atom for the A;,B;, mixture is given by:

[csi(AmBn)]spm =f,5,(A)+f,0,(B). (15)

The composition incoherence (also called “disorder” incoherence) cross section per atom
involves the following difference:

[0 (A B,) Ly = 4n({07} = {b}7). (16)
The two averages are {b} = faba + fgbg and {bz} = fAbA2 + fBbBZ. Therefore:
[0 (A By Ly = 4nl,b, 7 + by = (Fyb, +£3b5)°]  (17)
=4nf, £ (b, —by)>.
Putting both contributions together, the incoherent cross section per atom is obtained as:
c,(A_ B,)=f,0,(A)+f,0,(B)+4nf,f (b, —b,)’. (18)

Note that the incoherent cross section per molecule is obtained by multiplying by the number
of atoms per molecule (m+n).

Consider the case of water (H,0):
c,(H,0) = f,0,(H) +f,5,(0) + 4nf, f, (b, —b,)*. (19)

Using cij(H) = 80.27 barn, ci(O) = 0 barn, by = -3.739 fm, bo = 5.803 fm, f; =2/3 and fo =
1/3, the following result is obtained cij(H,O) = 53.5 + 2.54 = 56.04 barn. This is the cross
section per atom. The cross section per H,O molecule is 3*56.04 = 168.12 barn.

Similarly for heavy water (D,0). Using o;(D) = 2.05 barn and bp = 6.671 fm, the following

result is obtained ci(D,0) = 1.37 + 0.021 = 1.39 barn. This is the cross section per atom. The
cross section per D,O molecule is 3*1.39 = 4.17 barn.
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Note that in both cases the spin incoherence cross section (first term in units of barn)
dominates over the composition incoherence cross section (second term in units of fm®).

5. TOTAL SCATTERING CROSS SECTION

The total scattering cross section is the sum of the coherent and incoherent contributions.

6,(A,B,)=0.(A_B,)+c,(A_B,) (20)

= 4n{b*} +f,0,(A) +f,0,(B)
=4n[f, b, +f,b, 1+ f,0,(A) +f,0,(B).

The first term {b®} contains both coherent and composition incoherence contributions and
the other two terms contain the spin incoherence contribution.

For the cases of HO and DO, one obtains 6,(H,O) = 56.08 barn and 64(D,0) = 6.51 barn
respectively. These are the cross sections per atom. The cross sections per molecule are
3*56.08 = 168.24 barn and 3*6.51 = 19.53 barn.

6. SCATTERING LENGTH DENSITY

What is needed to calculate neutron contrast factors is the scattering length density (not the
scattering length). The scattering length density is defined as the ratio of the scattering length
per molecule and the molecular volume. Assuming an A,,B, molecule, the scattering length
density is given by:

. 21)

(bj (f,b, +fgbg)m+n) mb, +nbg
PAmBn =| — = =
AmBn v v

Here mby + nbg is the scattering length per molecule and v is the volume of molecule A,B,
comprising m atoms A and n atoms B.

The molecular volume v is given in terms of the density d and molar mass m for molecule
AnBi and Avogradro’s number N,y (N,y = 6*10% /mol) as:

v=——. (22)

For H,0 the density is d = 1 g/cm’, the molar mass is m = 18 g/mol so that the molecular
volume is v =3*10 cm’ and (b/v)u,0 = -5.58*10° cm™ = -5.58*107 A~ For D,0, d = 1.11

g/lem®, m =20 g/mol so that v =3*10" cm’ and (b/v)p,0 = 6.38*107"cm™ = 6.38%10° A™.
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7. CONTRAST FACTORS

The scattering intensity is proportional to the contrast factor. Consider the simple case of
scattering inhomogeneities consisting of A molecules in a background of B molecules (think
polymers, proteins or micelles in solution). The scattering length densities are (ba/va) and
(bg/v). The contrast factor often referred to as Ap” is defined as:

2
b, b
Ap* =(pp—ps)’ z(V—A——BJ .

Scattering length densities can be changed through the deuteration process. Adjusting the
relative amount of deuterated to non-deuterated solvent is called a contrast variation series
and yields the zero contrast condition whereby the scattering length density of the mixed
solvent matches that of the scattering inhomogeneities.

8. MACROSCOPIC SCATTERING CROSS SECTIONS

Keeping the same notation for molecule A,B,, the macroscopic scattering cross section X is
the product of the microscopic cross section per molecule 6(m+n) times the number of
molecules per unit volume N/V. N is the total number of molecules and V is the total sample

volume. For a sample comprising pure A,,B, substance, V/N = v is the molecular volume.
This applies to coherent G, incoherent o; or total scattering o5 cross sections.

Xz, = (%Jcc(m +n) (23)
2 = (%jci (m+n)
X = (%)GS (m+n).

The number density of molecules is given in terms of the density d and molar mass m for
molecule A;,,B, and Avogradro’s number Ny, as:

N) N.d
(Vj_ — (24)

For H,O, the macroscopic scattering cross sections per molecule are

0.117*107*

T 3.9%107 em’!

ZC(HQO) =
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168.12*107*

_ _ -1
Zi(HzO) = 3 10723 =5.6cm

_168.24*107* y
Zs(Hzo) = W =56cm .

For D,0, the macroscopic scattering cross sections per molecule are

15.35*%107*

_ _ -1
2(D0) = 3 0T 0.512 cm

_417*107 n
Zl(Dzo) = W =0.139 cm

~19.53*107 1
Zs(Dzo) = W =0.651 cm™.

The results for H,O and D,0O are summarized next.

9. SUMMARY FOR H;O AND D,0

For the case of H,O
Coherent cross section per atom 6(H,0) = 0.039 barn.
Coherent cross section per HO molecule is 3*c.(H,O) = 0.117 barn.

Incoherent cross section per atom o;(H,0) = 53.51 + 2.54 = 56.04 barn
Incoherent cross section per molecule is 3*c;(H,O) = 168.12 barn.

Total scattering cross section per atom os(H,O) = 56.08 barn
Total scattering cross section per molecule is 3*c(H,0) = 168.24 barn

Molecular volume v = 3*10* cm®

Scattering length density (b/v)u,o0 = -5.58* 107 A

Macroscopic coherent cross section (H,0) = 3.9%10° cm™
Macroscopic incoherent cross section Xi(H,0) = 5.604 cm’!
Macroscopic total cross section Z(H,0) = 5.608 cm™

Table 1: Scattering lengths and cross sections (per atom) for water. In order to obtain cross
sections per molecule, one has to multiply by the number of atoms per molecule (i.e., by 3).

Mixing | b fo oi-Spin | oi-comp | oj o

Fraction | Fermi Barn Barn Barn Barn | Barn
Hydrogen | H 2/3 -3.739 | ------ 80.27 | ----mm | e | e
Oxygen @) 1/3 5803 | ------ 0 | |- |-
Water H,O |1 -0.558 0.039 |53.51 |2.54 56.04 | 56.08
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For the case of D,O

Coherent cross section per atom c.(D,0) = 5.12 barn.
Coherent cross section per D,O molecule is 3*c(D,0) = 15.35 barn.

Incoherent cross section per atom c;(D,0) = 1.37 + 0.021 = 1.39 barn
Incoherent cross section per molecule is 3*G;(D,0) = 4.17 barn.

Total scattering cross section per atom 65(D,0) = 6.51 barn
Total scattering cross section per molecule is 3*c4(D,0) = 19.53 barn

Molecular volume v = 3*10 ¢cm®

Scattering length density (b/v)p,o = 6.38*10° A~

Macroscopic coherent cross section 2(D,0) = 0.512 cm’™
Macroscopic incoherent cross section Zi(D,0) = 0.139 cm™
Macroscopic total cross section Z(D,0) = 0.651 cm™

Table 2: Scattering lengths and cross sections (per atom) for heavy water. In order to obtain
cross sections per molecule, one has to multiply by the number of atoms per molecule (i.e.,

by 3).
Mixing | b fo oi-Spin | oi-comp | oj o
Fraction | Fermi Barn Barn Barn Barn | Barn
Deuterium | D 2/3 6.671 | ------ 205 | -eem | |-
Oxygen 0) 1/3 5803 | ------ I e el s
Heavy D,0O |1 6.382 5.118 | 1.367 |0.0210 1.387 | 6.505
Water

Note that natural hydrogen contains 99.985 % of the H-1 isotope and 0.015 % of the D (or H-
2) isotope.

Two quantities are relevant to SANS measurements: the scattering length density that enters
in the contrast factor and the macroscopic incoherent scattering cross section which appears
as a constant (Q-independent) background. These two quantities are summarized for H,O
and D,O.

Table 3: Calculated scattering length densities and macroscopic scattering cross sections (per
molecule) for water and heavy water.

v b/v PR PN PN

cm’ A’ cm’! cm’! cm’!
Water | H,O |3*10% -5.583*107 | 0.00392 |5.608 |5.612
Heavy | D,O |3*107 6.382%¥10° | 0.512 0.139 | 0.651
Water
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The measured and calculated total cross section (X1 = Zs + X,) for H,O and D,0 are included
in a table for thermal neutrons (wavelength of 1, = 1.8 A). Note that the absorption cross
sections are small. Cross sections were obtained from the Evaluated Nuclear Data File
(ENDF) online database. This is the so-called “Barn Book™.

Table 4: Measured and calculated macroscopic cross sections for H;O and D,O for thermal
neutrons

>t Measured >t Calculated
H,0 3.7 cm’ 5.612 cm’
D,0 0.49 cm™ 0.651 cm™

The calculated and measured values are different for a number of reasons including the
neglect of inelastic scattering effects.

10. GENERAL CASE

Consider the general case of a molecule Ay, By, Cy.... containing na atoms of element A, etc.

The total number of atoms per molecule is n = na+ng+nc... and the number fractions are fs =
na/n, etc.

The scattering length density is given by:

[Ej:nAbA+anB+anc"' 25)
v v

Here v is the molecular volume and by, bg, bc... are the tabulated scattering lengths.

The macroscopic scattering cross section is given by:

Zf{ﬁﬁqhmﬁmhm) (26)

\Y%

N is the number of molecules in the sample of volume V. The spin incoherence and
composition incoherence microscopic cross sections per molecule are given by:

[Gi ]spin = n[fAGi (A)+fy0,(B)+f.0; (C)] (27)
ooy =0t} — (b}°] (28)

[

1
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[6, ]y =0l + by +£cb 2= (f,b, + by + febe...) ]
[Gi]comp = n[fAfB (b, —by)* +f,fo (b, —=bo)* +ff.(by _bc)z-‘-]

The relation f4 + fg+ fc...= 1 has been used. For pure substances, the molecules number
density is (N/V) = 1/v where v is the molecular volume given by:

m and d are the molecular mass and mass density and N,, is Avogadro’s number.

11. TABULATED SCATTERING LENGTHS AND CROSS SECTIONS

The coherent and incoherent thermal neutron scattering lengths and cross sections are
tabulated here for a few elements (Koester, 1991; Sears, 1992). That table also contains the
absorption cross section G, for thermal neutrons (i.e., with a wavelength of A =1.8 A or a
kinetic energy of 0.025 eV). Neutron absorption is small for most elements except for boron,
cadmium and gadolinium (that are used as neutron absorbers). The absorption cross section
is related to the imaginary part b, of the scattering length b-ib,. Only neutron absorbing
materials have an imaginary part. The absorption cross section is expressed as

4nib, }

G, =——"—. 30
T T (30)
k is the incident neutrons wavenumber k = mv/A where 7 is Planck’s constant, m is the

neutron mass and v is the incident neutron speed. {b,} is the composition averaged
absorption length. The absorption cross section varies like ~1/v where v is the neutron speed.
The macroscopic absorption cross section is given by X, = (N/V)o, = 6./Vp, where (N/V) is
the number density and Vy, is the specific volume of the material.

Table 5: Coherent and incoherent thermal neutron scattering lengths (b_and b.) and cross

sections (o_ and ©,) as well as absorption cross section (o, ) for some nuclei. Note that 1

. -13 -24 2
fermi=10 cmand 1 barn=10 cm .
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Element b O Oi Os Ga

Fermi Barn Barn Barn Barn

H -3.739 1.757 80.30 82.057 0.333
D 6.671 5.592 2.05 7.642 0.000
C 6.646 5.550 0.001 5.551 0.003
N 9.36 11.01 0.50 11.51 1.90
0 5.803 4.232 0.000 4.232 0.000
F 5.654 4232 0.001 4.233 0.000
Na 3.63 1.66 1.62 3.28 0.530
Si 4.149 2.163 0.004 2.167 0.171
P 5.13 3.307 0.005 3.312 0.172
S 2.847 1.017 0.007 1.024 0.53
Cl 9.577 11.526 5.3 16.826 33.5

The coherent scattering length for a mixture involves the mean and the incoherent scattering
length involves the standard deviation. If one considers a fictitious sample comprising a few
low-Z elements in equal amounts, then the deviation from the incoherent scattering length
would be the deviation from the average of the scattering lengths plotted vs Z.

plot b vs z 2
10 \ T
N
&
9 - —
I
E 8 L e o mm m m mm mmfm e e = e e e e e e = —
2z
‘E‘D [ D incoherent average e b
c & coherent
36
= O =
8 s !
-~
3
4 < scattering lengths Na —
coherent scattering length bC O
3 \ \ \ \
0 5 10 15 20 25

Atomic Number Z

Figure 3: Variation of the scattering length for a few low-Z elements.
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12. NEUTRON TRANSMISSION

Neutrons incident on a sample have three choices: they either cross it without interaction, get
scattered or get absorbed. Neutron absorption is small for most materials. The neutron
transmission of a flat slab sample (appropriate for SANS measurements) of thickness d and
total macroscopic cross section:

2 =X +X =X +Z +Z, (31)
is given by:
T=exp(-Z,d). (32)

Here d is the sample thickness. The transmission is measured as the ratio of the direct beam
intensity with and without the sample. Transmission gets lower for longer neutron
wavelengths.

13. MEASURED MACROSCOPIC CROSS SECTION FOR WATER

Water scatters mostly incoherently and is characterized by a flat (Q-independent) SANS
signal. Water is used as a secondary absolute intensity standard since its macroscopic
scattering cross section is well known. The SANS measured cross section corresponds to the
macroscopic cross section X1/4n. The wavelength-dependent microscopic cross section was
obtained from the Evaluated Nuclear Data File (ENDF) online database (the modern version
of the so-called Barn Book).
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Figure 5: Variation of the macroscopic cross section Xt for H,O. Note that the cross section
measured by SANS corresponds to /4.

14. CROSS SECTIONS FOR H,0/D,0 MIXTURES

Often H,O/D,0 mixtures are used to vary the contrast factor. Ignoring H/D exchange, the
variation of the incoherent and coherent microscopic scattering cross sections o; and G, are
summarized. The following scattering lengths and cross sections are used:

b, =3.739 fm (33)
b, = 5.803 fm
b, =6.671fm

[, (H)],,,, =80.27 barn
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[Gi (O)]spin = 0 bam
[5,(D)],,, =2.05barn.

The incoherent cross section is dominated by the spin-incoherent part. Defining the D,O
number fraction (relative number of molecules) as (|>D20 in an H,O/D,0 mixture, the spin-

incoherent cross section is given by:

0i(H,0/D,0);, = (1=p,0)[o; (H,0)], +dp,0[o: (D005, (34)
c,(H,0)] ;. =160.54 barn

c,(D,0)] ,, =4.10barn

6;(H,0/D,0)] ., =160.54*(1—¢p, o) +4.10* ¢y, , barn.

[
[
[
[

There are two levels of composition-incoherence; one for disorder within the (H,O or D,0)
molecules and one for disorder in the H,O/D,0O mixture. Contribution to the disorder within
the molecules is given by:

[o:(H,0)] oy = 4n§(bH —bgy)? =7.63barn (35)

[6:(D,0)]ommp = 4n§(bD ~bo)* =0.063 barn .

This is the cross section “per molecule”. Contribution to the composition incoherence for the
H,0/D,0 mixture is given by:

[6,(H,0/D,0)],.0, = 47(1=010)0p 0 o0 ~byoF +
01,0 [0:(D20) Loy + (1-0p.0) [0, (HO) | o (36)
[bo.0 ~buo = 4lby —bp [ =4.33bamn.
Gathering the terms, one obtains:

[6,(H,0/D,0)] 1=0p0)0p,0 5447 +0p o 0.063+(1-¢p ) 7.63 barn  (37)

comp = (

The total incoherent cross section is the sum of the two (spin- and composition-incoherent)
contributions. It is equal to:

[6:(H,0/D,0)]=(1-p,0)bp 0 5447+ po 416 +(1-p ) 168.17 barn
The coherent scattering cross section for the mixture is given by:

G, =4n*3 [(1 - ¢D20 )szo + ¢D20szO ]2 (38)
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6, =0.117(1=0¢p o) +15.35¢p o +1.342 ¢, o (1 - ¢y, ) barn.
The scattering length density for the H,O/D,0O mixture is given by:

P :(1_¢D20)pH20 +(I)D20pHZO (39)
Pu,o =—5.6% 107A7
Pp,o =060.4% 10°A~.

The incoherent and coherent cross sections and the scattering length density are plotted using
different scales.

H20/D20 Mixtures without H/D Exchange

200 \ \ \ \ 17 10°®
: total incoherent
composition incoherent 1610
N coherent ] "
spin incoherent 1 .o
150 - - 510 9:’
B * f 3
5 , : — ] =)
Q I scattering length density 14 10 8
c i ] 5
,g 100 1 310° Q
8 r ] >
0 | ] A g
7 - 210
S I ] %)
G | 1 L <
50 - 11100
L ] %
i 40
0 | puep—— | 0 0 L -1 10'5
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Figure 6: Incoherent and coherent microscopic scattering cross sections for H,O/D,0O
mixtures without D/H exchange.

Now assume that there is full H/D exchange to the point that the H,O/D,O/HDO mixture is
randomized. The relative fraction of D>O molecules in the mixture is (|>D202. This is the

probability of picking out a pair of D atoms from the randomized H/D mixture. The relative
fraction of H,O molecules is (1—(1)1)20)2 and the relative fraction of HOD and DOH molecules

is 2¢p,0(1-¢p,0).
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With full H/D exchange, the spin-incoherent cross section is the same before and after
exchange.

[o; ]spin =dp0 [0, (DZO)]spin +(1-dp,0 o, (H2O)]spin
[Gi ]spin = ¢D202 [Gi (D2O)]spin +(1- ¢D20 )? [Gi (H2O)]Spin + 2(1)1)20 (1- ¢D20 )[Gi (DOH)]spin
(40)

[6,(DOH)] . =82.32barn

spin

[0 i = 410%¢p o° +160.54* (1= dp, o) +164.64¢p, (1 -, ) barn.

Here also, there are two levels of disorder; one within the molecules and one for the
molecular mixture. The composition-incoherent cross section becomes:

[Gi(Hzo/Dzo)]comp = 4“{¢D202 (I- 4’[)20)2 [szo —buo ]2 +
Do.0 200,001~ p,0)bo.0 ~buon | +
(1- (1)1)20)2 20p0(1=dpo )[bH20 —buop ]2 +
¢D202 [Gi (DZO)]comp +(1- ¢D20 )2 [Gi (HZO)]comp + 2¢D20 (1- ¢DZO) [Gi (HOD)]comp }

(41)
Note that:
[bnzo _bHZO ]2 = 4[bD _bH]2 (42)
[szo _bHOD]2 = [bD _bH]2
[szo _bHOD ]2 = [bD _bH]2
1 2 2 2
[o,(DOH)],,,,, = 4n§[(bD —bg)? +(by —bg)? +(by —byy)?|=8.38 barn .

After manipulations,

[6,(H,0/D,0)],,.., = 47 {1 =00 Wbp,02 b, by [ +
2
000" 2o ~boT +(=bp.0)* 2lby ~bo [ +

201,000-40.0) oo b0 +3 o 5o+ o o |

(43)

[0, (H,0/D,0)],,0 =27.23(1=bp 0)bp o +0.0630p 0" +

7.63(1-¢p o) +16.77¢p o (1-dp o) barn

comp
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The total incoherent cross section is the sum of the two (spin- and composition-incoherent)
contributions. It is equal to:

[0, (H,0/D,0)]=4.16%p, o> +168.17* (1= p, o) +181.410p, o (1 - ¢p o) barn
(44)
Including full H/D exchange, the coherent scattering cross section becomes:

2
G, =4n *3 [(1 - ¢D20 )szzo + (I)Dzoszzo +2(1- ¢D20 )¢D20bHOD] . (45)
This expression can be shown to reduce to the one obtained without D/H exchange:

G, =4n*3 [(1 —&p,0)bu,0 T Ppobuo ]2 (46)
o, =0.117(1=0¢p o) +15.35¢, , +1.342 ¢, o (1- ¢y, ) barn .

The scattering length density for the H,O/D,0O mixture becomes:

p=(1-0p, )’ Pu, T ¢D202pH20 +20p,0(1=9p,0)Puno (47)
Pupo =2.92*10° A~

Here also, the incoherent and coherent cross sections and the scattering length density are
plotted for the case of full H/D exchange.
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HZO/DZO Mixtures with H/D Exchange
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Figure 7: Incoherent and coherent microscopic scattering cross sections for H,O/D,0O
mixtures with full D/H exchange.

Note that just like the incoherent scattering cross section, the isothermal compressibility
contribution is also Q-independent but is small.
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QUESTIONS

1. Neutrons are scattered by what part of the atom?

2. Are higher fluxes achieved in research reactors (neutron sources) or in synchrotron x-ray
sources?

3. Is deuteration always needed for neutron scattering?

4. What is the origin of the name for neutron cross sections (barn)?

5. Work out the relative composition of an HyO/D>O mixture that would have zero average

coherent cross section (so called semi-transparent mixture).

6. Comparing the coherent scattering cross sections for a deuterated polymer in hydrogenated
solvent and a hydrogenated polymer in deuterated solvent, which one has the highest signal-
to-noise ratio for dilute solutions?

7. Why does carbon have a negligible incoherent scattering cross section?

8. What is the meaning of a negative scattering length?

9. Work out the scattering contrast for a mixture of your choice (or of your own research
interest).

10. Calculate the incoherent microscopic scattering cross section per molecule for H,O.

11. Define the neutron transmission for a SANS sample. Does it depend on neutron
wavelength?

ANSWERS

1. Neutrons are scattered by the nuclei.

2. Synchrotron x-ray sources have much higher fluxes than neutron sources.

3. Deuteration is not always needed for neutron scattering. Many systems are characterized
by “natural contrasts”. Deuteration is however necessary to enhance the contrast of specific
structures.

4. The word barn was first used by Fermi in 1942 when initial measurements came up with
estimates for the size of neutron-nuclear cross sections. These estimates were larger than
expected (as large as a barn!). 1 barn = 10%* cm® 1 fm” = 10° cm® was expected.

5. The scattering length density for H,O (density = 1 g/cm’) is -5.6%107 A™. The scattering
length density for D,O (density = 1.11 g/cm’) is 6.38%10° A, The H,O/D,0 mixture that
would give zero scattering length density corresponds to 92 % H,O and 8 % D,O.

6. The contrast factor is the same for the two systems: deuterated polymer in hydrogenated
solvent and hydrogenated polymer in a deuterated solvent (this is the so-called Babinet
principle). However, for dilute polymer solutions the level of incoherent scattering
background is lower when the solvent is deuterated. The signal to noise (contrast
factor/incoherent background level) is higher when deuterated solvent and hydrogenated
polymer is used.

7. Carbon has a negligible incoherent scattering cross section because it has zero spin and
therefore no spin-incoherence.

8. A negative scattering length (such as in the case of H) means that the phase of the
eigenfunction (solution of the Schrodinger equation) is shifted by 180 ° during the scattering
process.
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9. Consider the polymer solution comprising poly(ethylene oxide) or hPEO in d-water or
D,0. The following calculates the scattering lengths b, scattering length densities b/v and
then the contrast factor. The specific volume v is needed in each case.

hPEO: CoH0, bypro=4.139%10 " cm, vipro = 38.94 cm*/mol

d-water: D,0, bpao=19.14*10™" cm, vpyo= 18 cm’/mol

Contrast Factor: (bhppo/Vipeo — bnzo/Vnzo)z Nay = 5.498*107 mol/cm4, N, 1S

Avogadro's number.
10. Use the standard expression for the cross section per atom Gineon(H20) = 47‘Cfo0(bH-bo)2 +
fGincon(H) + f00incon(O) where by = -3.739 fm and bp = 5.803 fm are the coherent scattering
lengths for H and O, Gincon(H) = 80.27 barn and Gincon(O) = 0 barn are the spin-incoherent
scattering cross sections and fy; = 2/3 and fo = 1/3 are the relative number fractions. Note that
1 fm=10" cmand 1 barn = 10?* cm?. The result for the cross section per atom is
Gincoh(H20) = 56 barn. The cross section per molecule is 3Gincon(H20) = 168 barn.
11. The SANS transmission from a flat sample of thickness d and total macroscopic
scattering cross section X is given by T = exp(-Zrd). Transmission decreases with increasing
neutron wavelength.
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Chapter 10 - THE SANS TECHNIQUE

1. RECIPROCAL SPACE

Small-Angle Neutron Scattering (SANS) is a technique of choice for the characterization of
structures in the nanoscale size range (Hammouda, 1995). This covers structures from the
near Angstrom sizes to the near micrometer sizes. How small are the small angles? They are
typically from 0.2 ° to 20 ° and cover two orders of magnitude in two steps. A low-Q
configuration covers the first order of magnitude (0.2 ° to 2 °) and a high-Q configuration
covers the second one (2 ° to 20 °). The scattering variable is defined as Q = (47/A) sin(6/2)
where A is the neutron wavelength and 0 is the scattering angle. Within the small-angle
approximation, Q simplifies to Q = 2n6/A. The SANS scattering variable Q range is typically
from 0.001 A" to 0.45 A", This corresponds to d-spacings from 6,300 A down to 14 A.

Scattering measurements are performed in the Fourier (also called reciprocal) space, not real
space like microscopy. For this, scattering data have to be either inverted back to real space
or fitted to models describing structures in reciprocal space. Scattering methods measure
correlation functions. These are not the Fourier transform of the density of inhomogeneities
within the sample. They are the density-density correlation functions instead. It should be
noted that because of this, the “phase” information is completely lost. It is not possible to
reconstruct a complete image of the sample structure by scattering from one sample. Trying
to recover phase information is complicated and involves measuring a series of samples with
identical structures but different contrasts.

2. COMPARING SANS TO OTHER TECHNIQUES

The advantage of SANS over other small-angle scattering methods (such as small-angle x-
ray or light scattering) is the deuteration method. This consists in using deuterium labeled
components in the sample in order to enhance their contrast. This is reminiscent of contrast
variation in microscopy whereby the level of light incident upon a sample is varied using a
diaphragm. SANS can measure either naturally occurring contrasts or artificial contrasts
introduced through deuteration. Labeling is difficult to achieve with x-rays (SAXS) since this
involves heavy atom labels that change the sample drastically. SANS can measure density
fluctuations and composition (or concentration) fluctuations. SAXS can measure only
density fluctuation. The deuteration method allows this bonus.

SANS is disadvantaged over SAXS by the intrinsically low flux of neutron sources (nuclear
reactors or spallation sources using cold source moderators) compared to the orders of
magnitude higher fluxes for x-ray sources (rotating anode or synchrotrons). Neutron
scattering in general is sensitive to fluctuations in the density of nuclei in the sample. X-ray
scattering is sensitive to inhomogeneities in electron densities whereas light scattering is
sensitive to fluctuations in polarizability (refraction index).

Microscopy has the advantage that data are acquired in direct (real) space whereas scattering
methods (such as SANS) measure in reciprocal space. Electron microscopy (EM) and SANS
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are complementary methods. EM is applied on very thin samples only, it cannot measure
samples at different concentrations and temperatures directly, and the observed images are a
2D projection. SANS can do all these things but cannot produce an image in real space.

SANS data analysis is performed at many levels. The initial level consists of “follow the
trends” type of approach using standard plot methods. The next level uses nonlinear least
squares fits to realistic models. The final trend makes use of sophisticated ab-initio or “shape
reconstruction” methods in order to obtain insight into the structure and morphology within
the investigated sample. Oftentimes, it takes independent information obtained from other
methods of characterization to obtain a thorough understanding of SANS data because “most
SANS data look alike”. SANS is not known for abundance in scattering peaks (unlike single-
crystal diffraction, Nuclear Magnetic Resonance, Infra-Red spectroscopy, etc) but enough
features (i.e., “clues”) are available. Available models describe scattering from compact
shape objects in dilute or concentrated systems as well as “non-particulate” scattering such as
in the case of gel-like or porous media. SANS has been used for single-phase as well as
multi-phase systems. Phase transitions have been investigated as well as the thermodynamics

of demixing.

Polymers Micelles Biological
Systems
(©)
J
/
Spherical Cylindrical Lamellar Bicontinuous

Morphology =~ Morphology =~ Morphology Structure

Figure 1: Various classes of samples and morphologies investigated by SANS.

3. THE SANS TECHNIQUE

SANS involves the basic four steps used in all scattering techniques: monochromation,
collimation, scattering and detection. Monochromation is performed mostly using a velocity
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selector. Collimation is preformed through the use of two apertures (a source aperture and a
sample aperture) placed far (meters) apart. Scattering is performed from either liquid or solid
samples. Detection is performed using a neutron area detector inside an evacuated scattering
vessel. The large collimation and scattering distances make SANS instruments very large
(typically 30 m long) compared to other scattering instruments.

Area Detector

. Sample
Monochromatic [~y Incident Beam S
Neutron Beam 4
Source Sample
Aperture Aperture

Monochromation Collimation  Scattering Detection

Figure 2: This figure represents the schematics of the SANS technique. It is not to scale with
vertical sizes are in centimeters whereas horizontal distances are in meters.

The SANS technique has been an effective characterization method in many area of research
including Polymers, Complex Fluids, Biology, and Materials Science. Other areas such as
magnetism also benefited from SANS. SANS instruments have been essential components
for any neutron scattering facility for almost three decades. They provide the main
justification for the growth and prosperity and are highly oversubscribed. New sample
environments have given new momentum to the technique. These include in-situ shear cells,
flow cells and rheometers, pressure cells, electromagnets and superconducting magnets,
vapor pressure cells, humidity cells, in-situ reaction cells, etc. New advances in electronics,
data handling methods and computers have made SANS a sophisticated “user friendly”
characterization method for the non-experts and for “routine” characterization as well as
cutting edge research.

4. THE MEASURED MACROSCOPIC SCATTERING CROSS SECTION

Consider a simple scattering system consisting of globular (think spherical) inhomogeneities
in a matrix (think solvent). If this system is assumed to be incompressible, the SANS
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coherent macroscopic scattering cross section (scattering intensity in an absolute scale) can
be modeled as:

a2, Q) (N) 2,
- —[V]VP AP*P(Q)S,(Q). (1)

(N/V) is the number density of particles, V5 is the particle volume, Ap” is the contrast factor,
P(Q) is the single particle form factor and S;(Q) is the inter-particle structure factor. Note that
P(Q) and Si(Q) are normalized as follows: P(Q—0) = 1, P(Q—x) = 0 and S;(Q—x) = 1.
Si(Q) has a peak corresponding to the average particle inter-distance (the so-called
coordination shell) in the case of “concentrated” system where the particle inter-distance is
of the same order as the particle size. The inter-distance is much larger than the particle size
for “dilute” system.

The incoherent scattering cross section dXi/dQ = Z;/4x is a constant (Q-independent)
background to be added to the coherent scattering level. Its contribution is mostly from
hydrogen scattering in the sample.

5. NEUTRON CONTRAST CONDITIONS

Consider a scattering system made of spheres in a solvent background. The following figures
consider four types of contrast conditions: (1) finite contrast, (2) zero contrast for two
component systems, (3) multiple contrasts and (4) the scattering length density match
condition for three component systems. The scattering length density match condition
corresponds to zero contrast for the blue spheres.
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Figure 3: Various contrast conditions.

6. THE PHASE PROBLEM

The so-called “phase problem” affects all scattering methods because measurements are
performed in reciprocal (Fourier) space. In order to explain the issue, let us consider the
simple case of a scattering medium (think solvent) of scattering length density p, (think
“grey” color), and two set of structures, one comprised of “white” spheres of scattering
length density py and one comprised of “black” spheres of scattering length density py.
Assume that the white and black spheres are identical except for their scattering length
densities (i.e., “color” as appearing to neutrons) that are opposite. Also assume that the white
spheres are hydrogenated (pw < pg) and the black spheres are deuterated (pp > py).
Microscopy is sensitive to the following differences py-p, <0 and p,-p; >0 whereas
scattering methods are sensitive to the following “contrast factors” (pw-pg)2 >0 and (pb-pg)2
>0. Both are positive and therefore appear the same. In order to defeat the phase problem, a
second sample is necessary whereby the scattering length density of the solvent matches that
of the black spheres for example (pg = py). In this case the black spheres will be invisible and
the white spheres will be distinct.
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Microscopy Scattering - Scattering -
Same Sample Second Sample

Figure 4: Microscopy sees the white spheres and the black spheres as distinct. Scattering
with one sample sees the black balls and the white spheres as similar. A second sample
(where the scattering length density of the solvent matches that of the black spheres) shows
the white spheres.

This is an oversimplified view of the more complex phase problem. The central aspect of the
phase problem comes from the square nature in the form factor P(Q) = F*(Q). Consider the
case of scattering from a sphere of radius R for which F(QR) = 3j;(QR)/QR where j;(QR) is
the spherical Bessel function given by j;(QR) = sin(QR)/(QR)*-cos(QR)/QR. In order to
obtain the variation of F(QR) from P(QR), one needs more information in order to
reconstruct the negative values of F(QR). Here also, scattering from one sample does not
suffice.

91



Sphere

1+ |
o 0.8 - ——F(OR) .
s | \\ | FQR)
S 06 — IFQR)I’ .
LL
(@)}
c
= 04 - _
g
o
O
0 02 - _
0~ _
_0.2 L Ll L
0.1 1 10 100

QR

Figure 5: Comparison of the three scattering factors for a sphere F(QR, |[F(QR)| and P(QR) =
[FQR)["

The phase problem is resolved for x-ray single crystal diffraction by including heavy atoms
in the structure and in neutron reflectometry and SANS by preparing samples with the same
structures but different deuteration schemes.

REFERENCE

B. Hammouda, “SANS from Polymers Tutorial”, NIST Center for Neutron Research Report
(1995)

QUESTIONS

1. What is reciprocal space?

2. What is the phase problem? How to go around it?

3. What are the four basic steps involved in the SANS instrument?

4. What is the range of scattering angles used in SANS?

5. What are typical sample environments for in-situ SANS measurements?
6. What are the major SANS research areas?
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7. Why are SANS instruments bigger than SAXS instruments?

ANSWERS

1. Reciprocal space is the Fourier transform space.

2. The phase problem is due to the fact the scattering contrast factor involves the square of
the difference in the scattering length densities so that differences that are opposite in sign
show the same contrast. The phase problem is resolved by preparing more than one sample
with different deuteration strategies.

3. The four basic steps are monochromation, collimation, scattering and detection.

4. SANS uses scattering angles between 0.2 ° and 20 ° in two steps.

5. In-situ SANS environments include: shear cells/rheometers, pressure cells,
electromagnets/superconducting magnets, humidity cells, etc.

6. SANS research areas include: polymers, complex fluids, biology, materials science,
magnetism, etc.

7. SANS instruments are bigger than SAXS instruments because of the inherently lower flux
neutron sources. Neutron current on sample is increased for SANS instruments by making
larger samples. Larger samples imply longer SANS instruments in order to cover the same Q
range.
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Chapter 11 - THE SANS INSTRUMENT

The first SANS instruments utilizing long flight paths, long wavelength neutrons from a
reactor cold source and position sensitive detectors were developed over 35 years ago. Small-
angle neutron scattering instruments should really be called low-Q instruments. Q is the
scattering variable which is expressed in terms of the neutron wavelength A and low
scattering angle 0 as Q = 210/A. Low Q can be realized either through the use of small angles
or long wavelengths (or both). In order to obtain small angles, good collimation and good
resolution area detectors are needed. Good collimation is achieved through the use of long
neutron flight paths before and after the sample. SANS instruments on continuous neutron
sources use velocity selectors to select a slice of the (often cold) neutron spectrum while
time-of-flight SANS instruments use a wide slice of the spectral distribution with careful
timing between the source chopper and the detector to separate out the various wavelength
frames. In this last case (TOF instruments) the maximum length of an instrument is
determined by the pulse frequency so as to avoid frame overlap (whereby the fastest neutrons
of one pulse would catch up with the slowest neutrons of the previous pulse).

1. CONTINUOUS SANS INSTRUMENT COMPONENTS

A brief description of the main components of reactor-based SANS instruments follows. This
description covers the main features found on the NG3 30 m SANS instrument at the NIST
Center for Neutron Research (Hammouda et al, 1993; Glinka et al, 1998).

-- Cold neutrons are transported through total internal reflection at glancing angles inside
neutron guides. These transmit neutrons from the cold source to the entrance of scattering
instruments with little loss (1 % per meter). Neutron guides are coated with natural Ni or Ni-
58 which has a wider critical angle for reflection. This critical angle increases linearly with
neutron wavelength thereby allowing more cold neutrons to reach the SANS instrument.
Note that supermirrors (characterized by even higher critical angles) are not used due to the
tight collimation requirement of SANS instruments; neutrons that experience too many
reflections never make it through the tight SANS collimation.

-- Beam filters (for example Be for neutrons and Bi for gammas) are used to clean up the
beam from unwanted epithermal neutrons and gamma rays. Gammas are stopped by high-Z
materials such as Bi. Be transmits neutrons with wavelengths > 4 A. Note that if a curved
guide is used, no crystal filter is needed because there is no direct line-of-sight from the
reactor source (no gammas in the beam). Curved guides transmit only wavelengths above a
cutoff value (no epithermal neutrons in the beam). Typical crystal filter thickness is between
15 cm and 20 cm. For better efficiency, filters are cooled down to liquid nitrogen
temperature (77 K = -196 °C).

-- Optical filters are devices that stir a neutron beam away from the direct line-of-sight and
replace crystal filters. They consist of tapered neutron guides that transmit only neutrons that
are reflected. They have the advantage of gains in flux over crystal filters at long
wavelengths.
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Figure 1: Schematic side view representation of an optical filter used on the NG3 SANS
instrument at the NIST CNR facility. The reflecting guide surfaces are made out of Ni and
Ni-58. Since there was no room horizontally, the neutron beam is steered vertically. This
figure is not to scale.

-- A velocity selector yields a monochromatic beam (with wavelengths A between 4 A and 20
A and wavelength spreads AA/A between 10 % and 30 %). Some SANS instruments that
need sharp wavelength resolution use crystal monochromators (with wide mosaic spreads to
give AL/A <10 %) instead. Since AL/A is constant, the neutron spectrum transmitted by the

velocity selector falls off as l/k4 (instead of the 1/7»5 coming from the moderator produced
Maxwellian distribution).

v
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Figure 2: Schematic representation of a multi-disk velocity selector. A white neutron
spectrum is incident from the left and a monochromated beam is transmitted toward the right.
Changing the rotation speed changes the neutron wavelength. Tilting the selector
horizontally changes the wavelength spread. Magnetic coupling is used to drive the selector
rotation to high rotation speed. Temperature and vibration sensors insure reliable operation.

-- The collimation usually consists of a set of circular (source and sample) apertures that
converge onto the detector. An evacuated pre-sample flight path contains the beam
collimation system. Typical adjustable flight path distances are from 1 m to 20 m depending
on resolution and intensity considerations. Inside the pre-sample flight path, more neutron
guides (with reflecting inner surfaces) are included in parallel with the collimation system for
easy insertion into the beam. This allows a useful way to adjust the desired flux on sample
along with the desired instrumental resolution by varying the effective source-to-sample
distance. A normal configuration consists of a certain number of guides inserted into the
neutron beam, followed by a source aperture right after, then a series of empty beam
positions up to the sample aperture located inside the sample chamber.
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Figure 3: Cross section of a pre-sample flight path box showing an aperture, a neutron guide
and an empty beam position that can be inserted in the beam using an actuator and a movable
translation table.

-- A sample chamber usually contains a translation frame that can hold many samples

(measured in sequence). Heating and cooling of samples (-10 OC to 200 9C) as well as other
sample environments (cryostats, electromagnets, ovens, shearing devices, etc) are often
accommodated. The oversized sample environments are mounted on a 22” diameter Huber
sample table instead. This sample table can be rotated around a vertical axis and translated in
and out of the neutron beam. This translation is useful for moving the in-situ Couette shear
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cell (for example) from the radial position to the tangential position. All of these motions are
computer controlled.
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Figure 4: Schematic drawing of the sample area showing the sample chamber on the right
and a sample table for oversized environments on the left. Two gate valves are used to isolate
the evacuated areas (pre-sample and post-sample flight path) when pumping down or
evacuating the sample chamber. This softens the shock on the brittle neutron windows during
such rapid pressure surges.

-- A set of three main neutron windows are used: (1) One at the entrance to the pre-sample
flight path. This window is before the source aperture and can be made out of quartz. (2) A
second window just before the sample. This window is between the two defining apertures
and could therefore produce unwanted diffuse scattering. It is often made out of sapphire
(more expensive than quartz but with better neutron transmission). Sapphire is transparent
thereby allowing a laser beam (parallel to the neutron beam) through for rapid sample holder
alignment. The laser itself is installed on one of the collimation boxes and produces a beam
that gets reflected (90 °) by a silicon mirror placed at 45 ° from the beam axis. The silicon
wafer reflects the laser beam but is transparent to neutrons. (3) A wide silicon window is
used at the entrance to the scattering vessel (just after the sample). Silicon has the best
neutron transmission and is the best window material when optical transparency is not
required. These windows are between 3 mm and 6 mm thick.

-- Precise alignment of sample blocks with respect to the sample aperture is performed using
a “neutron camera”. A double exposure picture is taken with and without the sample
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aperture. A neutron camera is a regular flat camera outfitted with a scintillation plate (using
material such as Li-6).

-- The post sample flight path is usually an evacuated cylindrical tube (to avoid scattering
from nitrogen in air) that permits the translation of an area detector along rails in order to
change the sample-to-detector distance. The vacuum level is kept at less than 100 mT. In
order to evacuate such a large volume, a large capacity vacuum pump and a roots blower are
used.

-- The area detector is often a gas detector with 0.5 cm to 1 cm resolution and typically
128*128 cells. The detection electronics chain starts with preamplifiers on the back of the
detector and comprises amplifiers, coincidence and timing units, plus encoding modules and
a means of histogramming the data and mapping them onto computer memory. In order to
avoid extensive use of vacuum feedthroughs, high count rate area detector design
incorporates most electronics modules (amplification, coincidence, encoding, etc) inside an
electronics chamber located on the back of the detector. In this design, flexible hoses are,
however, needed to ventilate the electronics and to carry the high voltage and powering
cables in and the encoded signal out.

dome — 3| *He 3ﬁe 4__electronics
> chamber
ICE4
membrane ——
b 4
detection
chamber

Figure 5: Schematic representation of a neutron area detector.

-- Detector protection is performed in two ways: (1) through an analog monitoring of the
total count rate and (2) through software monitoring of each detector cell count rate. If either
the total detector count rate or a preset number of cells overflow, the data acquisition system
pauses, the next attenuator is moved in and data acquisition is restarted. Typical presets are
50,000 cps for the total detector count rate and 100 cps for 10 cells.

-- A set of beam stops is used to prevent the unattenuated main beam from reaching the
detector and therefore damaging it due to overexposure. Use of glass seeded with Li-6 as
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neutron absorber avoids the gamma-ray background obtained with Cd, B or Gd containing
materials. For easy alignment, motion of the beam stops should be independent of that of the
area detector.

-- Between the velocity selector and the pre-sample collimation system, a low-efficiency
fission chamber detector is used to monitor the neutron beam during data acquisition.

-- Just before the pre-sample collimation flight path a set of calibrated attenuators are used to
attenuate the neutron beam. This system consists of a slab of plexiglass milled stepwise so as
to provide attenuators of varying thickness. The insertion of this attenuator set is computer
controlled. For example, if the area detector count rate is above a preset ceiling, the thinnest
attenuator is moved into the beam by the data acquisition software. If this does not attenuate
the beam enough, the next attenuator in thickness is moved in, etc. Another option for an
attenuator system would be to use neutron absorbing material (such as cadmium) plates with
holes milled into them. The density of holes would determine the attenuation factor.

-- Gamma radiation produced by neutron capture in various neutron absorbing materials (Cd,
Gd, B) is stopped using high-Z shielding materials (Fe, Pb, concrete). Shields surround the
velocity selector (especially the front disk that produces most of the dose) and beam defining
apertures. The scattering vessel is also shielded in order to minimize background radiation
from reaching the detector.

-- The pre-sample and post-sample flight paths are often made out of non magnetic metals
(like aluminum or non-magnetic steel) in order to allow the use of polarized neutrons.

-- A neutron polarizer consists of a Fe/Si coating on 1 mm thick silicon plates aligned to
form a V inside a copper-coated neutron guide. This polarizing cavity is 1.2 m long and
polarizes a 4*5 cm” neutron beam for a wavelength between 5 A and 15 A. Immediately
following the polarizing cavity is a flat coil & spin flipper for reversing the direction of
polarization. Permanent magnets maintain a 500 gauss vertical field to magnetize the
supermirror coating and a 50 gauss field from the supermirror to the sample area to maintain
neutron polarization.

-- In order to avoid diffuse scattering from the beam defining apertures, these are tapered (5 °
taper angle is enough) and made out of material like boron nitrite or lithiated glass with the
smaller inner edge made out of cadmium. This keeps the beam sharp and emitted gamma
radiation to a minimum.

-- Data acquisition is computer controlled within menu-driven screen management
environments and on-line imaging of the data is usually available. Encoded 2D data are
received from the area detector electronics, binned into histogramming memories, then
regularly displayed and saved. The data acquisition software interface also controls the
various peripheral functions such as controlling the various motors, the sample
heating/cooling protocols, and handshaking with the various other stand-alone sample
environments (shear cells, pressure cells, etc).
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-- There are many figures of merit used to judge the performance of SANS instruments.
These include: instrumental resolution, minimum scattering variable (Quin), flux on sample,
dynamic Q range and background level.
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Figure 7: Photograph of the NG3 30 m SANS instrument. The picture was taken from the
bridge walk just before the velocity selector shield.
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Table 1: 30 m NIST-SANS Instruments Characteristics.

Source: neutron guide (NG3), 6 * 6 cm2

Monochromator: mechanical velocity selector with variable speed and pitch
Wavelength Range: variable from 5 A to 20 A

Wavelength Resol.: 10 to 30 % for AMA (FWHM)

Source-to-Sample Dist.: 3.5to 15 min 1.5 m steps via insertion of neutron guides
Sample-to-Detector Dist.: 1.3 to 13.2 m continuously variable for NG3
Collimation: circular pinhole collimation

Sample Size: 0.5 to 2.5 cm diameter

Q-range: 0.001t0 0.6 A™

Size Regime: 10 to 6000 A

Detector: 64 * 64 cm2 He-3 position-sensitive ORDELA type

proportional counter (0.508 * 0.508 cm? spatial resolution)

Table 2: Short list of ancillary equipment used on SANS.

Ancillary Equipment: - Automatic multi-specimen sample changer with

temperature control from -10 to 200 °C.

- Electromagnet (0 to 9 Tesla).

- Couette flow shearing cell, plate/plate shear cell,
in-situ rheometer.

- Cryostats and closed cycle refrigerators (1 K to 300 K).
- Oven for in-situ use (300 K to 1800 K).

- Pressure cell (0 to 1*108 Pa, 25 °Cto 160 OC).

2. TIME-OF-FLIGHT SANS INSTRUMENT COMPONENTS

In order to avoid frame overlap, time-of-flight SANS instruments tend to be shorter at typical
pulsed sources. TOF SANS instruments comprise some of the main features described above
(collimation, sample chamber, flight paths, area detector, etc) as well as some specific
features described here:

-- A source chopper is used to define the starting neutron pulse.
-- The area detector is synchronized to the source chopper so that a number of wavelength

frames (for example 128) are recorded for each pulse. No monochromator is necessary with
the time-of-flight method.
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-- A supermirror bender can be used to remove short wavelengths and let the instrument get
out of the direct line of sight from the source. Note that curved guides have a cutoff
wavelength below which neutrons are not transmitted. This bender replaces the crystal filter.

-- High wavelengths (say above 14 A) have to be eliminated in order to avoid frame overlap.
This can be done by gating the detector or through the use of frame overlap mirrors.

Reflecting mirrors are set at a slight angle (1 O) from the beam direction so as to reflect only
long wavelength neutrons (note that the reflection critical angle varies linearly with
wavelength).

-- Prompt gamma rays emitted during the spallation reaction are eliminated by paralyzing the
detection system for the first microsecond after each pulse.

Because of the wide wavelength range used in time-of-flight instruments, materials that
display a Bragg cutoff (such as sapphire windows) cannot be used. Data reduction becomes
more complex with time-of-light instruments since most corrections (transmission, monitor
normalization, detector efficiency, linearity, uniformity, etc) become wavelength dependent.
Time-of-flight instruments have the advantage, on the other hand, of measuring a wide Q
range at once. Also the large number of wavelength frames can be kept separate therefore
yielding very high wavelength resolution (AA/A <1 %) which is useful for highly ordered
scattering structures (characterized by sharp peaks).

3. SAMPLE ENVIRONMENTS

Typical sample thickness for SANS measurements is of order of 1 mm for hydrogenated
samples and 2 mm for deuterated samples. Liquid samples (polymer solutions,
microemulsions) are often contained in quartz or demountable cells into which syringes can
be inserted. Solid polymer samples are usually melt-pressed above their softening
temperature, then confined in special cells between quartz windows.

Flexibility of design for some instruments allows the use of typical size samples under
temperature control or bulky sample environments. Temperature is easily varied between

ambient temperature and 200 °c using heating cartridges or between -10 °C and room
temperature using a circulating bath. Other sample environment equipment such as low-
temperature cryostats (4 to 350 K) and electromagnets (1-10 Teslas) are sometime made
available to users. Various shear cells (Couette, plate-and-plate, in-situ rheometers, etc) help
probe "soft" materials at the molecular level in order to better understand their rheology.
Pressure cells are also finding wide use for investigations of compressibility effects on the
thermodynamics of phase separation as well as on structure and morphology.

4. SANS MEASUREMENTS
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SANS measurements using cold neutrons take from a few minutes to a few hours depending
on the scattering sample, the neutron source and the instrument configuration used. The
process starts by sample preparation, loading into cells and measurement of the sample
thickness.

A reasonable instrument configuration is chosen at first by setting a low wavelength and
varying the sample-to-detector distance so as to optimize the desired Q-range. If the
maximum available sample-to-detector distance of that instrument is reached, wavelength is
then increased. Choice of the source-to-sample distance, wavelength spread, and aperture
sizes are dictated by the desired instrumental resolution (sharp scattering features require
good resolution) and flux on sample. Scattered intensity is proportional to many factors that
have to be optimized. Transmission measurements are required as well. In order to avoid
complicated multiple scattering corrections, sample transmissions are kept high (> 60 %).
Many experiments require a wide Q range covering two orders of magnitude (from Q =
0.003 A to Q=0.3 A™"). This range is obtained over two instrument configurations. In order
to improve counting statistics, a third configuration is often used. The use of focusing lenses
lowers the minimum Q down to slightly below Q = 0.001 A™.

A complete set of data involves measurements from the sample, from an incoherent (usually
nondeuterated) scatterer that yields a flat (Q-independent) signal, from the empty cell and
blocked beam and from a calibrated (absolute standard) sample. The beam flux measurement
method (measurement of the direct beam transmission) can be used to replace the absolute
standard measurement.

SANS data are corrected, rescaled to give a macroscopic cross section (units of cm-1) then
averaged (circularly for isotropic scattering or sector-wise for anisotropic scattering).
Reduced data are finally plotted using standard linear plots (Guinier, Zimm, Kratky, etc) in
order to extract qualitative trends for sample characteristics (radius of gyration, correlation
length, persistence length, etc) or fitted to models for more detailed data analysis.

5. SANS INSTRUMENTS IN THE WORLD

Since the first SANS instrument went into operation at the Institut Laue Langevin (Grenoble,
France) in the mid-1970s, many more SANS instruments have been built. Every neutron
scattering facility has at least one such instrument. The SANS technique has managed to
keep a steady growth and a high level of user subscription. A web site keeps a SANS
instruments directory in the world (http://www.ill.fr/1ss/SANS _WD/sansdir.html).

REFERENCES

B. Hammouda, S. Krueger and C. Glinka, "Small Angle Neutron Scattering at the National
Institute of Standards and Technology", NIST Journal of Research 98, 31-46 (1993).

103



C.J. Glinka, J.G. Barker, B. Hammouda, S. Krueger, J. Moyer and W. Orts, “The 30m SANS
Instruments at NIST”, J. Appl. Cryst. 31, 430-445 (1998).

K. Ibel, “World Directory of SANS Instruments”, available online at the address
http://www.ill.fr/Iss/SANS_WD/sansdir.html

QUESTIONS

1. Why are small-angle neutron scattering instruments bigger than small-angle x-ray
scattering instruments?

2. Why are crystal monochromators not used (instead of velocity selectors) in SANS
instruments?

3. Could one perform SANS measurements without using an area detector?

4. What is the useful range of cold neutron wavelengths?

5. When is it necessary to use wide wavelength spread AA/A?

6. Find out how a velocity selector works?

7. How does a He-3 area detector work?

8. What is the cost of building a SANS instrument?

9. Name some materials used for neutron windows.

10. Do cold neutrons destroy samples?

11. Why are time-of-flight SANS instruments short?

ANSWERS

1. Neutron fluxes are lower than x-ray fluxes. SANS samples are made bigger than SAXS
samples in order to enhance the neutron current on sample. Bigger samples require larger
flight paths in order to cover the same Q range.

2. Crystal monochromators are characterized by narrower wavelength spreads than velocity
selectors and therefore lower neutron currents. Moreover, the use of a crystal monochromator
would require the pivoting of the entire SANS instrument around the monochromator axis in
order to change the neutron wavelength because they operate in reflection geometry.
Velocity selectors operate in transmission geometry.

3. SANS measurements can be performed using an end-window or a 1D position-sensitive
detector. Count rate would however be prohibitively low.

4. Cold neutron wavelengths range from 4 A to 20 A. The range used is effectively from 5 A
to 12 A. Longer wavelengths are characterized by low fluxes.

5. SANS uses wide wavelength spread in order to increase the neutron current on sample.

6. Velocity selectors rotate at a specific speed for every neutron wavelength. The helical
selector slot lets neutrons of the right speed through. Those that are either too slow or too fast
are absorbed and never get transmitted.

7. He-3 absorbs a neutron to give two charged particles: a proton (H-1) and a triton (H-3).
These two charges create an electron detection cloud that drifts towards the anode (at high
voltage) and therefore get sensed by the cathodes.

8. A SANS instrument costs as much as its level of sophistication. A deluxe model costs over
$ 1 million.
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9. Neutron windows have to be very transparent to neutrons. Silicon is the most transparent
but is opaque to visible light. Sapphire is less transparent to neutrons, very transparent to
visible light but rather expensive. Quartz is like sapphire but less expensive. In practice,
sapphire 1s used for windows before the sample. They can transmit neutrons as well as let a
laser beam through for sample alignment purposes. After the sample, silicon windows are
used.

10. Cold neutrons do not destroy most samples. Unlike x-rays they do not heat them up.
Samples containing elements that can be activated by neutrons (such as Fe for example) have
to be handled differently. Most SANS samples (polymers, complex fluids and biology)
contain organic molecules that do not get activated (C, H, D, O, N, etc).

11. Time-of flight SANS instruments are short in order to avoid frame overlap (when the fast
neutrons of one pulse catch up with the slow neutrons of the previous pulse).
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Chapter 12 - VELOCITY SELECTORS AND
TIME-OF-FLIGHT MEASUREMENTS

Characteristics of velocity selectors and time-of-flight measurement of the neutron
wavelength distribution are described. Monochromation is a necessary step for SANS
instruments that do not use the time-of-flight method. Continuous SANS instruments use
velocity selectors instead of crystal monochromators. The basic concept for velocity selectors
is to allow neutrons to travel in a rotating helical path. Neutrons that are either too fast or too
slow get absorbed. Only neutrons with the right velocities are transmitted thereby
transforming a white incident neutron spectral distribution into a monochromated distribution
with mean wavelength A and wavelength spread (FWHM) AA. Velocity selectors are either
of the solid drum type (with helical slot) or of the multidisk type.

SIDE FRONT

VIEW " VIEW absorbing
transmitting .
region

region
/

Figure 1: Schematics of a velocity selector explicitly showing three absorbing sectors and
two transmitting windows between them.

1. VELOCITY SELECTORS CHARACTERISTICS

Velocity selectors rotate at constant frequency ® which is varied to change the transmitted
neutron wavelength A. A typical selector has an overall length L (Ilength of the rotating
“drum”) and a radius R (between the selector rotation axis and the neutron window). The
helical path is characterized by a pitch angle a.. This is the angle by which the selector rotates
while neutrons cross its length L.

Equating the time it takes for neutrons to travel that distance L to the time it takes the
selector to rotate the angle o gives a relationship between the neutron wavelength A and the
rotation speed .
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Here h is Planck’s constant, and m is the neutron mass. This relationship is expressed in
more convenient units as:

a[deg]

MA]=6.59*%10° ——=>——.
o[rpm] L[mm]

2)

Here, the selector rotation frequency  is given in rpm (rotations per minute).

The selector transmission is proportional to the uncovered area of the input face. Two angles
are defined. [ is the angle subtending the transmitting window and 9 is the angle
corresponding to the absorbing region between two transmitting windows. The selector
transmission is expressed as the following ratio:

T- P 3)

The wavelength spread A\ is defined as the FWHM of the selector output distribution. The
selector resolution (relative wavelength spread) is simply expressed as the ratio of the two
relevant angles.

o._p
Ao )

Note that AL/A is independent of A so that the incoming A~ wavelength distribution from the

1 (AL ) ) .
neutron source becomes 77‘(7) after the selector. Since AA/A is constant, this becomes a

1/,* distribution. The transmitted wavelength distribution is of the triangular form with
slightly rounded angles (as will be described later).

To decrease the wavelength resolution, one can either (1) decrease the transmitting window
angle 3, or (2) increase the pitch angle a at the design stage. The first possibility is limited
by the accompanying loss in selector neutron transmission. The second possibility comes
with an increase in rotation speed in order to reach the same wavelength. In order to keep the
same rotation speed, both the pitch angle o and the selector length L could be varied
proportionately.

In order to change the wavelength spread of a selector, the selector axis is tilted (in the

horizontal plane) by an angle v relative to the beam axis thereby modifying the effective
pitch angle as:

(O =OL+E. (5)
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Tilting modifies both the wavelength spread AA and the neutron wavelength A.

transmitted
monochromatic
beam

incident white tilt angle v
neutron beam

Figure 2: Schematic top view of a velocity selector showing the horizontal tilt angle v.

2. TYPICAL VELOCITY SELECTOR

The following parameters correspond to a velocity selector used on a 30 m SANS instrument
at the NIST Center for Neutron Research (Hammouda, 1992). It is a multi-disk unit of
Hungarian type design.

Selector length L =42 cm.

Radius to the middle of the window R = 17.5 cm.
Helix rotation angle oo = 17°.

Open window aperture angle = 2.25°.
Absorbing region between windows & = 0.75°.
Number of disks n =22.

These design parameters yield the following predicted selector characteristics.

Neutron transmission T = 0.75.

Wavelength A[A] = 2.669*10%/w[rpm].

Relative wavelength spread AA/A = 0.132 for a tilt angle of v =0.
Effect of tilt angle v on the helix angle o= 17+ 2.4 v.

AM j 2.25°

Therefore (— _—
A 17° +24v

These are theoretical numbers predicted based on design parameters. Measured
characteristics using the time-of-flight method are described in the following section.

3. VELOCITY SELECTOR CALIBRATION BY TIME-OF-FLIGHT
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The time-of-flight (TOF) method consists in chopping the neutron beam (using a rotating
chopper) and gating a neutron detector with the time-zero chopper pulse. All neutrons cross
the chopper at the same time despite their spread in velocities. As neutrons travel beyond the
chopper, they spread out with faster neutrons arriving to the detector first. The neutron pulse
is sharp at the chopper level and becomes spread out at the detector level.

Here the time-of-flight method is used to characterize the wavelength distribution coming out
of the velocity selector described earlier. The setup consists of a neutron disk-chopper
followed by two pencil detectors installed close to the SANS instrument sample area. The
pencil detectors have a diameter of 1.27 cm. The second pencil detector is used for
redundancy and in order to obtain an exact measurement of the SANS sample-to-detector
distance. The two pencil detectors are located 0.5 m apart and the distance between the
second pencil detector and the area detector is 3 m. The chopper has a vertical neutron slit 1
mm wide and 1.27 cm tall. A fixed slit aperture of the same size is located just ahead of the
chopper in order to define the neutron beam. The chopper rotation is synchronized with the
neutron detectors data acquisition system through the time-zero pulse.

fixed slit area detector
aperture

pencil pencil
detector 1 detector 2

ﬁ

Figure 3: Schematic representation of the time-of-flight setup comprising a chopper, two
pencil detectors and the area detector. The fixed slit aperture is located just before the
chopper.

A multi-channel scaler electronic unit was used to record the neutron pulses from the neutron
detectors using the gated signal from the chopper. A typical spectrum corresponding to a
wavelength around 6 A, a source-to-chopper distance of 14.27 m, a detector 1-to-detector 2
distance of 0.5 m and a pencil detector 2-to-area detector distance of 3 m is shown below.
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Figure 4: Neutron spectrum obtained by time-of-flight. The first two peaks were recorded by
the two pencil detectors and the third peak was recorded by the SANS area detector. The
horizontal axis is in time channel numbers (0.5 psec/channel) and the vertical axis is in
neutron counts. The chopper frequency was set to 113 Hz.

Fits of the various peaks to Gaussian shapes were performed in order to obtain peak positions
and standard deviations. Peak positions yielded flight times (and therefore wavelengths) and
standard deviations yielded wavelength spreads.

Wavelength Measurement

Knowing the distances between any two detectors, the neutron wavelength is proportional to

the measured flight time between them and inversely proportional to the inter-distance
between them.
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~3.956*10°

v[m/sec]

AA] (6)

v[m/sec] = inter-distance[m]/flight time[sec].

The velocity selector rotation speed was varied and the neutron wavelength was measured in
each case. Using different detector pairs gave the same result.

TOFF
I
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Y = MO + M1*X
14 MO| 0.074128 4
— M1 26910
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Figure 5: Variation of the measured wavelength with inverse velocity selector rotation
frequency.

A linear fit to the A[A] with 1/w[rpm] gives the following measured relationship:
A[A]=0.0741 + 2.691*10*/o[rpm]. (7)
The measured slope of 2.691*10* agrees with the predicted one of 2.669*10* reported earlier.

Variation of the neutron wavelength with inverse rotation frequency is plotted for three tilt
angles.
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Figure 6: Variation of the measured wavelength with inverse frequency for three tilt angles.

Wavelength Spread Measurement

Gaussian fits to the measured spectra gave average flight times t;, t; and t3 and standard
deviations o, 6, and o3 for the peaks corresponding to detectors 1, 2 and 3 (recall that 1 and
2 are pencil detectors and 3 is the area detector). The relative wavelength spread obtained
from detectors 1 and 3 is obtained as:

(A%j ~2355Y%: L, -L, (8)

(3—t) L,+L,

Subtracting o, insures that smearing contributions from the chopper’s finite size slit (1 mm
wide) and from the pencil detector’s finite width (1.27 cm diameter) are removed. The factor
2.355 =2(2In2)"? is used to convert the standard deviation of the Gaussian shaped
distribution o into a full-width at half maximum (FEWHM); AA = 2(2In2)"%c;.

3_L1

The last term is obtained through the following argument. The variance of the

pulse time at a distance L3 from the chopper is given by:
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s’ (L) =L;’c.” +5,°(0). (9)

Here o,(0) is the standard deviation at the chopper position and o is the standard deviation

of the time-of-flight distribution. Applying this relation to two positions L; and L3, one
obtains the following relation:

QGRS =

A T (t,-t) JL,+L,
In practice L; << L3 so that the last term (square root ratio) becomes unity.

Varying the velocity selector tilt angle decreases the relative wavelength spread.

0.3

0.25 - _ .
—=—Using detectors 1 and 3

0.15 -~

Relative Wavelength Spread
o
N
I

0.1 | | | | | | |

Tilt Angle (degrees)

Figure 7: Variation of the measured relative wavelength spread with increasing selector tilt
angle.

The measured relative wavelength spreads (AA/A) corresponding to the three measured tilt
angles (-3°, 0° and +3°) are 0.269, 0.141 and 0.113.
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The measured inverse of the relative wavelength spread gives the following linear variation
with the tilt angle v.

(L)=6.55+0.85v . (11)
AL

This variation is far from the predicted value of

[ij=7.55+1.07v. (12)
AL

The wavelength spread is a very sensitive measurement to make. This is due to many factors:
the assumption of Gaussian shape (for fitting purposes), smearing due to the defining slit’s
finite width, smearing due to the detectors finite detection depth, etc... For example, the
pencil detectors are 1.27 cm in diameter and the area detector has a detection depth of 2.54
cm. Measured wavelength spreads are expected to be larger than predicted ones.

Wavelength Distribution Profile

60
40

20 -
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10 11 12 13
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Figure 8: Wavelength distribution peak measured using the area detector with a wavelength
around 6 A, a source-to-chopper distance of 14.27 m (corresponding to 1 pre-sample
collimation guide inserted), and a pencil detector 2-to-area detector distance of 3 m. This
distribution is characterized by a triangular shape.
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Figure 9: Wavelength distribution peak measured using the area detector with a wavelength
around 6 A, a source-to-chopper distance of 3.38 m (corresponding to 8 pre-sample
collimation guides inserted), and a pencil detector 2-to-area detector distance of 3 m. This
distribution is characterized by a rounded Gaussian shape.

The source-to-chopper distance is varied by inserting neutron guides into the SANS
instrument’s pre-sample flight path. The monochromated neutron beam is therefore reflected
(by the guides surface) before reaching the chopper. The first case shown corresponds to 1
guide inserted (source-to-chopper distance of 14.27 m) whereas the second case shown
corresponds to 8 guides inserted (source-to-chopper distance of 3.42 m). The fist case is
characterized by a triangular wavelength distribution whereas the second case is
characterized by a rounded up Gaussian distribution (due to time-of-flight smearing).
Inserted neutron guides introduce smearing to the wavelength distribution because they
smear the flight time distribution.

Assuming a triangular wavelength distribution, the second moment is expressed as:

<A >=<A>? {Hl( Ak j } (13)

6\ <A >

Assuming a Gaussian wavelength distribution, this quantity is expressed as:

2
<A >=< ) >? {H( O j} (14)
<h>

Here o,” is the variance of the Gaussian distribution defined as ;> = <A*> - <A>%. Recall
that the FWHM of a Gaussian distribution defined as A\ is given by AA = 2(21n2)1/ o5, =
2.3550;. In this case:
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2
<A >=<A>? |1+ ! Z(Akj . (15)
2.355° \< A >

In order to simplify the notation, (AL/<A>) is often represented by (AA/A).

Discussion

Wavelength calibration can be performed by either measuring a sample with a well-defined
SANS peak or by the time-of flight method. The measured neutron wavelength agrees with
prediction whereas it is hard to precisely predict the wavelength spread. Many time-smearing
(or pulse-broadening) factors contribute to the uncertainty in wavelength spread. For
example, increasing the chopper frequency decreases this time smearing. Time-of-flight
calibration measurements are better performed with a high chopper frequency even if peaks
corresponding to consecutive time frames overlap. It is easier to unravel what peak
corresponds to what time frame than introduce a systematic uncertainty due to changing
chopper frequency.

The finite depth of the detector volume in area detectors introduces more pulse broadening.
Moreover, increasing the neutron wavelength decreases the sample-to-detector distance
measurably (by as much as 1.27 cm equivalent to the active depth up to the anode plane in
the area detector) because slower neutrons are stopped closer to the entrance side of the
detection volume. This is due to the “1/v’-dependence of the neutron absorption cross-
section in He-3.

Inserting neutron guides between the velocity selector and the sample (done to reduce the
SANS source-to-sample distance) rounds off the edges of the neutron spectral distribution
from a triangular shape to a Gaussian shape. This increases the wavelength spread.

Such “second order effect” corrections could include (1) slight variation of the wavelength
spread with wavelength and with number of guides in the incident pre-sample flight path
collimation, and (2) slight variation of the sample-to-detector distance with wavelength.

Some of the issues discussed here are essential in understanding the resolution of time-of-
flight (TOF) SANS instruments located at pulsed neutron sources.

The Graphite Bragg Diffraction Edge

In order to independently check the wavelength calibration, it is nice to use other methods.
The Bragg edge method is reliable. The Bragg law A = 2d sin(6/2) relates the neutron
wavelength A, the d-spacing of a crystal d, and the scattering angle 6. The Bragg edge occurs
when the incident neutrons are parallel to the crystal lattice planes. This is obtained when
0/2 = 0° or 180°. There is a drop in diffraction intensity at that condition (neutrons are
transmitted through rather than diffracted). Note that the scattering angle is defined as 0 in
SANS terminology (not as 26 as done in some diffraction books).
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Polycrystalline graphite is characterized by a Bragg diffraction edge at 6.708 A. Placing a
graphite block in the neutron beam along with the time-of-flight setup gives an independent
check of the wavelength calibration. A pencil detector and the area detector are used in the
time-of-flight setup. The spectrum shown in the figure corresponds to a neutron wavelength
around 6.7 A, a source-to-chopper distance of 5.42 m, and a pencil detector-to-area detector
distance of 6 m. Here only one pencil detector and the area detector are used. A chopper
frequency of 70 Hz and a dwell time of 1 usec were used. The first sharp peak corresponds to
the pencil detector located just after the chopper. The broad peak corresponds to the area
detector and shows the graphite edge. The second narrow peak corresponds to the next
neutron pulse on the pencil detector.
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Figure 10: Time-of flight spectrum using a pencil detector and the area detector and placing a
(4 cm thick) polycrystalline graphite block just after the pencil detector. Graphite is
characterized by a sharp Bragg diffraction edge at 6.708 A (located by the arrow).

4. OTHER WAVELENGTH CALIBRATION METHODS
There are other methods to calibrate the neutron wavelength based mostly on scattering

samples that are characterized by Bragg peaks in the SANS range. Here Silver Behenate and
Kangaroo tail tendon are discussed briefly.
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Silver Behenate

Silver Behenate is characterized by a sharp Bragg ring with a d-spacing of 58.38 A. It is
useful for a “quick” wavelength check. It cannot, however, be used to determine the
wavelength spread.

Silver Behenate
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Figure 11: SANS spectrum from Silver Behenate showing a sharp first peak at Q =0.01076
A" (d-spacing of 58.38 A).

Kangaroo Tail Tendon

Kangaroo tail tendon is characterized by a regular periodic structure along the fiber with a d-
spacing of 667 A. SANS scattering from Kangaroo tail tendon in D,O is anisotropic. Sector
averaging along the Bragg spots shows many order reflections. The first peak is strong, the
second reflection is extinct and the third peak is well defined even with typical SANS
smearing (AA/A = 0.13).
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Figure 12: SANS spectrum from Kangaroo tail tendon characterized by a first sharp peak at
Q=0.00942 A corresponding to a d-spacing of 667 A. The third order peak is also strong.

5. DISCUSSION

Monochromation is an essential step for SANS as well as other diffraction methods.
Instruments located at pulsed neutron sources use the time-of-flight method. Continuous
beam instruments use either velocity selectors or crystal monochromators. Velocity selectors
are preferred because monochromation occurs without change in the incident beam direction.
When using crystal monochromators, the entire SANS instrument has to be rotated
horizontally around the crystal monochromator axis in order to change neutron wavelength.
This is a prohibiting factor in guide halls where experimental space between close together
guides is at a premium. An advantage of crystal monochromators is the tight wavelength
spread due to the typically small mosaic spread of crystals. That spread can be widened by
using superlayers of slightly misaligned crystals. Velocity selectors commonly cover a wide
wavelength spread (from AL/A =10 % to 30 %). Crystal monochromations cover the lower
scale (from AMA = 0.1 % to 5 %). The use of two velocity selectors in parallel (for either low
or wide AA/A) would be a nice option for both low-resolution and high-resolution SANS
measurements.
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QUESTIONS

1. How does a velocity selector work?

2. How does a crystal monochromator work?

3. What is the main characteristic of a SANS instrument that uses a crystal monochromator?
4. Does the velocity selector transmission vary with neutron wavelength?

5. Does the predicted relative wavelength spread vary with neutron wavelength?

6. What is the wavelength dependence of the neutron spectrum before and after the velocity
selector?

7. What is the purpose of tilting a velocity selector to an angle with respect to the neutron
beam? What is the range of effective tilt angles?

8. How would you measure the transmission of a velocity selector?

9. What are the main pieces of equipment necessary to perform time-of-flight measurements?
10. What samples are characterized by sharp peaks in the SANS range and could be used for
cold neutron wavelength calibration?

11. The standard deviation of a Gaussian distribution ¢ can be related to its full-width at half
maximum (FWHM) by FWHM = 2(2In2)"?6. Derive this factor.

12. Velocity selectors transform the neutron wavelength distribution from Maxwellian tail to
a triangular distribution. Why is that?

13. Assuming a triangular wavelength distribution outputted by a velocity selector calculate
the variance sz =B - <l

14. What causes a Bragg diffraction edge? Bragg diffraction edges occur at what
wavelengths for graphite and for beryllium?

15. Find out possible suppliers of velocity selectors. What are the essential characteristics to
provide to a potential supplier.

16. Find out possible suppliers of neutron choppers, pencil detectors and multi-channel
scalers.

ANSWERS

1. A velocity selector works by letting through only neutrons of the right speed.

2. A crystal monochromator uses the Bragg law of diffraction. It works by scattering
neutrons of a certain wavelength into a specific scattering angle.

3. A SANS instrument that uses a crystal monochromator has to pivot around the vertical
monochromator axis in order to change the neutron wavelength.

4. The predicted velocity selector transmission does not vary with wavelength.

5. The predicted relative wavelength spread does not vary with wavelength.
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6. The tail of the Maxwellian neutron spectrum from the cold source varies like 1/A° whereas
after the velocity selector the spectrum varies like 1/A* where A is the neutron wavelength.

7. Velocity selectors are tilted horizontally in order to vary the wavelength spread. Tilt angles
vary between -3 ° to +3 °.

8. The transmission of a velocity selector could be measured similarly to the transmission of
any SANS sample, by using a second selector operating at the same wavelength at the
sample location. Transmission is the ratio of the detector counts with the selector in over that
with the selector out (i.e., removed).

9. Time-of-flight measurements can be performed using a chopper, two detectors positioned
a known distance apart and a multi-channel scaler gated with the time zero from the chopper.
10. Examples of samples that are characterized by sharp peaks in the SANS range include:
Silver Behenate, phase separated copolymers, fibers like collagen from a Kangaroo tail
tendon, highly packed silica or latex particles.

11. Consider a Gaussian function P(A) = (1/2nc?)"? exp(-k2/202) where G is the standard

deviation. Setting P(A) = /2, two solutions can be found for A = + ,/2In(2) o. This yields a

band FWHM = AL =2,/2In(2) 6 =2.3550.

12. The output of a velocity selector is a triangular wavelength distribution because of the
geometry of neutron trajectories through the selector windows.

13. Consider an isosceles triangular distribution of FWHM AA (and base 2A\) and centered
at a wavelength A. The left side of the triangle is given by F(L) = (A-Ao)/AL + 1. The right
side of the triangle is given by F(L) = (-A+ko)/AL + 1. The variance o;> = <A*>-<\>*
involves the following integrations ;> = <A*>-<\>* =

Ao Ao

[ a (M) + 1) v [ awe (“M + 1}
ho—AN Ak Ao—Ah AL _ l(Ak)z

AL 6 '

14. A Bragg diffraction edge occurs when the incident neutrons are parallel to the crystal
lattice planes and the crystal is probed edgewise. Bragg diffraction edges for graphite and
beryllium occur at neutron wavelengths of 6.708 A and 4.05 A respectively.
15. Possible suppers of velocity selectors are the KFKI Hungarian and the Dornier German
companies.
16. There are many suppliers of choppers and a wide range in prices. For multi-channel
scaler suppliers, the name Ortec comes to mind. Neutron pencil detectors are sold by Reuter
Stokes and by Lehnard Neutron Detector (LND). Both are companies based in the USA.
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Chapter 13 - NEUTRON AREA DETECTORS

1. NEUTRON DETECTOR BASICS

Two-dimensional area detectors are essential components for SANS instruments. The
position sensitive detection is achieved in one of two ways. (1) Delay line detectors sense the
position of the detection event through the time delay at both ends of each cathode. Only two
winding cathodes wires (one for X and one for Y positioning) are used. (2) The other (and
most used) detection scheme uses the coincidence method whereby only X and Y events that
arrive in time coincidence are counted. This last method uses 128 wires for X and 128 wires
for Y cathodes and can handle higher count rates.

Most neutron area detectors use “He as the detection gas that undergoes the following nuclear
reaction:

'no +*He, > 'H; + °H; + 765 keV (1)

The reaction products consist of two charged particles: a proton (‘H;) and a triton (*H)
released in opposite directions with a combined kinetic energy of 765 keV. This kinetic
energy is dissipated by ionization of the proportional counting gas (CF4 mostly). Since the
incident neutron kinetic energy is very small (1/40 eV for thermal neutrons), thermal neutron
detectors cannot measure neutron energies; they can only detect neutron positions. The
released charged particles are attracted by the anode plane high voltage and liberate
electrons. These are accelerated towards the anodes and therefore create a detection cloud
through secondary ionization (charge multiplication). The two cathode planes (for detection
in X and Y) are located on both sides of the anode and are kept at a low bias voltage in order
to increase detection behind the cathodes. The detection cloud which is created close to the
anode induces a charge on the closest cathodes (through capacitive coupling) which can be
sensed by the charge sensitive preamplifiers. An X-Y coincidence pair is then selected and
processed as real event.

The two main suppliers of neutron area detectors are CERCA (Grenoble, France) and
ORDELA (Oak Ridge, Tennessee, USA). Both types of area detectors use the coincidence
method. The NIST Center for Neutron Research SANS group has experience with both
detector types. A third type of area detectors uses the charge division method which is
similar to the delay line method but involves measuring the produced charges on both sides
of each wire. This type is not discussed.

2. NEUTRON AREA DETECTOR SPECIFICS

The *He/CF,4 gas mixture is kept at high pressure (2.4 Bars = 243 kPa) inside the detection
chamber. An additional detector “dome” chamber filled with neutron transparent *He is
added in front of the detection chamber in order to equilibrate pressure on both sides of the
entrance window. This helps avoid the use of thick detector entrance windows that would
attenuate the scattered neutrons beam. The detector localization gap (distance between the
two cathodes) is 1.5 cm and the total detection gap is 2.5 cm.
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In the CERCA detector, both anode and cathode wires are made out of a CuBe alloy. Each
cathode consists of a band of nine narrowly spaced stretched wires; the bands themselves are
spaced 1 cm apart (center-to-center). The ORDELA detector uses one wire per cathode.

The active detection area of typical neutron area detectors is 64 cm*64 cm with a spatial
resolution of either 1 cm*1 cm for the CERCA detector or 0.5 cm*0.5 cm for the ORDELA
unit. The detector efficiency is high (around 75 %) for typical neutron wavelengths (around A
=6 A). Count rates of order 5*10" counts per second over the whole detector are achieved.

. + 14
electronics i He
chamber CFa
membrane
detection :
chamber X cathodes T Y cathodes
Anodes

Figure 1: Schematic representation of a neutron area detector. This figure is not to scale. The
detection chamber is 2.5 cm wide and 64 cm high.

Since the detector operates inside an evacuated chamber, and in order to avoid using a large
number of vacuum feed-throughs for the cathode signals, all of the signal processing is
performed using electronics that are mounted on the back of the detector. The detection
electronics chain comprises amplification of the analog signals for each cathode wire,
monitoring of X-Y coincidences and encoding to produce a digital signal which is sent out to
the data acquisition system.

3. NEUTRON MEASUREMENTS
Measurements of the performance of area detectors have been conducted on both CERCA
and ORDELA type detectors. Results for one or the other type are described in each of the

following sections. All measurements were made using a monochromatic neutron beam.

Pulse Height Spectrum
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The pulse height spectrum is measured using a multi-channel analyzer (MCA). A figure
shows the pulse height spectrum of the anode plane measured on a CERCA detector at a high
voltage of 2550 V. A narrow neutron peak with a resolution of about 16 % (FWHM divided
by the average peak position) is observed. This main peak corresponds to the 765 keV energy
released as kinetic energy during neutron capture by “He. That energy is split into 191 keV
for the triton *H and 574 keV for the proton 'H. When the detection reaction occurs close to
the detector wall, one of the products (either the proton or the triton) ends up absorbed in the
wall while the other one deposits its kinetic energy in the stop gas. This “wall effect” is
manifested by two more peaks and the long plateau region. The triton peak can be observed
at 191 keV but the proton peak has merged with the main neutron peak and cannot be
resolved. The low pulse height noise is due mainly to low energy electrons that are knocked
off by gamma rays that are absorbed in the detector walls. The main neutron peak at 765 keV
corresponds to both proton and triton being absorbed in the detection gas.

Pulse Height Spectrum

1.2 10 ‘ ‘
765 keV
110* - .
Measured
2 8000 |-
[
>
o
o
© 6000 |-
o
o Gamma Rays,
IS Noise, etc...
> 4000 -
l 191 keV
2000 - Neutron
Wall Effect
O \(\ | | \
0 200 400 600 800 1000

Pulse Height (Channel Numbers)

Figure 2: The anode pulse height spectrum for a CERCA detector showing a sharp neutron
detection peak and low noise. The horizontal scale is in arbitrary MCA channel numbers and
represents the pulse heights (measured in mV to represent the absorbed energies in keV).
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Gas Multiplication Factor

Using the variation of the anode pulse height for increasing detector high voltage yields the
gas multiplication curve and the gas multiplication factor which represents the number of
charges produced by the detection of one neutron. A figure shows measurements made on
the CERCA detector. In order to express this variation in an absolute scale, an electronics
pulse equivalent to the absorption of one neutron (i.e., the creation of a charge of 0.0035 pC)
is injected into the anode plane. Measuring the amplified output of this signal on the cathodes
and comparing it to that output during “normal” detector operation yields a gas
multiplication factor of 117 at a high voltage setting of 2700 V.

detector

—=— measured

100

Pulse Height

10

1.8 2 2.2 24 2.6 2.8
High Voltage (kV)

Figure 3: Variation of the gas multiplication factor with high voltage.

Amplifier Gain and Threshold

The detection electronics chain comprises a preamplifier then an amplifier for each cathode.

The preamplifier plays the role of impedance matching mostly. The amplifier gain and lower
level discrimination (LLD) settings must produce “healthy” amplified analog signals around
1 V in height.
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Gain adjustments on the cathode amplifiers are made using a square wave signal (20 mV
amplitude) injected into the anode plane and equalizing the output signals from the various
cathodes. Final adjustments are made for the normal operation condition using a uniform
scatterer such as (1 mm thick) plexiglass or water characterized by mostly incoherent (Q-
independent) scattering.

Setting of the LLD also called “threshold” is described here for the CERCA detector. At the
chosen high voltage setting of 2700 V, the LLD value is estimated by measuring the total
detection count rate on the cathodes for increasing values of the LLD as shown in a figure.
At low LLD settings, the electronics system is paralyzed by the processing of low amplitude
noise, while at high LLD values, the count rate decreases due to the loss of neutrons
detection events; this gives a reliable operating LLD around 275 mV.

detector
4500 I

4000 - N

3500 + -

3000 + -

2500 + -

—=— measurement and fit
2000 — —

Detector Counts

1500 - n

1000 - -

500 | | | | |
100 200 300 400 500 600 700

Cathode Amplifier Threshold (mV)

Figure 4: Setting of the cathode amplifier LLD (threshold) level. Optimal level is around the
peak.

The Detector Proportional Region
Neutron detectors are “proportional” counters because the total amount of charge created
remains proportional to the amount of charge liberated in the original neutron detection

event. The neutron detector proportional counting region is mapped out by monitoring
increases in detector count rate for increasing high voltage. A convenient operating high
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voltage is chosen in the proportional region and well below the “plateau” region as shown in
a figure for a CERCA detector.

Detector
5000 ~ ! .
plateau region
4000 - proportional region i
wn O
c
S 3000 - i
@)
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% 2000 - and fit
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1000 _
0 ‘ !
2.5 2.6 2.7 2.8 2.9

High Voltage (kV)

Figure 5: Determination of a convenient operating high voltage in the proportional region.

Spatial Resolution

Position sensitive detectors are characterized by their spatial resolution. The spatial
resolution for a CERCA detector is determined as follows. Using a narrow (1 mm*2.54 cm)
vertical slit to define a neutron beam, a scan of the detector response along the X cathodes is
made by recording the count rates of individual cathodes when the detector is moved
stepwise perpendicular to the neutron beam. Counts for two adjacent cathodes are shown in a
figure. The detector spatial resolution is confirmed to be 1 cm and the counting efficiency is
seen to remain reasonably constant within each detection band. This is seen by summing up
counts for the two adjacent cathodes.
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Figure 6: Determination of the detector spatial resolution.
Detector Efficiency

The detector absolute efficiency is measured using another (pencil) detector of known
efficiency. The high gas pressure in the pencil detector gives it a very high efficiency at all
wavelengths making it nearly “black™. The detector efficiency was measured for an
ORDELA detector and shown here. The *He neutron absorption cross section increases with
wavelength (“1/v” absorber). This combined with various losses gives the observed
variation.
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Detector Efficiency Measurement
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Figure 7: Variation of the detector efficiency (left axis) with increasing wavelength.
Performing the “1/v”” absorber correction involves dividing by the neutron wavelength (right
axis).

Estimation of Dead Time

Dead time is inherent in most detection systems. Defining the “true” count rate as N, the
“measured” count rate as Ny and the detection rate time constant as 1, the following
argument is made. The fraction of total time for which the detector is dead is N1, and the
rate at which true events are lost is NyNtt. That rate of loss is also given by Np-Ny so that:

NT-NM = NMNT‘C (2)

This assumes “nonparalysable” systems whereby the detection system does not get paralysed
by detected events. It keeps counting during signal processing. The true count rate is
therefore estimated as:

NM

N,=—M_ |
T 1-N,t

3)
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Consider two measurements made with two different source apertures. These correspond to
Nr1 and N1, and Ny and Nyp,. The ratio Rt = Np1/Np; can be expressed in terms of the ratio
RM = NM1/NM2 as follows.

1-N,,t
R, =R, — M2 4
TNt @

RM = RT + ‘CNMl(l-RT). (5)

Plotting Ry VS N yields a linear behavior with intercept Rr and slope m = t(1-Rt). The
dead time t can therefore be obtained from t = m/(1-Rry).

In order to implement this procedure, the following measurement method is followed for an
ORDELA detector. Two beam defining (sample) apertures of 1.27 cm and 2.27 cm diameters
are used in turn. The neutron current crossing each of them is measured for different
attenuation conditions. Different thickness plexiglass pieces are used to attenuate the neutron
beam. The neutron currents are measured as count rates on the detector. An isotropic
scatterer (thick piece of plexiglass) is used to “diffuse” the neutron beam therefore
broadening the neutron spot on the detector. Plotting the ratio of the count rates for the two
apertures with increasing count rate (for the 1.27 cm aperture) yields a linear behavior as
shown in a figure. The intercept Ry is of course close to the ratio of aperture areas Rt =
(1.27/2.27)* = 0.313 and the slope is around m = 3.535*10°° sec giving an estimated dead
time of T = m/(1-Rt) = 5.16 psec. This is the dead time for the entire detection system
comprising the detector, the detection electronics chain and data acquisition system.
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Figure 7: The dead time is estimated as T = m/(1-Rt) where m is the slope and Rr is the
intercept on the linear part of the measured curve.

Using the estimated dead time of T = 5.16 usec, detector losses can be estimated when count
rates are increased. The relative (percent) loss factor is given by:

_Np =Ny Nyt

L =
N, 1+N,1

(6)
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Figure 8: Percent loss factor as a function of count rate for a dead time of 5.16 psec.
Table 1 gives estimates of dead time losses for increasing count rate.

Table 1: Estimation of dead time losses.

Count Rate Nt Percent Loss Factor
(counts per second) L = (N1-Num)/Nt
10,000 cps 4.85 %

30,000 cps 13.3 %

60,000 cps 23.4%

90,000 cps 31.5%

Detector Reliability

Using an intense localized neutron beam (> 10,000 cps), close inspection of the full 2D
detector image shows whether miscoding “ghost” features are observed. These appear as
faint spot “shadows” of the main neutron spot. Such shadows have been observed for both
types of detector systems but are less severe in the ORDELA system. They are however not a
problem since neutron area detectors usually operate in a less harsh neutron current
condition.
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4. OTHER NEUTRON DETECTORS

There are many types of other neutron detectors. Old type Boron (BF3) neutron detectors are
hardly ever used anymore due to safety considerations (the BF; gas is highly toxic). They
have been replaced by He-3 detectors. Neutron scintillators use a conversion plate made of a
neutron absorbing material (mostly Gd,Os3) that emits gammas upon neutron absorption. The
gamma rays are then detected as any other photons would through the use of
photomultipliers. Neutron scintillators are very sensitive to gamma ray background.

Fission chambers are used as neutron beam monitors. They use a thin plate of fissile material
(mostly **°U) that releases two highly energetic fission fragments upon fission reaction with
a total kinetic energy of 2 MeV. Fission chambers have very low efficiency (of order 10™)
but large signal to noise ratios due to the high degree of ionization generated in the gas.

Note that the absorption cross section in neutron detectors varies inversely with neutron
speed (1/v absorber) or linearly with neutron wavelength c,(A). Assuming a flat detection
volume of thickness d and an atomic density p (number of absorbing atoms per cm’), the
detector efficiency is estimated as 1-T where T is the transmission through the detection
volume and is given as T = exp[-p.ca(A).d].

Table 2: Comparing a few characteristics for three types of neutron detectors. The B-10 and
the He-3 types are proportional counters. The Li-6 type is a scintillator.

Detector Type B-10(n,o)Li-7 He-3(n,p)T-3 Li-6(n,a)T-3
Energy of Reaction 2.79 MeV 0.76 MeV 4.78 MeV
Charged Particles o=1.77 MeV p=0.57 MeV T=2.73 MeV
Energies Li=1.01 MeV T=0.19 MeV o =2.05MeV
Particles Range o =3 mm p =30 mm T=0.04 mm
Li=2 mm T =6 mm o =0.007 mm
Emitted Gammas 0.48 MeV None None
Typical Thickness 5 mm 20 mm 2 mm
Atomic Density 0.053*10% cm™ 0.81*10°° cm™ 173*10”° cm™
Absorption Cross 10,67 Barn 14,83 Barn 2,62 Barn
Section at 5 A
Efficiency at 5 A 3 % 80 % 100 %
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QUESTIONS

1. What are the two main gases used to detect neutrons? Which one is the most used
nowadays?

2. Why is *He referred to as a “1/v” absorber?

3. What is the pulse height spectrum of a detector? How is it measured?

4. What is the “wall effect” feature in a pulse height spectrum? What is the “neutron peak™?
5. How does the coincidence method of detection work?

6. What is a fission chamber? How does it operate? What is it used for?

7. What are the two typical sizes of neutron area detectors used on SANS instruments? What
is the typical detector spatial resolution?

8. Name four measurement tests for characterizing neutron area detectors?

9. How is the proportional detection region test performed? How is the multiplication gain
factor test performed?

10. What is the gas multiplication factor?

11. How is the detector and electronics dead time test performed?

12. How is the spatial resolution test performed for neutron area detectors?

13. How to choose an operational threshold setting for an amplifier?

14. What is the percent loss for a non-paralysable detector system with 5.16 usec dead time
and 10,000 cps neutron current?

15. What are the two major suppliers of neutron area detectors for SANS instruments?

16. Find out a possible supplier of multi-channel analyzers (MCAs)?

ANSWERS

1. Neutron detectors use either BF, or *He. BF, is no longer used because if is highly toxic.
2. °He is referred to as a “1/v” absorber because its absorption cross section varies like 1/v (v
being the neutron velocity or speed). This absorption cross section increases with neutron
wavelength.

3. The pulse height spectrum of a detector is the distribution of electronics signal amplitudes
outputted by the detector electronics. It is measured using a multi-channel analyzer (MCA).
4. The wall effect represents nuclear reaction products (either proton or triton) hitting the
detector wall. The neutron peak corresponds to both reaction products being entirely
absorbed in the gas (no wall effect).

5. The coincidence method registers a real detected event when an X and a Y cathode signals
arrive in coincidence (i.e., within a specified time window).

6. A fission chamber is a very low efficiency neutron detector. It uses fissionable material
*°U mostly) to detect neutrons. An energy of 2 MeV is released as kinetic energy for the
fission fragments. Fission counters are used as neutron beam monitors.
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7. Neutron area detectors used on SANS instruments are either 64 cm*64 cm or 1 m*1 m in
area. The spatial resolution is either 1 cm* 1 cm or 0.5 cm*0.5 cm.

8. The various tests performed to characterize neutron area detectors are: pulse height
spectrum, multiplication factor, amplifier gain and threshold settings, gas proportional
region, spatial resolution, detector efficiency, detector and electronics dead time.

9. The gas proportional region is determined by increasing the HV and recording the number
of detector counts (see Figure 5).

10. The gas multiplication factor represents the number of electrons released from the
absorption of one neutron.

11. The dead time is measured using two different apertures and varying the count rate each
time by inserting attenuators in the beam. The dead time is given by t = m/(1-Rt) where m is
the slope and Ry the intercept of the ratio of counts (for the two apertures) Vs count rate.

12. The spatial resolution test is performed by stepping the area detector laterally
(perpendicular) to a neutron beam defined through a thin vertical slit.

13. The threshold (also called lower level discriminator or LLD) level for an amplifier is
chosen as that setting that gives the maximum number of neutron counts.

14. Eq (6) gives the formula and Table 1 gives the answer of L = 4.85 % loss for a dead time
of 5.16 usec and 10,000 cps neutron current.

15. The two major suppliers of area detectors for SANS instruments are CERCA (Grenoble,
France) and ORDELA (Oak Ridge, Tennessee, USA).

16. The company Canberra is a possible supplier of MCAs. A Google search with “multi
channel analyzer suppliers” comes up with dozens of other possible suppliers.
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Chapter 14 - SAMPLE ENVIRONMENTS

A number of sample environments are available for SANS measurements. These consist in
standard cells and cell holders that can be heated (up to 300 °C) using heating cartridges or
cooled (down to 0 °C) using circulating baths. Between 0 °C and 10 °C (depending on the
ambient dew point), the sample chamber must be evacuated and/or filled with inert gas
(nitrogen or helium) in order to avoid condensation on cooling blocks. A host of special
sample environments are also available at the NIST CNR. These include in-situ pressure
cells, in-situ (Couette or plate/plate) shear cells as well as a rheometer, electromagnets (up to
2 Teslas), a superconducting magnet (9 Teslas), low temperature closed cycle helium
refrigerators for temperatures down to 5 K, and a furnace for temperatures up to 450 °C.
Only a few highly-used pieces of equipment are described here.

1. STANDARD SAMPLE CELLS

SANS measurements involve a variety of different cells. The first type is the standard oft-
the-shelf “banjo cell” owing to its characteristic shape. This type is used for photon
scattering as well and has quartz windows (transparent to both neutrons and light). Their
diameter is 2 cm and is characterized by a sample gap thickness of either 1 mm or 2 mm
corresponding to a sample volume of 0.3 ml or 0.6 ml respectively. This type of cell is
appropriate for liquid samples that can be handled using a syringe.

The second type of cell used for SANS has grown out of successive iterations at the NIST
CNR. It is of the demountable type with titanium body and quartz windows. An inner spacer
ring of thickness either I mm or 2 mm is part of the cell body and sets the sample gap. The
sample thickness is uniform between the two quartz windows. Sealing is performed through
back-up o-rings and tightening retainers on each side. This type of cell can handle liquids,
gels, wafers and powders. Gel and powder samples are loaded from one side after tightening
the retainer piece on the other side. Slightly larger volumes than for banjo cells are required.
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Figure 1: Sample holder cells used for SANS at the NIST CNR.

2. HEATING AND COOLING BLOCKS

A 7-position heating block made out of aluminum is used for temperature control. It uses two
pieces of bakelite at the base to thermally decouple the main heated block from the other
pieces in the sample chamber. This heating block controls temperature between ambient and
300 °C with a precision of less than 1 °C. The actual sample temperature lags slightly behind
the block temperature. A resistance temperature detector (RTD) is used to monitor the block
temperature.
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Figure 2: A 7-position heating block using heating cartridges and an RTD to monitor the
temperature.

A similar (10-position) block uses flow of coolant instead (50 % water and 50 % antifreeze)
to cool samples down to 0 °C. The heating range for that block is limited to 90 °C. Another
heating/cooling block uses silicon oil to reach an even wider temperature range (up to 150
°C).

3. THE PRESSURE CELL

Two generations of pressure cells for in-situ SANS measurements were designed to handle
polymer samples. The polymer wafer is first melt pressed inside a metal ring to set a uniform
thickness (of 1 mm). This produces a homogeneous clear sample. The right amount of
sample (0.3 ml) is used in order to fill the available volume. This wafer is then transferred to
the middle of a confining o-ring. This “encapsulated” o-ring (flexible rubber for the inside
and Teflon coating for the outside) transmits pressure from the pressurizing fluid (water in
this case) to the sample. The sample is also confined between two sapphire windows with a 1
mm gap between them. The cell body is made out of Iconel metal (75 % nickel, 15 %
chromium) which is good for its high corrosion resistance and tensile strength at high
temperatures. The pressure cell is surrounded by a heating jacket using heating cartridges for
temperatures from ambient to 160 °C. Another (cooling) jacket uses a circulating fluid to
reach down to 10 °C. The second generation pressure cell can handle up to 3 kbar pressures.

The pressurizing system consists of a pressure pump, two remotely controlled valves, high
pressure tubing, two gauges, etc. The pump and the two valves are computer controlled and
use a feedback signal from the digital gauge. The pressuring system and the main SANS data
acquisition system follow a handshake protocol through a two bits process (“acknowledge”
and “release” lines). When using a liquid sample, a separator is inserted between the pump
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and the pressure cell. This consists of a cylindrical tube with a piston inside to separate out
the pressurizing fluid from the liquid sample.
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Figure 3: The first generation pressure cell for in-situ pressure measurements.
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Figure 4: Schematic representation of the pressure cell system including the computer
controlled pump and valves, the pressure transducer, the main gauge, and the various high
pressure tubing. Note that the pressurizing fluid bottle is standing vertical (out of the page).

4. THE COUETTE SHEAR CELL

The Couette shear cell used for in-situ SANS measurements is a simple device for aligning
samples. It consists of a stator which is lowered into a rotor cup to shear liquid samples
within the 0.5 mm gap. Note that the neutron beam crosses the gap twice. The stator and the
rotor are made out of quartz. The rotor base is made out of a material called Invar which has
a thermal expansion coefficient similar to quartz. A set of x-y translation Verniers allows the
precise alignment of the stator with respect to the rotor. The rotor cup takes about 12 ml.
When the stator is lowered, the fluid sample level rises (in the gap between the stator and
rotor) until it covers the neutron beam level.

The shear cell is used in one of two main geometries: (1) the radial mode whereby the 1.27
cm diameter neutron beam goes through the middle of the cell and (2) the tangential mode
whereby a vertical slit (1.27 cm*0.3 mm) defines the neutron beam incident tangential to the
cell.

This shear cell has been used for easily flowing liquids as well as for highly viscous fluids.

Temperature control is performed using a circulating fluid. Coolant circulates inside the
stator without getting in the neutron beam. Cell temperature can be controlled from 10 °C up
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to 90 °C. The shear cell is used in either the steady shear mode or the reciprocating shear (or
jiggle) mode. Shear rates up to 5,000 Hz for are possible.
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Figure 5: Schematic representation of the Couette shear cell setup with the stator in the raised

position.
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Figure 6: Schematics of the rotor and stator for the in-situ Couette shear cell. The neutron
beam is perpendicular to the plane of this drawing.

5. THE PLATE/PLATE SHEAR CELL

A plate/plate shear cell is available at the NIST CNR for in-situ SANS measurements. This
device was designed for investigations of oriented block copolymers. It consists of two arms;
one fixed and one moving. The sample is melt pressed into a special (1 mm thick) holding
cell which is mounted between the two arms. The fixed arm holding the sample is tightened
in order to squeeze the sample between the two arms. The translation screw transforms the
rotational motion (from the motor) into a translational motion (up and down). Two limit
switches limit the travel range and therefore the strain. A strain of 100 % is obtained for a 1
mm travel.
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Figure 7: Schematics of the in-situ plate/plate shear cell.

6. OTHER SAMPLE ENVIRONMENTS

Other sample environments are available for in-situ SANS measurements at the NCNR.
These include a rheometer for in-situ rheology. The shear cells described above can orient
samples but cannot measure torque. The rheometer is a standard piece of equipment that was
modified to allow a neutron beam to be incident on the sample. A standard rheometer has
been modified for in-situ SANS measurements. The main modification consisted in raising
the sample cup from its standard location (inside a temperature trough) to a higher (more
accessible) location in the neutron path. Temperature control is performed through controlled
air circulation.

Other pieces of equipment include electro-magnets (up to 2 Teslas) and a superconducting

magnet (up to 9 Teslas). A humidity chamber and a vapor cell allow sample humidity and
vapor control. Other cells are available.
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QUESTIONS

1. Why use quartz windows for sample cells?

2. What is the maximum reachable temperature for the heating block? What is the
temperature range for the cooling block?

3. What are the units for ambient pressure?

4. Why doesn’t water boil above 100 °C inside the pressure cell?

5. What is the characteristic of most SANS data with in-situ shear?

ANSWERS

1. Quartz windows are fairly transparent to neutrons and to light; quartz is less expensive
than sapphire.

2. The heating block can reach up to 300 °C. The cooling block uses 50 % water and 50 %
ethylene glycol (antifreeze) and can reach from 0 °C to 90 °C. The range between 0 °C and
10 °C is above the dew point (where water condensation occurs on windows). This range
should be used only in inert (either nitrogen or helium) atmosphere to avoid water
condensation.

3. Ambient pressure corresponds to 14.7 psi = 1 atm = 1 Bar. This is equivalent to 760 mm
of mercury or 760 torr and converts to 101,325 Pa in SI units.

4. Water does not boil above 100 °C inside the pressure cell because a positive pressure (at
least 100 psi) is always maintained.

5. Most SANS data with in-situ shear are characterized by anisotropic scattering with
oriented contour maps.
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Chapter 15 - THE SANS INSTRUMENTAL RESOLUTION

Instrumental smearing affects SANS data. In order to analyze smeared SANS data, either de-
smearing of the data or smearing of the fitting model function is required. The second
approach is more common because it is a direct method. Smearing corrections use the
instrumental resolution function.

1. THE RESOLUTION FUNCTION

Instrumental smearing is represented by the following 1D convolution smearing integral
(suitable for radially averaged data):

dE(Q)} s dZ(Q-Q")

=< = [ dQ'P nN—/—=_=7. 1

|: dQ smeared g Q P (Q) dQ ( )

Here Q is the scattering variable, di;Q) is the scattering cross section and the 1D resolution

function is defined as a Gaussian function:

P, (Q) =[2ni J exp[— 23' ] @)
Q' Q'

The Q standard deviation 6 is a measure of the neutron beam spot size on the detector (Q =
0). It is also a measure of the instrumental part of the width of scattering peaks from samples
(Q #0). o 1s related to the spatial standard deviation (i.e., standard deviation of the neutron
beam spot at the detector) o, by oq = (2n/ALy)o,, where L, is the sample-to-detector distance.

2. VARIANCE OF THE Q RESOLUTION

Scattering measurements are made in reciprocal (Fourier transform) space where the
magnitude of the scattering vector is given by:

Q= %sin(gj . 3)

Here A is the neutron wavelength and 0 is the scattering angle. At small angles, Q is
approximated by: Q = 2n0/A.

In order to express G, differentiate Q on both sides:
2n 2n
dQ=—d0——-6dxr. 4
Q . % 4
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Take the square:

2 27 ? 2 271 ? 2 2 (275)2
(dQ) :(7] (do) +(Vj 0> (dn)’ -2 5 8(de)dr). (5)
Then perform the statistical averages:

<(dQ)? >= (27“) <(do)* > +(2KL4)292 <(dn)? > =2 (2;)2 <0(de)(dr)> (6)

3

Note that < 6(d6)(dA ) >=< 6(d6) >< (d1.) > because the scattering angle 8 and the wavelength
A distributions are uncorrelated. Moreover, < (dA)>=<(A—<A>)>=<A>—<A>=0. This
cancels out the last term.

Define the different variances:
6o = <(dQ)*>=<Q™>-<Q>,
oo’ = <(d0)>=<0">-<0>7,

0,2 = <(dh)>=<AT>-<)h>? (7)

The SANS resolution variance has two contributions:

4r’ 6
c5Q2 = [GQZ]geo + [GQZ]wav = 22 692 + QZ)L_Z (8)

These correspond to the “geometry” part (first term) and to the “wavelength spread” part
(second term) of the Q resolution variance.

3. SANS RESOLUTION VARIANCE

The main parts of the resolution variance cq” are derived for a SANS instrument with
circular apertures (Mildner-Carpenter, 1984; Mildner et al, 2005).

Geometry Contribution to the Q Resolution

Consider the geometry contribution to the Q resolution variance:

o, =2 ©)
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L, is the sample-to-detector distance. The variance for the radially averaged data corresponds
to 1D. The 1D case of o,° (in the horizontal x direction) is considered first.

2D area
circular detector
source \y
aperture circular ‘\
sample

aperture

]

=t
—

Y
A

L] L2

1
1
1
|
1
1
1
1
1
1
|
¢
[l
1
1
1
1
1
[

N

Figure 1: Typical SANS geometry with circular source and sample apertures and 2D area
detector. This figure is not to scale. The horizontal scale is in meters whereas the vertical
scale is in centimeters. Aperture sizes have been drawn out of scale compared to the size of
the area detector.

Consider a uniform neutron distribution within the source and sample apertures. The
horizontal contribution can be written:

2 2
L L, +L
ze:(_Q] <x’> 4{%] <x’>, +<x’>;..  (10)

1

L, is the source-to-sample distance, L, is the sample-to-detector distance, <x>> 1 1s the
averaging over the source aperture, <x>, is the averaging over the sample aperture and
<x*>3 is the averaging over a detector cell. R; and R, define the source and sample aperture
radii respectively. In order to see the origin of the (L,/L,) scaling factor, consider the case
where R, = 0. Then the spot at the detector would be similar to the source aperture size scaled
by (L,/L,). Similarly, in order to see the origin of the (L;+L;)/L; scaling factor, consider the
case of Ry = 0. The spot would be similar to the sample aperture size scaled by (L;+L)/L;.
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Figure 2: Geometry of the circular source aperture.

The various averages can be readily calculated:

o I?rzcosz(d))rdrdd) ) l:[]r3drifcos2(d))d(i) R y
<x? =t =% = b
[ [rdrdg [rdr| do
00 0 0

2
Similarly <x*>, = TZ Averaging over the square (or rectangular) detector cell of sides Axs

and Ays follows.

Axf/Z )
dxx 2
< X2 > = —Ax3/2 _ AX32 _ l AX3 . (12)
’ Axf/éx 12 30 2
—Ax;/2
Therefore:
2 2 2 2 2
ze _ i R, N L +L, | R, +Ax3 . (13)
L, 4 L, 4 12

Similarly for the vertical part (assuming no effect of gravity on the neutron trajectory):

L,YR?> (L +L,YR,> Ay.
o) =| 2| S|t 22 O (14)
> L) 4 L, 4 12
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So that:

2 2
[%xz]geo :(2%) Ezz - (15)

2 2
[GQyz]geo - (%) EZZ .

This is the first part of the Q resolution variance.

Wavelength Spread Contribution to the Q Resolution

The neutron wavelength is assumed to obey a triangular distribution peaked around A and of
full-width at half maximum AA.

AL

v

A—A A A+A

A
v

Figure 3: Triangular wavelength distribution.

This is a typical distribution outputted by a velocity selector. For simplicity of notation, the
same symbol A is used to denote both the wavelength variable A and the average wavelength
<)\>. The average over this wavelength distribution can be readily calculated as:

<\ >= X{HL(A—KJ } (16)
6\ A

Note that if we had assumed a square (also called “box”) wavelength distribution, the factor
of 1/6 would be replaced by 1/12.

The wavelength variance is therefore:
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(17)

A

s’ (<?\,2 >—<7»>2)_ I(Aka
5 5 6 '

The wavelength spread contribution to the Q resolution variance is therefore as follows:
[(y 2] :Q ZL(A_XJZ (18)
Qx lwav X 6\ A

2 2 (ALY
[GQY ]Wav = Qy g(Tj
This is the second part of the Q resolution variance.

Neutron Trajectories
Gravity affects neutron trajectories. Consider neutrons of wavelength A and wavelength

spread A\ incident on the source aperture. The initial neutron velocity is vy with components
voy and vy, along the vertical and horizontal directions.
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Figure 4: Parabolic neutron trajectory under gravity effect. Neutrons must cross the source
and sample apertures. This figure is not to scale.

Under the effect of gravity, neutrons follow the following trajectories:

Z=V,,t (19)

1 >
Y=Y —Egt +V0yt.

Here g is the gravity constant (g = 9.81 m/s) and t is time. Neutrons are assumed to be at the
horizontal axis origin at time zero. In order to obtain the neutron trajectories equation, the
time variable is eliminated using the fact that neutrons must cross the source and sample
apertures; i.e., the condition y =y, for z= 0 and for z=L,. This gives:

L, =v,t = t=—- (20)

z

——lt2+vt = Voy = +li
Yo 2g Oy Oy Yo ngOZ'

The horizontal neutron speed vy, is related to the neutron wavelength A by:
Vo, =——- (21)
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Here also, h is Planck’s constant and m is the neutron mass. At any other position along the
neutron path (other than z = 0 and z = L), the parabolic variation followed is:

2
@)=Y, —%g[%j @ —7L) =y, -BR(Z —7L)  (22)

where:

gm’

T on?

(23)

The neutron fall trajectory is characterized by a parabolic variation with respect to z and with
respect to A.

For z = L,+L,, neutrons fall by the distance y(L;+L,) =y, - B A2 Lo(Li+Lo).

Effect of Gravity on the Q Resolution

Gravity affects the fall of the neutron and therefore the resolution in the y direction. Neutron
trajectories follow a parabola:

gm’
2h?

y=y, - A\ with A=BL,(L, +L,) and B= (24)

g is the gravitation constant (g = 9.81 m/s%), m is the neutron mass and h is Plank’s constant
(Wm=3995 A.m/s). A=3.073*10" Ly(L,+L,) given in units of m/A? where L, and L, are the
source-to-sample and sample-to-detector distances given in meters.

The gravity contribution to the Qy variance is given by:

2 _ 27[ 2 [Gyz]grav
[GQy ]grav - (7) Lzz (25)

[Gyz]gm =< (Y=yp) > —<(y—y,) > = AN (<A > —< W >%).

The two averages over the triangular wavelength distribution are performed as follows:

<A >=)2 {1 +1(A—k) } (26)
6\ A
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2 4
<A >=At 1+ Ak +i Ak )
A 150 A
Therefore:
2
<M > <V >’ N‘g(A—}L) . (27)
3L A
So that:
2( ALY
2 _ A2q4 4| DA
[GY ]grav _A 7\' 3( )\' j ' (28)
and finally:
o) L, 2( ALY
2 T 242
c =|—| AAN=| — | . 29
[ Qy ]grav (LZJ 3( ;L J ( )

This term is added in quadrature with the other two contributions (geometry and wavelength
spread) to the Q resolution variance GQZ.

Summary of the Q Resolution

Putting the geometry contribution, the wavelength spread contribution and the gravity
contribution together yields:

am VI(L,YR2 (Lo+L, V' R.2 1{Axs ) 1/ AN
oo =| 2| || 22 | D | 2o 225 +QX2—(—] (30)
2L, ) [\L, ) 4 L, 4 30 2 6L &
2 V(L PR? (L +L, PR 1(Ay: ) 20 ALY 1( ALY
GQy2 _| T Ly 1|z 2 2 L[ AYs +A2}”4_(_j JrQyz _(_j
aL, ) [\L, ) 4 L, 4 3 2 32 6L A
A=L,(L +L )ﬂ
2 1 2 2h2
where:

R;: source aperture radius
R,: sample aperture radius
Ax3 and Ays: sides of the detector cell
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L;: source-to-sample distance

L,: sample-to-detector distance

AL: wavelength spread, FWHM of triangular distribution function
g: gravity constant

m: neutron mass

h: Planck’s constant.

This result was obtained assuming a uniform neutron distribution within the apertures and a
triangular wavelength distribution.

4. MINIMUM Q

A figure of merit for SANS instruments is the minimum value of the scattering variable Q
(also called Qmin) that can be reached for a given configuration. This value is imposed by the
neutron spot size on the area detector and dictates the size of the beamstop to be used. In
order to minimize the spot size, one has to minimize the “umbra” and “penumbra” of the
neutron beam.

2D area
source detector
aperture il y
sample
aperture

a

um

br.
penumbra

Figure 5: Converging collimation geometry to minimize spot size. This figure is not to scale.
The penumbra is the maximum spot size to be blocked by the beamstop.

Given the standard SANS geometry, the extent of the penumbra in the horizontal direction is
given by:
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L L +L A
X, =—2R +-l 2R 423
L, L, 2

€2))

And the minimum Q in the horizontal direction is therefore Qminx = (21/A)(Xmin/L2).

In the vertical direction, the effect of gravity plays a role. The upper edge of the penumbra
moves down by A(A—AL)* because it corresponds to faster neutrons with wavelength A-AX.
The lower edge of the penumbra drops down by more; i.e., by A(A+AL)* because it
corresponds to slower neutrons with wavelength A+AA\. This results in a distorted beam spot
at the detector. To first order in wavelength spread, one obtains:

L, L, +L
min +
Ll Ll

A5 L oan (A—kj. (32)
2 x

2R, +

Note that Quin 1s determined by the spot size in the vertical direction where the beam is the
broadest Quin= Qmin® = 27/A)(Ymin/L2).

Q. { 2 j(ﬁRl ctba gy A;“ +2Ax2(%jj. (33)

AL, \ L, L,
y
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Figure 6: Neutron spot on the detector. The effect of gravity is to drop both the upper edge
and the lower edge of the penumbra. The lower edge drops more resulting in distorted iso-
intensity contours.

5. MEASURED SANS RESOLUTION

Specific Instrument Configuration
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Consider the following low-Q instrument configuration.

Li=16.14m
L,=13.19m
R;=0.715 cm
R, =0.635 cm
AX3: A}’3: 0.5 cm
A—}L=0.13.

A

This gives a gravity fall parameter of A = 0.01189 cm/A”. This configuration does not
strictly obey the “cone rule” whereby the beam spot umbra at the detector is minimized.

Assuming a neutron wavelength of A = 6 A, the variance (SQ2 has the following Q
dependence:

o, =5.55%107 +0.0028Q° (A 7). (34)
The minimum scattering variable is:

Q.. =0.0017A". (35)
Gravity effects are small for 6 A neutrons. Neutrons fall by only 0.428 cm.

The focus here will be on empty beam measurement (i.e., with no sample in the beam). This
corresponds to the resolution limit of Q = 0.
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Figure 7: Variation of 0Q2 with Q plotted on a log-log scale. The main contributions
(geometry, wavelength spread and gravity effect) are added in quadrature.

Empty Beam Measurements

Empty beam measurements were made using the above instrument configuration and varying
the neutron wavelength.

Predicted and measured resolution characteristics are compared in a series of figures. First,
the position of the beam spot on the detector is plotted for increasing wavelength.
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Figure 8: Variation of the horizontal and vertical neutron beam spot positions with
wavelength.

Next, the standard deviations 6, and oy of the neutron spot size are plotted with increasing
neutron wavelength. The measured values were obtained by performing non-linear least-
squares fits to a Gaussian function in the x and in the y directions. Fits were performed on
cuts through the beam spot center, both horizontally and vertically. Data recorded by two
adjacent detector cells (normal to the cut) were added in each case in order to improve

statistics. A scaling factor of /1.45= 1.2 was used to scale the measured data. This scaling

factor gave good agreement between the measured and calculated values for ox. The same
scaling factor was used for o,.

This necessary scaling factor of 1.2 is probably related to the procedure used to obtain
measured beam spot widths. (1) Slice cuts were performed in the horizontal and vertical
directions. (2) Gaussian fits were performed on these slices even though the beam profile is
known to be close to a trapezoidal (not Gaussian) shape. (3) Lastly, the measured beam spots
were so small (covering only a few detector cells) that Gaussian fits were performed with
four to eight points only.

160



Standard Deviation

0.94
E (6]
L 092 |----- calculated o, -
2 calculated Gy
o 0.9 - 0 measured o ]
© O  measured o
5 0.88 + Y -
(|
o
S 0.86 + -
o
c
S 0.84 -
)
(O]
N 0.82 ~ |
(D (&)
S 08 i
(0p)]
0.78 ! :
5 10 15 20

Neutron Wavelength (A)

Figure 9: Variation of the measured and calculated neutron beam spot size standard
deviations oy and o, with increasing wavelength.

The minimum spot sizes Xmin and Y min Were obtained experimentally as the values where the
intensity (of the horizontal or vertical cuts across the beam spot) goes to zero. This method is
conservative and overestimates the measured values for Xy,,. It is not precise, yielding poor
agreement between measured and calculated values. Our calculated values neglect for
instance diffuse scattering from the beam defining sample aperture and from the pre-sample
and post-sample neutron windows. Such scattering tends to broaden the neutron beam. At
long wavelengths, the gravity effect broadens the neutron spot in the vertical direction with
the extra difference Ymin-Xmin given by the term 2Ak2(Ak/ A).
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Figure 10: Variation of the neutron beam spot sizes in the horizontal and vertical directions
with increasing wavelength.

6. DISCUSSION

The choice of a SANS instrument configuration is always a compromise between high
intensity and good resolution. The instrumental resolution is the main source of data
smearing. Estimation of the SANS resolution is an integral part of the data reduction process.
Reduced SANS data include not only the scattering variable Q and the scattered intensity
I(Q), but also the resolution standard deviation 6. G¢ is needed to smear models before
fitting to the data.

Corrections for smearing due to gravity are never made because they are small and deemed
to be complex manipulations of the 2D data. The effect of gravity smearing is small except at
long neutron wavelengths. Fortunately, the wide majority of experiments maximize flux by
using low wavelengths (5 A or 6 A).
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QUESTIONS

1. What is the relationship between the standard deviation and the variance of a peaked
function?

2. What function best describes the wavelength distribution function after the velocity
selector?

3. What is the shape of the penumbra of the neutron beam spot on the detector?

4. Given a Gaussian function, what is the relationship between its FWHM and its standard
deviation G?

5. Calculate the following average <A”> over a triangular wavelength distribution. Calculate
<\*> over a Gaussian wavelength distribution of standard deviation o;.

6. What are the various contributions to the SANS instrumental resolution?

7. The gravity effect is worse at what wavelength range?

8. What is the shape of the neutron beam spot on the detector for long wavelengths?

9. Cold neutrons of 20 A wavelength fall by how much over a distance of 30 m?

10. Name the main “figures of merit” for a SANS instrument.

11. How would you obtain a lower Qu;n?

ANSWERS

1. The variance ¢ is the square of the standard deviation oy,.

2. The wavelength distribution after the velocity selector is best described by a triangular
function.

3. The neutron beam spot on the detector has a shape close to trapezoidal.

4. For a Gaussian distribution, the following relationship holds FWHM =2 ,/2In(2) c. In

order to derive this relation, consider a Gaussian function P(x) = (1/216%)"? exp(-x*/26")
with standard deviation c. Setting P(x) = ', two solutions can be found for x = + ,/2In(2) G.

This yields a band FWHM = 2 ,/21In(2) ¢ = 2.355G.
5. The integrations are simple. Only the results are given.

1(AanY
=21+ E(TJ for triangular distribution of FWHM AX.

2
0,
Q2> =2 I+ (TJ } for Gaussian distribution of standard deviation c;.
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6. The SANS instrumental resolution contains contributions from (1) “geometry” (source,
sample aperture and detector cell sizes and source, sample and detector inter-distances), (2)
from “wavelength spread” and (3) from “gravity” effect. Remember that [GQz]geo ~ constant,
[60° Twav ~ Q*(AMA)? and [6q Jgray ~ A (AMAY.

7. The effect of gravity is worse for longer wavelengths.

8. Neutrons fall more at the bottom of the neutron beam than at the top. For this reason, beam
spot iso-intensity contour maps are weakly elliptical (weakly oval actually).

9. Cold neutrons of 20 A wavelength fall by about 4 cm over a distance of 30 m (see Figure
8).

10. Typical figures of merit for SANS instrument include: resolution 6q, Qmin, flux-on-
sample, Q-range (called AQ) and background level.

11. A lower Qpi, could be obtained by increasing the sample-to-detector distance. When this
distance is at its maximum, then one could increase the neutron wavelength. The reason for
this is that the beam intensity (1) decreases as sample-to-detector distance square but (2) it
decreases as neutron wavelength to the fourth power.
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Chapter 16 - NEUTRON FOCUSING LENSES

Neutron lenses are used to focus neutron beams. They increase intensity on the sample and
shrink the neutron spot size on the detector therefore reducing the minimum Q. The effects of
focusing lenses on SANS resolution are discussed.

1. FOCUSING LENSES’ BASIC EQUATIONS

The focusing lenses’ basic equations are described here (Mildner et al, 2005; Hammouda-
Mildner, 2007). The focal length for a set of N lenses of radius of curvature R and index of
refraction n is given by:

f= R (1)

2N(1-n)
The index of refraction n is related to the material atomic density p, neutron scattering length
b, and neutron wavelength A as:

n=1-P2y2 ()
2n

The focal length f'is also related to the source-to-lenses distance L; and lenses-to-image
distance L, as:

T 3)

Combining the above two equations gives a relationship between the number N of lenses
used and the neutron wavelength A for an optimized instrument configuration where the
detector is located at the focal spot.

n R L,L
2 = ] . N (4)
pb. NA* L, +L,
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Figure 1: Schematic representation of a focusing lens system showing an object (the neutron
source aperture) and its image (on the detector plane). L, and L4 are the source-to-sample and
sample-to-detector distances and f is the focal length. In practice, neutron focusing devices
comprise many lenses used together.

For MgF, lenses the factor, one has:
pb/m=1.632%10°A"

so that:

2
N[ Biby 1o 6 13x109A2, (5)
R (L, +L,) pb

Consider lenses of radius of curvature R = 2.5 cm and height H = 2.5 cm that are thin at the
center (1 mm thickness) in order to keep neutron transmission high. Source-to-sample and
sample-to-image distances corresponding to the following SANS instrument configuration
(Li =16.14 m, Ly = 13.19 m) give a focal length of

pof Lk ) go6em. (6)
L, +L,

This gives NA?=2111 A%, The use of 7 consecutive lenses (N = 7) focuses neutrons of
wavelength A, = 17.36 A with a focal distance of 726 cm. The use of 30 consecutive lenses
focuses neutrons of wavelength A = 8.39 A down to the same focal spot. The use of 14
consecutive lenses corresponds to a focusing wavelength A = 12.20 A.

For MgF,, the index of refraction is:

n=1-0816*10°2". (7)
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Note that the index of refraction of MgF, for neutrons is less than unity so that concave
lenses focus neutrons whereas convex lenses defocus them. This is opposite to basic optics
for light whereby the index of refraction is greater than unity.

2. RESOLUTION WITH FOCUSING LENSES

Consider a neutron beam with a triangular wavelength distribution and a focusing lens
system optimized for the main wavelength A, in that distribution. The main focal length is

noted fp and corresponds to object-to-lens and lens-to-image distances of L; and L,
respectively. Moreover, consider another wavelength A within the same distribution and its
corresponding focal length f. The object-to-lens and lens-to-image distances are L; and L4
respectively for this wavelength.

LZL_FL:Z_N@ o (8)
f,, L, L, R 2n

11 1 _2Npb.,
f L, L, R2x
lens
source system detector
| A :
i Y . i |
Ly Lo e
! e f image  image
— f — for o, for A
< L, >

Figure 2: SANS focusing system showing the main image of the neutron source
corresponding to the main neutron wavelength A, and another image corresponding to

another wavelength A.

In order to calculate the resolution with the lens system, the “geometry” contribution
contains three terms: one that corresponds to the image of the source aperture; another that
corresponds to the sample aperture and a term that corresponds to averaging over a detector
cell.
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Figure 3: Schematic representation of the three main vertical planes containing the sample
aperture, the area detector (source aperture image for A ) and the source aperture image for

another wavelength A.

Projection of the “geometry” part of the spatial resolution onto the detector plane in the
horizontal direction is expressed as ¢,

L.YR,2 (L,-L,YR.> 1({Ax.Y
I:ze]eoz _2 . + 4 2 2 +— 3 . (9)
o | L, ) 4 L, 4 30 2

Here Ry is the radius of the image of the source aperture for the focal length f at wavelength
M. In order to see how the two scale factors were derived, consider the case R, = 0 for which

L,-L,

L
R;= L—2R4, then the case of Ry= 0 for which R3= (

4

)Rz. Ax3 1s the detector cell

4

. . . . L
horizontal size. The image of the source aperture is given by Ry= —*R.
1

From the focusing equations, one obtains:

2
LI R S S i T N PR R (10)
£ TF L, L, L, f

Therefore:

168



L,Y R’ (L, +L WYV RS AxS
o] =2 Do e [ ] 2 B gy
¢ L, 4 L, Ao 4 12
This is the result valid for any wavelength A. Around the focal wavelength A, the averaging

> 2
over the triangular wavelength distribution yields for the square term [1 - (lj ] the result
0

2
of 2 (%) . Even though the subscript on A is dropped, it should be remembered that these

3
results are valid only for the focusing wavelength.

Finally:
2 2 2 2 2
L,) R L, +L R A
[02] (L) RO (L 4L, (2(AMV R, 5 a2
N O 4 L, 3UA 4 12

The spatial resolution in the vertical direction 0y2 involves the same terms as ze along

with contributions due to the gravity effect.

Neutrons follow a parabolic trajectory, which at the detector position (for z = L;+L,) is given
by:

2

y(L, +L,) =y, — A\ where A=L,(L, +L,)

m
: 13
e (13)

The effect of gravity and wavelength spread contribute terms of the following form to Gy2:

2( ALY
oo, |, =< y@)* >~ <y >*= A’L< ¥ > 2] =AM E(Tj L4

[GQyz]wav - Q2 %(%) ’

In summary, the Q resolution is then obtained as:

2 2 2 2
GQY = lGQY Jgeo + lGQY Jwav + lGQY Jgrav (15)
2 2 2
oot <[ 27 ) |[L2 R’ (L+L, E(A_ij R, 1(4x, +QX21(A_XT
W, ) I\L, ) 4 L, J3la) 4 302 6\ A
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oo o[22 ||[Le] B, (LutLs z(A_szRz:z% +Azx4z(A_x]2 Lozl
YL, L,) 4 L, )3lar) 4 32 30 A Y6

Using focusing lenses modifies the “sample” term only (second term proportional to R,?).
This term becomes much smaller with lenses. When lenses are used, the sample aperture R,
can be made larger without much resolution penalty.

3. MINIMUM Q WITH FOCUSING LENSES

The minimum reachable value of Q starts at the edge of the beam spot. The geometry with
focusing lenses is characterized by an umbra only (with no penumbra). The neutron beam
spot at the detector is therefore characterized by a box (not a trapezoidal) profile. A simple
optics argument gives for the edge of the beam umbra in the horizontal and vertical

directions for each wavelength A the following:

2
X (W) = 2R, +| 22 fy [ 2 g 2 (16)
L1 L1 }\‘0
2
A
Ymin(}\‘)ziRl‘i‘ ﬂ 1_ L R2+ Y3 +2A}\42(A—7\4j,
L1 L1 }\‘0 2 2\

The last term in Y nin(A) is due to gravity effect. Now the minimum achievable spot sizes are
obtained by considering the part of the spot due to a wavelength spread AA.

2 2
X (y=tir o[ Dtle Jly [P ¥ AN By o) e A% g
L, L, o g 2
The magnitude part reduces to:
2 2
PO ST I T O ;2[A—kj. (18)
Xy Ay »

Now that the wavelength averaging has been performed, the 0 subscript in A is dropped for
simplicity. The horizontal and vertical beam spot sizes are:

Xy = 2R, + 012 2(A—ijz + 2% (19)
L, L, » 2
L L +L A

Y, =—2R, Bt (A—ijz + 2 +2A73[A—Xj.
L, L, » 2 »
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The corresponding values of the minimum Q are:

Q X 2_TC min
min 7\‘ L2

Q Y _ E min
min 7L L2

4. MEASURED SANS RESOLUTION

Specific Instrument Configuration

Consider the following instrument configuration:

L,=16.14m
L,=13.19m
R;=0.715 cm
R, =0.635 cm
AX3: A}’3: 0.5 cm
A—}L=0.13.

A

This gives A = 0.01189 cm/ A”.

Measurements with Focusing Lenses

(20)

2h

Neutron optics measurements were made using a set of 7 consecutive biconcave MgF; lenses
(described in a previous chapter) inserted in the beam just before the sample aperture. This

set corresponds to a focal wavelength A around 17.36 A.

The measured position of the neutron beam spot on the detector agrees with predictions.
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With Neutron Lenses
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Figure 4: Variation of the neutron beam spot positions with wavelength.

The beam spot resolution has strong (parabolic) wavelength dependence both in the x and in
the y directions. The minimum resolution in the horizontal direction corresponds to a focal
wavelength Ao. The minimum in the x direction (Ao = 17.2 A) is taken to be the focal
wavelength for our focusing arrangement since the x direction is independent of gravity
effects. A procedure of using slice cuts across the beam spot was used to obtain these plotted

results (including the +/1.45 scaling discussed in a previous chapter). The calculated trends
agree with the measured ones.
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With Neutron Lenses
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Figure 5: Variation of the spot size standard deviation with wavelength in the horizontal and
vertical directions.

Variation of the minimum spot sizes as a function of increasing wavelength is characterized

by a minimum around Ao = 17.2 A. The measured values have been chosen conservatively
and are found to be overestimates that are higher than the calculated values.
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With Neutron Lenses
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Figure 6: Variation of the minimum spot sizes with increasing wavelength.

Discussion

The use of converging lenses has the advantage of allowing the opening up of the sample
aperture (i.e., increasing R,) without penalty in resolution. This happens because the
penumbra is minimized when lenses are used. The main effect is increased neutron current
on sample.

Refractive lenses are characterized by chromatic aberrations that show up as a dependence of
both the variance ze and Xy,in on (AA/A). In order to reduce these chromatic aberrations,
(AMA) could be made smaller; which would result in a penalty in neutron current on sample.
Focusing devices that use reflection (rather then refraction) optics (such as elliptical or
torroidal mirrors) are not hampered by such chromatic aberrations.
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5. LENS TRANSMISSION

The transmission of a set of 7 concave spherical lenses is calculated and compared to
transmission measurements. Consider a lens of spherical radius R and thickness 2h at the
center and assume that the beam defining aperture has a radius of B.

N

Figure 7: Schematics of the lens geometry.

The transmission of one focusing lens averaged over the beam aperture is given by:

1
nB?

B
T, = J.dyZny exp[—2%,(h+R -2)] (22)
0

Here y is the vertical coordinate, z is the horizontal coordinate obeying z = R> —y” and %

is the macroscopic cross section for MgF,. Note that %, varies with neutron wavelength as %

=0.000513 A where A is in A and 3, in mm™. This variation was measured using a uniform
thickness slab of MgF.

Performing the simple integration, one obtains:

1, = &PL22 (b +R)] {[1 —23 JR* -B’ ]exp[22t\/R2 —B? ]—(l—22tR)exp[22tR]}

2(2,B)

(23)
The transmission of a set of 7 focusing lenses is given by T; =T, .

The calculated and measured transmissions for the 7-lens system are compared for increasing
neutron wavelength.
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Figure 8: Calculated and measured neutron transmissions for a 7-lens system.

The calculated and measured transmissions agree only partially.
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QUESTIONS

1. What is the main difference between focusing lenses for neutrons and focusing lenses for
light?

2. Name a typical neutron focusing lens material.

3. When using neutron focusing lenses, what term of the instrumental resolution variance is
modified? What is the advantage of this?

4. What are chromatic aberrations?
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5. Do reflective optical devices suffer from chromatic aberrations? Name a refractive optics
focusing device.

6. Given the transmission T; of one focusing lens, calculate the transmission T of a 7-lens
system.

7. Using many lens systems, could one build a neutron microscope?

8. What are the two main figures of merit for making a good refractive material to be used
for making neutron lenses?

ANSWERS

1. Focusing lenses for neutrons are concave. Focusing lenses for light are convex. This is due
to the fact that the index of refraction for neutrons is less than one while that for light is
greater than one for most typical focusing materials. This is due to the fact that the scattering
length for most materials is positive. Exceptions include hydrogen which has a negative
scattering length.

2. MgF, is a commonly used neutron focusing lens material.

3. The use of focusing lenses modifies the “sample aperture” term of the resolution variance.
This term becomes much smaller even for larger source apertures. The advantage is a larger
neutron current on sample.

4. Chromatic aberrations correspond to the de-focusing effect for different wavelengths. The
position of the source aperture image changes with wavelength thereby “blurring” the
“image”.

5. There are no chromatic aberrations with refractive optics. Torroidal or elliptical mirrors
are typical refractive optics focusing devices.

6. The transmission of a 7-lens system is given by T7; = T17 where T, is the transmission of
one lens.

7. If one had lenses after the sample, one could obtain magnification using a neutron beam
(neutron microscope). Given the low neutron wavelengths A (compared to light) the focal

length f is very long (f = nR/Npb 2?). Chromatic aberrations, the required long flight paths
and coarse detector resolution give only modest magnification and a fuzzy picture. Note that

the magnification factor can be worked out to be M = where f'is the focal length and

L,
L; is the object (sample in this case)-to-lenses distance. Note that L; = f would yield high
magnification. However, this condition would require that the lenses-to-image distance L4 be
infinite (recall that 1/L, =1/f —1/L, ). This is not realistic.
8. The two figures of merit for refractive materials for making neutron lenses are as follows.
(1) High density p and high coherent scattering length b in order to make the index of

refraction n as small as possible. Recall that 1 -n = g—bkz . Making 1-n large (i.e., n small)
T

reduces the focal distance fsince f = R/2N(1—n) where R is the lens radius and N is the

number of lenses. (2) One would want to minimize the incoherent and absorption scattering

cross sections Z; and X, in order to minimize background and maximize lens transmission.
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Chapter 17 - GRAVITY CORRECTRING PRISMS

Prisms are used to deflect the neutron beam upward thereby correcting for neutron fall due to
gravity at long wavelengths. Prisms contribution to SANS resolution and Qi are discussed
here (Hammouda-Mildner, 2007).

1. NEUTRON TRAJECTORY

The parabolic neutron trajectory equation in the pre-sample collimation follows.

y(z) =B\M'z(L, - 2) 0<z<L (1)
with:
2
B=£2_ 307310 cm A", )
h

The z-direction is along the neutron beam and the y axis is in the vertical direction. L, is the
source-to-sample distance. The vertical component of the neutron trajectory slope y'(z) is

therefore:

y'(z) = B’ (L, —22) 0<z< L 3)
y'(L,)=-BM}L, z=1L,.

This neutron trajectory holds between the sample and detector. The addition of a prism
changes the neutron trajectory by introducing an upward deflection of angle 9.

Figure 1: Schematics of a prism showing the deflected neutron trajectory in the simple case
of minimum deviation.

The slope of the neutron trajectory is changed to
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y'(L,)=-BNL, +8 z=1L,. 4)

The neutron trajectory is therefore changed between the sample and detector to the following
form:

y(z) =-BNM(z—L,)* +[-BA’L, +8](z-L,) L) <z < Li+L,. (%)
y(L, +L,)=-BXL,(L, +L,)+8L, z=L,+L,.

The use of a prism with deflection angle & = BA*(L;+L,) would correct for the gravity effect
exactly.

2. THE PRISM DEFLECTION ANGLE

The “prism equation” (case of minimum deflection where the refracted beam is parallel to
the prism base) relates the deflection angle 9, the prism angle a and the index of refraction n

as:
: [a—Sj
Sin
n=—> 2/ (©)
. o
S| —
)

This is the Snell’s law of refraction (also referred to as the Descartes law). The deflection
angle is expressed as:

=0 —2sin™ {n sin(%ﬂ . (7)

The wavelength dependence of the deflection angle enters through the index of refraction.

not-PPye (8)
2n

For MgF, prisms, pb/mt = 1.632%¥10° A so that n = 1-0.816*10°A% (where A is the neutron
wavelength in A).

In the small deviation angle approximation, one can expand the prism formula with 6<<a to
obtain:

S(0) = (@j tan[%jﬁ —CA2. 9)

T

This is an easier (approximate) expression to use in order to obtain analytical results.
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3. CONTRIBUTION TO THE Q RESOLUTION

The Q resolution at the detector (where z = L;+L;) involves the spatial variance Gyz.

Gyz :lGYZJgeo+<y(Ll +L2)2 >_<Y(L1 +L2)>2 (10)

y(L, +L,)=-BXL,(L, +L,)+8(\)L,. z=L+L,

With the deviation angle given by 8(A) = CA?, where C depends on the prism material and
apex angle the following result is obtained.

0, =lo,’ | HA-L.CPI A > <2 57, (i

Here the gravity variable A = BL,(L;+L;) has been used.

Assuming a triangular wavelength distribution, the wavelength averages are calculated as
follows:

2
[<Af > —< >2]=x‘§(%j . (12)
Therefore:
2( ALY
0, =[o,’] . +[A—L2C]27C‘§(Tj (13)

This is the variance of the neutron spot spatial resolution at the detector in the vertical
direction. By analogy, the case without prisms is obtained for C = 0. The familiar
“geometry” contribution is given in terms of the source aperture radius R;, sample aperture
radius R, and detector cell size Ays.

2 2 2 2 2
L R L +L R A
[G 2] _| 22 Ly ) 2, Y3 (14)
Y Jgeo L, 4 L, 4 12

Since most often Ax; = Ays, [0X2 Joeo =[ cyz Jeeo - The standard deviation of the Q resolution

. . oy 2n
Gqy 1s related to the spatial standard deviation Gy as 6oy = (KL J Gy.
2
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4. CONTRIBUTION TO Qmin

Qmin has contributions from geometry, gravity effect and the addition of a prism.

2 2
Ymin = [Ymin ]geo + |A - L2C| [(7\‘ i AX) 2 (}L AX) ] . (15)
The wavelength term can be expressed (to first order) as:
2 2
[+ A%)> — (- A ];2X2(A_Xj (6
2 A
Therefore:
Y. = th Lt R, + Ays +|A—L2c|2x2[A—7”j. (17)
L, L, 2 A

Note that the same factor |A- L,C| enters in the resolution variance Gy2 and 1 Y min. Qymin 18
obtained by multiplying Ymin by the factor (2r/AL,).

5. MEASUREMENTS WITH GRAVITY CORRECTING PRISMS

A prism cassette containing a row of five prisms is used for neutron optics measurements.
Each prism is made out of single-crystal MgF, and has a base of 3 cm*3 cm and a height of
0.5 cm. In order to correct fully for the effect of gravity, between one and two prism cassettes
would have to be used. Here only one cassette is used for the sake of simplicity.

0.5cm ¢

_—
_—
= _— N

3cm

NV

+«— 3cm —»

Figure 2: Representation of the prism cassette containing a row of 5 MgF, prisms.
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The prism angle is equal to o = 2tan™'(1.5/0.5) = 143.13°. The prism variable is C =
4.896*10° A yielding an estimate for the factor L,C = 6.458 *10~ ¢cm.A™ and for the factor
A - L,C| = 0.00543 cm/A”,

A set of neutron optics measurements have been performed using the following instrument
configuration:

Li=16.14m (18)
L,=13.19m
R;=0.715 cm
R, =0.635 cm
AX3:A}’3:O.5 cm
&20.13.
A

This gives A =0.01189 cm/ A%,

The vertical position of the neutron beam varies with the neutron wavelength I following the
parabola:

y(L, +L,)=(-A+L,C)\’ z=L+L, (19)
When no prisms are used (C = 0), neutrons fall due to gravity. When prisms are used, falling

neutrons are deflected upward. This is plotted as a function of wavelength and compared to

the measured values. The value corresponding to A = 6 A has been subtracted in each case
for simplicity.

182



With Prisms
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Figure 3: Variation of the neutron beam spot positions with wavelength. Statistical error bars
are smaller than the plotting symbols.

The variance of the neutron beam spot at the detector has also been measured in each case
and compared to the calculated value. A figure shows the square root of the difference in the
variances of the beam spot in the orthogonal directions as a function of wavelength. The
measured values are obtained using the same procedure described in previous chapters
(taking horizontal and vertical slice cuts across the neutron beam spot). The prediction for
the case without prisms is also shown. The measured values are seen to be systematically
higher than the calculated ones. This is believed to be caused principally by neutrons leaking
between the apex and the base of adjacent prisms.
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Figure 4: Variation of the variance of the neutron spot at the detector with wavelength.
Statistical error bars have been included. Discrepancy between measured and calculated
values is likely due to neutron leakage between adjacent prisms.

6. PRISMS TRANSMISSION

Consider a prism system containing a row of prisms of width W and height H and assume a
beam defining aperture of radius B.

»
>

2B

“«— W —>
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Figure 5: Transmission through one row of prisms.

The transmission through one row of prisms using a source aperture of diameter 2R, can be
calculated as follows.

2B
Idy exp[-Z,2z]
0

2B

T =

(20)

Here 2z is the path across a prism at a height y. For 0<y<H, it is 2z = (H-y)W/H. The
integration is performed for y covering each prism. When 2B is not a multiple of H, the
result is:

_[2-3exp(—Z,W) + exp(-3Z, W + £, 2BW/H)]
> 2BW/H

T

1)

Note that this expression is for the transmission of one row of prisms. When 2B is a multiple
of H, T is given simply by Ty:

_ M —exp(=£,W)]
" W

(22)

This result assumes that the beam defining aperture is rectangular. The total cross section for
MgF, is estimated empirically as % (cm™) = 0.00513 X (A). A transmission measurement of
the cassette containing two rows of prisms has been made using a sample aperture of 2B =
1.27 cm and a neutron wavelength of A = 17.2 A. The measured transmission was found to
be T = 0.70 while the predicted transmission is T = 0.75. This result is not reliable due to the
neutron streaming in-between the prisms.

7. DISCUSSION

Prisms correct for the neutron fall by deflecting the direct neutron beam back up. They also
correct for the anisotropy of the neutron beam spot on the detector. Gravity deforms this spot
to an oval shape. Prisms correct this shape back to a circular shape. Analytical expressions
for the spatial resolution have been presented. Neutron beam optics measurements using a
prism cassette have been made. Good agreement was found between calculated and
measured beam spot positions. However, no good agreement was found for the instrumental
resolution variance due to neutron leakage between adjacent prisms.

REFERENCE
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QUESTIONS

1. What is the advantage of using prisms in neutron optics?

2. Prisms refract incident white light into what?

3. The use of gravity correcting prisms affects what part of the instrumental resolution
variance?

4. What is the wavelength dependence of the prism deflection angle?

5. What is the prisms minimum deviation approximation?

6. Could a prism system be used for all neutron wavelengths?

ANSWERS

1. Prisms correct for gravity effects. At long wavelengths the effect of neutron fall (due to
gravity) is to lower the neutron beam spot and deform it into an oval shape. The use of
prisms kicks the neutron spot back up and corrects it back to a circular shape.

2. Prisms refract incident white light into the rainbow spectrum.

3. The use of gravity correcting prisms affects the wavelength spread part of the instrumental
resolution variance.

4. The prism deflection angle varies like the square of the wavelength.

5. The prism’s minimum deviation approximation corresponds to the case where the
refracted beam (inside the prism) is parallel to the prism’s base.

6. Since the gravity correction factor (A-L,C) is independent of neutron wavelength A, the
same prism system can be used to correct for gravity at all wavelengths.
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Chapter 18 - NEUTRON BEAM CURRENT

1. VARIATION OF DETECTOR COUNT RATE WITH SPOT SIZE

One important figure of merit relevant to the performance of SANS instruments is the
neutron beam current on sample (i.e., number of neutrons per second reaching the sample
aperture) as measured by the area detector; this is related to the total detector count rate
summed up over the beam spot (Hammouda-Mildner, 2007). Since the detector is a “1/v”
absorber, the beam current is proportional to the count rate/wavelength.

Using the same notation as before, consider the following SANS instrument configuration.

L,=16.14m (1)
L,=13.19m
R;=0.715 cm
R, =0.635 cm
AX3:Ay3:O.5 cm
&ZO.B.
A

Total detector count rates are included here for the 3 cases considered previously: empty
beam configuration, the use of focusing lenses and the use of gravity correcting prisms. A
figure summarizes the variation of the total detector count rate with the minimum neutron
spot size (in the vertical direction) Y i, for each case. Note that Y yin (not Xiin) is what
determines Quin. The beam current depends on the ratio (R;Ro/L;)* which was the same in all
three cases, and also on the neutron source spectrum. Each point corresponds to a different
neutron wavelength (from 6 A to 20 A). No corrections have been made to account for the
area detector efficiency (“1/v’’ absorber) or dead time losses. These effects are strongly
wavelength dependent and are outside of the scope of the present discussion. The main
observation is that increasing the neutron wavelength increases Y (i.€., broadens the
neutron beam) for regular SANS optics but decreases Ymin when focusing lenses are used.
Using prisms corrects for the beam broadening with increasing wavelength.

Using neutron lenses lowers Y min substantially without too much loss in neutron current
whereas using prisms is accompanied by neutron losses because of the prisms’ low neutron
transmission and due to the un-optimized first generation prisms system used here. The
lowest Y in obtained with the lenses (at 17.2 A neutrons) has low detector count rate (1,252
counts per second). Note that the sample aperture radius R, can be increased considerably
without degrading the overall resolution. The use of lenses with a large sample area can
enable a great increase in count rate on sample, with small penalty on resolution. The prisms
used here correct only partially for the effect of gravity. If we had used prisms that correct
“exactly” for the gravity effect, the prisms curve in the figure would have been vertical and
shown no wavelength dependence.
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Figure 1: Variation of the total detector counts rate within the neutron spot with the extent of
the beam size in the vertical direction Ymin. The 3 curves correspond to the 3 cases: (1) empty
beam, (2) with lenses and (3) with prisms. Each data point corresponds to a different neutron
wavelength.

2. VARIATION OF DETECTOR COUNT RATE WITH Qmin

Another slightly modified plot uses QYmin = (27 Y min)/(AL,) instead for the horizontal axis.
Here A is the neutron wavelength, L, is the sample-to-detector distance, Y, is the vertical
size of the neutron spot on the detector. The detector count rate is seen to drop quickly for
lower Qmin. A log-log plot shows no simple power law behavior between the detector count
rate and Quin. Note that this measured detector count rate is not the neutron current since the
detector absorption cross section is proportional to the neutron wavelength (“1/v”” absorber).
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Figure 2: Variation of the detector count rate with QYmin for the same 3 cases.
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QUESTIONS

1. What is the neutron flux? What is the neutron beam current?
2. Why does the neutron beam spot on the detector broaden in the vertical direction when the

wavelength is increased?
3. Why is there a minimum in the variation of the neutron beam current with neutron

wavelength when a focusing lens system is used?
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ANSWERS

1. The neutron flux is the number of neutrons per cm” per second. The neutron beam current
is the number of neutrons per second. The neutron flux is also called the current density.

2. The neutron beam spot on the detector broadens in the vertical direction when the
wavelength is increase due to the larger gravity effect. The neutron fall increases with
wavelength square.

3. When a specific focusing lens system is used, there is a specific “focusing” wavelength
whereby the source image occurs exactly at the detector position. This corresponds to the
smallest focal spot on the detector.
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Chapter 19 - THE SMEARING EFFECT

In analyzing SANS data, smearing of the model function used is necessary before performing
nonlinear least-squares fits. The smearing procedure involves a convolution integral between
the resolution function and the scattering cross section for the scattering model.

1. THE RESOLUTION FUNCTION

Consider a 1D Gaussian resolution function (Barker-Pedersen, 1995):

1/2
] Q.’
- SRS S 1
Pp(Qy) {chxzj exl{ ZGQ,J (1)

This distribution is normalized to 1. [dQ,P,(Q,) =1.

In order to show this normalization, make a variable change to X = Q_” so that
dX =2Q,dQ, and the normalization integral becomes as follows.

1 1/2 X
de P, (Q,) = 2de Pp(Q,)= 2IdX2J—{ J exp{—z%xz}- @)

s 216,

The following integral is used:
jdx—exp[ aX]= \f (for a>0) 3)

This verifies that the Pip(Qx) distribution is normalized. The Qy distribution is similar.

Consider a 2D Gaussian resolution function:

PZD(Q)=PID(QX)P1D(Qy) 4)

1 1
D S D W O B S
- 2nG,, 2n6,, P 26, > 20, ° .
Qx Qy QX Qy

This distribution is also normalized to 1.
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TQdQTdtbPzD Q=1 (5)

In order to show this, make a variable change to R = Q*and dR = 2QdQ so that the
normalization integral becomes as follows.

IQdedd)PZD(Q = fm { lzjexp{_%](%c)—{exp[ w2]+exp(— 02]]1,
o | mo, S, Gq o,

2. THE RESOLUTION CORRECTION

The smeared 1D cross section corresponds to radially averaged SANS data and is given by
the following integral (using polar coordinates):

d2(Q) dx(Q-Q") _
|: dQ :|smeared - Z|). dQ PlD (Q) dQ

+ o0 172 12 '
= | dQ'[ ] exp[— Q 2}dZ(Q_Q)- (7)

2an 204 dQ

The smeared 2D cross section integral corresponds to 2D SANS data and is given by the
following expression:

A2QQ) v o e o dEQ,-QL.Q,-Q))
e = QL By(Q) Q) P (@) -

(8)

Note that (Qx,Qy) are in Cartesian coordinates. In cases where radial averaging of the data is

not possible, the GQXZ and GQy2 variances are needed. Note that the variance

2 2 2 . d
Gy =0 GQy 1S N€vEr used.
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Figure 1: Parametrization in the detector plane.

3. ISO-INTENSITY CONTOUR MAPS WITH GRAVITY EFFECT

Gravity effect on the neutron trajectory distorts the iso-intensity contour maps from
concentric circles to concentric oval shapes. The following parametric equation describes an
elliptical shape:

2 2
LN AT 9)
a~ (a+b)

Here a is the minor (horizontal) axis and a+b is the major (vertical) axis of the elliptical
shape. If we consider different major axes for the top and bottom parts, an oval shape is
obtained.

b = AQ2LAL —sign(y)AA?). (10)

The top and bottom parts have been represented using the sign function. The x and y
coordinates can be expressed as:
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x = 1(¢) cos(¢) (11)
y =1(¢)sin(¢) .

¢ is the azimuthal angle for binning in the detector plane. Combining these equations, one
obtains the following parametric equation:

1
cosz¢+ sin’d
a’  (a+b)’

r’(¢) = (12)

This represents the equal-Q contours for the constant-Q binning. Note that the gravity
contribution is constant (independent of Q) so that the contours are oval at very low Q,
become elliptical at intermediate Q then become circular at high Q.

4. NUMERICAL APPLICATION

Consider the following realistic case:

L;=16.14m (13)
L,=13.19m

A=18A

A—xzo.m

A

A =0.01189 cm/A*
This gives
Amin = 15.66 A, hnax =20.34 A
The following beam spot characteristics are obtained:

Yoin =2.916cm, y, . =4.919cm
y= 3852cm, < y >= 3.863cm
AY pp = Y = ¥ =1.0667 cm
AY i =Y = Ymin = 0.9365cm

Here y is the spot height corresponding to the mean wavelength A and <y > is the vertical

location of the beam center. Note that for any practical purpose y =<y > and the difference
AY op =AY = 0.130 cm is so small that the oval shapes are really elliptical.
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The beam standard deviation in the vertical direction is estimated to be o, =0.409 cm using

both the numerical integration over y and the analytical averaging over A (formula given
above).

y pos k=1 a=0.5 cm

y pos k=5
Contour Plot y-pos k=10

2 71T 7T T y-pos k=15

ypos k=20

1 D SR S A DU SR W T N .
S o
> Lt eSS
4 N N NG o
-8
-12 ‘ ‘ ‘ ! | |
12 8 -4 0 4 8 12
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Figure 2: Iso-intensity contour map when neutrons are under the influence of gravity; i.e., at
long wavelength (A = 18 A) and typical wavelength spread (%Z 13 %). Contours

correspondingtoa=0.5cmand k=1, 5, 10, 15 and 20 are shown. The x and y axes are in
channel numbers (each detector channel corresponds to 0.5 cm).

5. SMEARING FOR HARD SPHERES

Consider idealized scattering from hard spheres and compare it to the smeared case. The
form factor for a hard sphere of radius R = 50 A is given by the following function:

195



3 )\ sin(QR) cos(QR) ’
P(Q) = - 14
Q HQRJ{ (QR)* QR H (14

Consider the following high-Q configuration:

Ri=2.5cm (15)
R, =0.5cm
AX3: A}’3: 0.5 cm
L1 =15m
L2 =1.5m
L=6A
A 150
A

The direct beam spatial resolution on the detector plane is:

o’ =1.83 cm’ (16)
o, =1.83 cm’.

The variance of the Q resolution is:

Go =8.94%107 +0.0037Q,” (in units of A”) (17)
Go,” =8.94*%107 +0.0037Q,” (in units of A”?).

The wavelength spread contribution dominates for this high-Q configuration. The gravity
contribution is negligible for the 6 A wavelength.

For this high-Q configuration,

QuinX = Quin” = 0.028 A", (18)
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Figure 3: Plot of the form factor for a sphere of radius R = 50 A before and after smearing
produced by the high-Q configuration.
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Figure 4: Variation of the standard deviation of the Q resolution vs Q.

Consider the following low-Q instrument configuration and spheres of radius R = 500 A.

Ri=2.5cm (19)
R,=0.5cm

AX}ZA}’3:O.5 cm

L1: 15m

L2: 15m

A=12A

150,
A

Therefore:

A=0.0138 cr/A? (20)
o =1.83 cm?
c,” = 1.83 cm’

So that:

Gor. =223*%107 +0.0037Q,” (in units of A?) 1)
o, =2.31%107 +0.0037Q,” (in units of A”).
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The first term is slightly different for 6ox and 6y because of the small gravity contribution.
For this configuration, the geometry part dominates at low-Q, the wavelength-spread part
contributes at higher Q, and the gravity term is small.

For this low-Q configuration,

Quminx =0.0014 A™, (22)
Qmin® =0.0016 A"

smeared_sphere_r=500a
1 I I I

0.1 -
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0.001 -

0.0001 -

Model Form Factor

10° - unsmeared
smeared

10-7 | | |
0 0.005 0.01 0.015 0.02

-1
Q(A™)
Figure 5: Plot of the form factor for a sphere of radius R = 500 A before and after smearing
produced by the low-Q configuration.
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Figure 6: Plot of the standard deviation of the Q resolution for both the low-Q and the high-Q
configurations. The values of Qi are also indicated.

6. SANS FROM SILICA PARTICLES
SANS data have been taken from a dilute solution of monodisperse silica particles in D,O

(volume fraction of 0.1 %) and fit to the sphere model. Fit results gave a sphere radius of R =
563.51 £ 0.45 A. SANS data were taken using a low-Q instrument configuration.
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Figure 7: SANS data from a dilute solution of monodisperse silica particles in D,O along
with the fit to the sphere model.
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QUESTIONS

1. What are the two ways of accounting for instrumental resolution?

2. Is it OK to perform a 1D smearing convolution integral on 2D SANS data?

3. What is the effect of instrumental smearing on the radius of gyration obtained from a

Guinier fit?
4. What are the two ways of correcting for the effect of gravity?
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ANSWERS

1. Instrumental resolution is included either (1) by smearing of the model used to fit the data
or (2) by desmearing the data through an iterative process. Method (1) is the most reliable
and the most used. Method (2) does not work well when sharp peaks appear in the data.

2. It is OK to perform a 1D smearing convolution integral if the 2D SANS data are
azimuthally symmetric (scattering is isotropic).

3. Instrumental resolution tends to broaden peaks. The Guinier region is the tail of a peak at
Q = 0. Broadening implies a lower slope and therefore a lower radius of gyration. The
smeared radius of gyration is lower than the real value.

4. Gravity correction can be made (1) through a software method by defining constant-Q
elliptical bins or (2) through a hardware method using gravity-correcting prisms.
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Chapter 20 - SANS DATA CORRECTIONS

The 2D SANS data undergo a number of corrections during the data reduction process. Some
of these corrections are described here (Berk-Glinka, 1985; Krueger-Hammouda, 1993).

1. THE SOLID ANGLE CORRECTION
The scattering geometry is represented by an Ewald sphere in general terms. For SANS,
scattering angles are small and the detector is planar. This brings about a solid angle

correction performed early on in the data reduction process.

The corrected macroscopic scattering cross section is related to the measured one by:

(&) (&) "
dQ' corrected dQ measured dQ’ .

The ratio of the two (corrected and measured) solid angles is expressed as:

0 _Ar_ A @
Q' 2 A" A'r?

Here A and A’ are the solid angle base areas on the sphere and on the detector plane
respectively and r and 1’ are the magnitudes of the vectors subtending these bases. These
ratios can be calculated by inspecting the scattering geometry involved. The bottom part of
the figure (which is a projection onto the vertical scattering plane) shows that

12
% — cos¥(0) and % — cos(0). 3)

Therefore, the solid angle correction factor is:

s
1o cos (0). 4)

This correction is performed as the first manipulation of the 2D data.
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Figure 1: Schematic representation of the scattering geometry. The bottom part represents a
projection onto the vertical scattering plane. The scales are grossly exaggerated. The
horizontal scale is of order meters while the vertical scale is of order centimeters.

2. THE JACOBIAN CORRECTION

Some SANS instruments use neutron area detector that use the delay line method. This
method uses only two detection (anode) wires that wind their way horizontally for y and
vertically for x. The advantage of this method is that it uses only 4 signals (2 for x and 2 for
y) from the detector. The time difference between the two x signals determines the position
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of the detection event. One disadvantage is the low count rate saturation level.

Pre-amnlifier |

y-detection |
wire |

_< |

x-detection
wire

Figure 2: Schematic representation of a delay line detector showing only 16 wire portions. A
more realistic detector contains 64 wire for x and 64 wires for y.

This type of area detector introduces a systematic distortion of the detection event
coordinates due to the nonlinearity of the process. The coordinate of a detected event x in
channel number space corresponds to a coordinate x’ in real position space. This nonlinear
mapping corresponds to the transformation:

x’ = B tan(x/B). (5)

Here B is the nonlinearity detector constant in x. The x-dependence of the scattering cross
section dX(x)/dQ obeys the following conservation relation:

d=(0)  _dE(x) o

6
10 (6)
The cross section in real position space is therefore given by:
dZ(x") _ dZ(x) cos?[ X1 )
dQ dQ B

Here the Jacobian of the (x,x’) transformation has been obtained from the following
derivative:
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dx o X
@—cos (Bj (8)

This correction is made on the 2D SANS data. The detector nonlinearity constants B for x
and C for y are measured using the cadmium mask method. This method consists in using a
large cadmium mask with equally spaced holes right in front of the detector. The measured
(distorted) positions and the equally spaced (known) positions are then used to obtain the
nonlinearity constants.

In practice, most SANS instruments nowadays use area detectors that are based on the
coincidence method with grids of wires for x and y positioning. These detector types are not
hampered by the described distortion and therefore do not require any Jacobian correction.

3. ABSOLUTE INTENSITY

SANS data are rescaled to form a macroscopic scattering cross section (units of cm™). This
rescaling involves a measurement from the scattering sample I3(Q) and a measurement from
the empty beam transmission Ip(A) which is the incident neutron beam current. Here A is the
neutron wavelength. The measured SANS scattered intensity can be expressed as:

1(Q) =Io(») T d % AQ. )
Ip(A) is given by:

To(W) = d(h) Ay e(M) L. (10)
Here:

®(1) is the neutron flux on sample,

A is the illuminated sample area,

T(M) is the sample transmission,

d is the sample thickness,

dZ(Q)/d€2 is the macroscopic scattering cross section,

AQ) is the solid angle that subtends a detector cell,

€(A) 1s the detector efficiency for the neutron wavelength used

t is the effective counting time normalized to a fixed number of monitor counts

(10% cps).

I(Q) is the number of neutrons detected in a unit detector cell in time t. The scattering cross
section can be measured as the ratio:

Q) _ L

. (11)
dQ  I,(M)TAQ
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Io(A) is measured as an empty beam transmission run and I3(Q) is the usual SANS scattering
run. This absolute intensity rescaling is performed on the 2D SANS data.

Note that when the small-angle approximation is not valid, there are angular corrections to
the detector efficiency &(A,0) and to the sample transmission T(A,0) (here 0 is the scattering
angle). Correction to the detector efficiency is taken care of by measuring the sensitivity
correction sample (either water or plexiglass) placed in the same stringent angular condition
as the sample.

For finite scattering angles, the transmission angular correction involves the following
integral:

Idz exp(—ZTz)%exp(— PO %} (12)

_dX(Q) B d \ B z
T exp( pos —cos(G)JgdZ exp(—X+z) exp(ZT cos(@)]'

Some of the angular correction to the transmission is containing in the second term and is
due to the longer neutron path inside the sample at large scattering angles. The remaining
correction is taken into account by the integral. The following result is obtained:

dx(Q)
o P

(13)

szexp(_z 2 (—z (d—z)j _d5(Q) [, (=T

Tcos(0) ) dQ (zda

Here T =exp(—Z,d) is the regular sample transmission given in terms of the macroscopic

(total) scattering cross section Xt and a = ( - 1] is the angular correction factor. This

cos(0)
angular correction is performed at the stage of radially averaging the SANS data.
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Figure 3: Geometry of the angular dependence of the sample transmission when the
scattering angle is not small.

4. DEAD TIME CORRECTION

Processing of the detector signal takes a finite amount of time. The neutron area detector
time response constant T was measured and found to be between 3 and 5 psec. The
“measured” count rate Ny; and the “true” count rate Nt are related by the following relation:

Nt = (14)

1-N,t

This assume a non-paralyzable detector response; i.e., that the detector keeps on counting
even when it is processing signals.

This dead time detector correction could be performed at any stage of the data reduction
process (Brulet et al, 2007). It depends solely on the total detector count rate Ny;.

5. INCOHERENT SCATTERING SAMPLE

In order to subtract incoherent scattering from hydrogen (mostly), an incoherent scattering
sample is often prepared and measured for each sample measured. The incoherent scattering
sample contains the same number density of hydrogen atoms. It could consist of a mixture of
H,0 and D,0 that would reproduce the level of flat (mostly incoherent) SANS scattering
from aqueous solutions. It could also consist of pure hydrogenated polymers that would
reproduce the incoherent level in mixtures of deuterated and non-deuterated polymer blends.
Subtraction of the scattering from the incoherent scattering sample is best performed on the
2D data just in case there is anisotropy in the data. Actually, some prefer to consider the
incoherent scattering run as their “empty” run; it replaces the empty cell run. Another
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alternative is to estimate the incoherent scattering level as a Q-independent constant in the
nonlinear least squares fitting methods.
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QUESTIONS

1. What is the origin of the solid angle correction?

2. What is the absolute scattering cross section?

3. Why is the scaling to an absolute cross section necessary?

4. What is the difference between a delay line detector and a coincidence detector?

5. Why is it important to perform the various corrections on the 2D data (before radial
averaging)?

ANSWERS

1. The solid angle correction is due to the fact that scattering occurs on the Ewald sphere
whereas SANS area detectors are flat.

2. The absolute cross section is the macroscopic scattering cross section dX(Q)/dQ (units of
cm™). It is related to the microscopic scattering cross section do(Q)/dQ (units of barns) by
the number density of the scattering objects (N/V).

3. When the SANS data are reduced to an absolute cross section, the number density of the
scattering objects can be obtained. For example, if the scattering objects are aggregates, one
could obtain the number of molecules per aggregate.

4. A delay line detector uses one wire for x and one wire for y detection. These wires wind
their way to form a grid.

5. It is important to perform the various corrections on the 2D data (before radial averaging)
so as to preserve any scattering anisotropy in the data.
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Chapter 21 - SANS DATA REDUCTION

The SANS data reduction procedures used at the NIST Center for neutron research are
described here after a brief summary of the data acquisition process (Krueger-Hammouda,
1993; Kline, 2006).

1. INSTRUMENT CONFIGURATIONS

Every SANS experiment begins with the choice of one (or more) instrument configurations
to be measured. Decisions are made based on the characteristic features of the investigated
system (characteristic sizes and scattering level). A program is used to “simulate”
configurations by choosing a neutron wavelength and wavelength spread, source and sample
aperture sizes, source-to-sample and sample-to-detector distances. The Q range, neutron
beam current and beamstop size are obtained for each configuration.

The following high-Q configuration was obtained from the SASCALC program for the NG3
SANS instrument.

Input:
Neutron Wavelength: 1. = 6.0 A
Wavelength spread: AA/A =0.15 (FWHM)
Detector Offset: 25 cm
Source aperture diameter: D; = 5.0 cm
Sample Aperture diameter: D, = 1.27 cm
Source aperture to sample aperture distance: L; = 537 cm
Sample-to-detector distance: L, = 133 cm

Output:
Total Quin = 0.0179 A™
Total Quax = 0.4742 A”', Horizontal Qpay = 0.4211 A™', Vertical Quax = 0.2467 A™!
Beam diameter: 2.39 cm, Beamstop diameter: 2.54 cm, Umbra/Penumbra: 0.414
Attenuator transmission: 0.0003 (Attenuator number 8 for transmission runs.)
Neutron beam current at the sample: 7.5543*10° counts/sec

2. SANS DATA ACQUISITION

The data acquisition software package consists of a set of menus and tables within a
graphical user interface. The main menu contains “single run” and “multiple runs” modes as
well as a “manual operations” mode. This last mode contains all aspects of hardware control.

Typically two to three configurations are chosen and saved as templates at the beginning of

every new set of measurements (i.e., for every new user group). A set of SANS
measurements includes scattering runs and transmission runs from every sample as well as
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from the empty cell. Transmission runs are performed by attenuating the beam and moving
the beamstop out. Note that the transmission measurements depend on neutron wavelength
but are independent of collimation parameters. When the same wavelength is chosen for the
low-Q and the high-Q configurations, only one transmission run is needed. A scattering run
is taken for the blocked beam background measurement. The neutron beam is blocked using
a neutron absorber (lithiated compounds are preferred because they do not produce gammas).

Every run is taken for a fixed amount of time. The total measurement time is divided into a
number of prefactors. This allows the recording of the beam monitor and total detector
counts for each prefactor. A change of the total detector counts points to changes occurring
in the sample. A change in the beam monitor counts points to changes in the neutron source.
A transmission run is also taken from the empty beam for every instrument configuration.
This run measures the neutron beam current and is used to scale the scattering intensity to an
absolute cross section (unit of cm™). This run replaces the use of a secondary standard
sample. Scattering from a flat hydrogen-containing scatterer (such as water or plexiglass) is
taken on a regular basis by the instrument staff and made available to users to correct for
slight difference in detector cell efficiency. The data acquisition sequence is programmed
into a series of runs that are performed automatically. Stepping among the samples as well as
varying sample environment conditions (such as temperature) is also programmed. Real time
imaging of the data is helpful in monitoring the data acquisition process.

The SANS data files are in the binary format. The data header (256 bytes) contains all
instrumental parameters along with sample information (label, thickness, etc). The main data
part consists of 16,384 values (= 14-bit) comprising data from 128*128 detector cells.
Historically, binary SANS data have been compressed to keep file sizes small.

3. THE SANS DATA CORRECTION STEPS

Calculation of the various sample (and empty cell) transmissions is performed. This is
performed through linking of the various transmission runs and the empty beam transmission
run. The calculated transmissions are then used in the data reduction protocol.

SANS raw data files are loaded into “work files” and normalized to a fixed (= 10*) number
of monitor counts. The empty cell and blocked beam runs are subtracted and rescaled
following a specific recipe:

IS(Q): (IHC(TQ)_Ib)_(IC((QT)_Ib)' (1)

s+C C

L+¢(Q) is the scattering run from the sample + cell, I,(Q) is the scattering from the empty cell,
Iy is the scattering with beam blocked, Ts is the transmission for the sample inside the cell
and T, is the empty cell transmission. Note that T = Ts. Te.

Using the neutron beam counts (empty beam transmission) Io(A), the scattering intensity is
scaled to an absolute cross section (units of cm™) as:
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Q) _  L(Q
dQ  I,(MTdAQ"

2)

T, d and AQ are the sample transmission and thickness and the solid angle subtending one
detector cell. SANS data in peripheral detector cells and those close to the beamstop are
masked out in order to keep only the reliable data. Then the 2D corrected and scaled data are
radially averaged to produce 1D data. Circular binning is the norm for isotropic scattering.
Sector or rectangular averaging is used for scattering with anisotropic features.
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Figure 1: Typical SANS data image. Radial averaging consists in forming circular bins in
which data are summed up.
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Figure 2: Typical SANS data from an anisotropic scatterer (collagen from kangaroo tail
tendon). Sector averaging is performed on this asymmetric data.

The radially averaged data format contains the following columns:

Qa dZ(Q)/dQ’ O1, <Q>> Gq, BS (3)
o is the statistical uncertainty on the scattering intensity, <Q> is the average Q over the
neutron beam spot, cq is the standard deviation of the Q resolution function, and BS is the
beam shadowing factor which is equal to zero for cells under the beamstop and to one for
cells far from it.
The last step in the data reduction process consists in merging data taken from the two (or
three) instrument configurations together into one combined data file.
4. TYPICAL REDUCED SANS DATA
Typical SANS data taken from 4 % poly(ethylene oxide) of molecular weight M,, = 42,900

g/mol in deuterated ethanol are shown. First, data taken using a high-Q configuration data are
shown.
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Figure 1: Reduced SANS data taken with a high-Q configuration.

Then data taken using both a low-Q and a high-Q configuration are plotted together.
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Figure 2: Reduced SANS data taken with a low-Q and the high-Q configurations spliced
together.

This figure shows scattering from a large lamellar structure (at low-Q) and local crystalline
ordering (at high-Q).
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QUESTIONS

1. What are the required runs for a complete set of SANS measurements?

2. What are the main steps in the SANS data reduction process?

3. Is there any information about the instrumental resolution in the averaged 1D data file?
4. What type of radial averaging is required for anisotropic scattering?

5. What produces the blocked beam background?
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ANSWERS

1. In order to obtain a complete set of SANS measurements the required runs are:
transmission and scattering from the sample, transmission and scattering from the empty cell,
scattering run from the blocked beam, transmission run from the empty beam and the
detector sensitivity run from plexiglass.

2. The data reduction process involves the following steps: calculating the various
transmissions, subtracting the empty cell and blocked beam, rescaling the 2D data to an
absolute cross section, masking the unwanted detector cells, and radially averaging to obtain
1D data. Merging (“sorting”) of data from multiple configurations is also performed.

3. The averaged 1D data file contains the standard deviation of the Q resolution function Gg
in the 5™ data column.

4. Anisotropic scattering yields asymmetric (oriented) 2D data. It requires either sector or
rectangular averaging.

5. The blocked beam background is produced by electronics noise on the detector electronics
and stray neutrons outside of the neutron beam collimation.
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Chapter 22 - STANDARD PLOTS

The first tool used to understand SANS data consists of a set of standard plots that yield
results right after data reduction. These are linear plots of functions of the scattered intensity
I(Q) plotted against functions of the scattering variable Q. Note that the absolute intensity
I(Q) is a short hand notation for the macroscopic scattering cross section dX(Q)/dQ.

1. THE GUINIER PLOT

The Guinier plot involves plotting Ln[I(Q)] VS Q2 (Ln refers to natural logarithm) in order to
obtain the slope R g2 / 3 (Rg is the radius of gyration of the scattering objects). The expansion

1s as follows:

2R 2
1Q-=1, exp[—Q - J ()

Lafi(Q)] Laft, |- L Re

The radius of gyration represents the effective size of the scattering "particle" whether it is a
polymer chain, part of a protein, a micelle, or a domain in a multiphase system. The
usefulness of this plot stems from the fact that the obtained particle “size” Rg is independent

of the absolute intensity [, and of any model. Instrumental smearing as well as polydispersity

and multiple scattering appear to decrease the effective R,. Inter-particle effects also
contribute to R, except at the infinite dilution limit (case of an isolated particle).

Consider the Guinier plot for a solution of Pluronic P85 in D,0. Pluronics are triblock
copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-
PPO-PEO. At low temperature, both PEO and PPO dissolve in water so that SANS observes
isolated polymer chains. This is the case for 20 °C. The radius of gyration obtained from the
Guinier plot gives an estimate of polymer chain dimension. A Guinier plot is shown for 10 %
(g/g) P85 in D,O measured at 20 °C.
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Figure 1: Guinier plot for SANS data taken from 10 % (g/g) P85 Pluronic in D,0 at 20 °C.
The slope of the Guiner plot is Rg2/3.

Note that at higher temperatures, PPO does not dissolve in water so that P85 forms micelles
with PPO forming the core and PEO forming an outside shell. An inter-particle peak forms
and the Guinier plot can no longer be used. Other methods used to analyze such SANS data
will be described later.

Another example of a Guinier plot is for SANS data from a solution of PAMAM dendrimers
formed of seven generations and dissolved in D,O. The dendrimer fraction (g/g) is varied in
the dilute solution range. No acid or salt has been added. The apparent radius of gyration is
seen to decrease with dendrimer fraction.
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Figure 2: Guinier plot for SANS data taken from seventh-generation PAMAM dendrimers in
D,0O. The dendrimer fraction is varied.

The range of a Guinier plot corresponds to QR < /3 . This is obtained when the probed
range (21/Q) is larger than the particle size.

g

Guinigrregion

Guinie regiot>

Figure 3: Scattering particles are smaller than the probed range in the Guinier region shown
for isolated particles and for single polymer coils.
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2. THE POROD LAW

Consider the case of an infinitely dilute solution of spheres of radius R and smooth surfaces.
The scattering intensity is given by:

HQ)=(§JAﬁVfF7QR) 5

The standard characteristic parameters have been defined as: (N/V) is the spheres number
density, Ap” is the contrast factor, Vp is the sphere volume and F(QR) is the single-sphere
form factor amplitude given as follows:

F(QR) =

3j,(QR) _ 3 (sin(QR) ~ cos(QR)J. 3)

QR QR| (QR)>  QR)

Note that the single-sphere form factor P(QR) = F(QR) is also defined as:

P(QR) = [d’rexp[-iQ.] P(F) = Vlofdmﬁrz sin@Q0) oy @
PO QI‘

Here the pair correlation function P(T) has been defined. The pair correlation function P(r)
is the probability of finding a scatterer at a vector distance 1 inside the sphere knowing that
there is another scatterer at the origin. y(r) is the equivalent 1D probability distribution
defined radially. Consider a sphere of radius R and a scatterer located at a radial distance r’
from the sphere origin. Draw another sphere of radius r. y(r) represents the relative fraction
of area of the second sphere located inside the large sphere integrated over all possible
locations. Defining that relative fraction as p(r,r’), the following two cases can be considered:

p(r,r’) =1 R-r>r %)

2 2 12
p(r,r')=%+l{—R d r} Rer < 1,

4 rr'

The radial pair correlation function for a sphere is therefore (Stein et al, 1963):

RA
.[dr'4nr‘2 p(r,1')

! _U3(x) a(xY
V=" = 4[Rj+16[Rj ' (©)
Idr'4nr'2
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Figure 4: Representation of the geometry used to calculate the radial pair correlation function
for a sphere.

The pair correlation function y(r) is the 3D Fourier transform of the single particle scattering
factor P(Q). The 1D sine Fourier transform of P(Q) is ry(r).
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Figure 5: Plot of the pair correlation function y(r), of r*y(r) and of ry(r).

Using this form, P(QR) can be expressed as follows:
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L g SQ0) 3(r) (Y
P(QR)—VP.([dr4nr o {1 4[Rj+16(R”. (7)

Note that this is the well known form factor for a sphere P(QR) = [3j;(QR)/QR]* introduced
earlier. The interest here is in the high-Q expansion. The highest order in this expansion is
obtained by integrating by parts three times:

P(QR)~ -

4n2y'0) S, 3 3 (8,1
VP

— = —. 8
vV, Q*  V,R?2Q‘R 2R’ Q* ®)

(Sp/Vp) is the surface to volume ratio. This is the so-called Porod law.

The scattering intensity can simply be expressed as I(Q) = A/Q*+ B where B is the constant
(mostly incoherent) scattering background.

3. THE POROD PLOT

The Porod region corresponds to a probed range smaller than the scattering objects so that
the scattering radiation is probing the local structure. The Porod plot Log(I) vs Log(Q) (Log
is base-10 logarithm) yields information about the so-called "fractal dimension" of the
scattering objects. At high-Q, one can approximate:

I(Q)=%+B or LoglI(Q)-B]=Log(A)-nLog(Q).  (9)

A Porod slope n =1 is obtained for scattering from rigid rods; a slope n = 4 represents a
smooth surface for the scattering particle; whereas a slope n between 3 and 4 characterizes
rough interfaces of fractal dimension D with n = 6-D. This is called a surface fractal.

Moreover, in the case of polymer coils, the Porod slope n is related to the excluded volume
parameter v as its inverse n = 1/v. A slope n =2 is a signature of Gaussian chains in a dilute
environment, a slope n = 5/3 is for fully swollen coils and a slope n = 3 is for collapsed
polymer coils. A slope between 2 and 3 is for “mass fractals” such as branched systems
(gels) or networks.

An example of a Porod plot is shown for SANS data from a 4 % (g/g) solution of salmon
DNA in d-ethyelene glycol) at a temperature of 50 °C. At this temperature, the helical
structure has melted into coil conformation.1 M NaCl salt has been added in order to screen
charge interactions. The slope of the Porod plot of n = 1.76 is close to the value n =5/3 =
1.667 which is a signature for fully swollen coils.
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Figure 6: Porod plot for SANS data taken from 4 % (g/g) DNA coils in d-ethylene glycol at
50 °C (above the helix-to-coil transition temperature). 0.1 M NaCl was added to screen
charge interactions.
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Figure 7: Assortment of Porod law behaviors for different shape objects.

4. THE ZIMM PLOT

Another well known plot is the Zimm plot (1/I vs Qz) which found wide use in light
scattering from dilute polymer solutions where extrapolation to zero Q and zero
concentration yields the molecular weight, the radius of gyration and the second virial

coefficient. The Zimm plot is also useful in polymer blends (in the single-phase region)
where the slope is proportional to the correlation length, which is proportional to the Flory-

Huggins interaction parameter (incompressible RPA model) to be described later.

Assume a Lorentzian form for the Q-dependence of the scattering intensity:

I,

I(Q)Zm-

226

(10)




Here € is the correlation length. A plot of 1/I(Q) vs Q2 yields 1/1, as intercept and &2/10 as

12
slope. The correlation length is obtained as & = (slope/intercept) . In the low-Q region, one
can also expand:

L, [, QR/
I(Q)—Q—ZR;—IO[I 8 +] (11)

[+ ——&
3

Therefore yielding E=R, / 3 for low-Q. The Zimm plot applies, however, beyond the low-

Q region. In the high-Q region where Q2§2<1, one can approximate:

Qe

12
Q 1, (2

In this region, the single polymer chain form factor behaves as 2/Q2Rg2 (high-Q expansion of

the Debye function) so that E=R, / 2 is identified for high-Q. In the case of polymer
solutions with excluded volume interactions, the high-Q expansion is, instead:

2

I =1 .
(Q) 0 QRg 1/v

(13)

Here v is the excluded volume exponent (v = 3/5 for fully swollen chains, v = 1/2 for theta
chains and v = 1/3 for collapsed chains).

Low-Q departure from linear behavior of the Zimm plot is a signature of non-homogeneity in
the sample or of chain-branching. A negative value of the intercept Iy (obtained through
extrapolation) is a sign of phase separation.

An example of a Zimm plot is shown for SANS data taken from a blend mixture of
poly(ethyl butylene) and deuterated poly(methyl butylene); i.e., hPEB/dPMB. The molecular
weights for hPEB/dPMB are M,, = 40,100 g/mol and 88,400 g/mol respectively. The volume
fraction of the represented sample corresponds to 57 % hPEB. This blend mixture was
measured at a temperature of 10 °C. The Zimm plot is linear pointing to Gaussian chains.
The slope yields an apparent radius of gyration which depends on the polymer/polymer
interaction parameter. These issues will be described in detail when the Random Phase
Approximation (RPA) model is introduced.
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Figure 8: Zimm plot for a polymer blend mixture of hPEB and dPMB with My, = 40,100
g/mol, and 88,400 g/mol respectively. The hPEB fraction is 57 % (g/g) and the measurement
temperature is 10 °C (single-phase region).

A more detailed Zimm plot is for SANS data from a polymer blend mixture of deuterated
polystyrene and poly(vinyl methyl ether); i.e., dPS/PVME (Briber et al, 1994). Four dilute
dPS volume fractions were measured at a temperature of 140 °C. The dPS/PVME blend
system is characterized by a Lower Critical Spinodal temperature (LCST) and 140 °C
corresponds to the single-phase region. Extrapolation to zero volume fraction yields a slope
and intercept which give the degree of polymerization for polystyrene and the radius of
gyration respectively.
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Figure 9: Zimm plot for a deuterated polystyrene/polyvinylmethylether blend (M =

1.88%* 105 g/mol and 3.98*105 g/mol respectively) mixture for four dilute polystyrene volume
fractions of ¢paps =1 %, 1.8 %, 3.8 % and 5.4 % at a temperature of 140 °C.

5. THE KRATKY PLOT

Kratky plots emphasize deviation from the high-Q behavior of the scattering intensity I(Q).
2
For polymer chains, the Kratky plot (Q I(Q) vs Q) emphasizes the Gaussian chain nature or

2
departure from it. Since the form factor for Gaussian chains varies like [(Q) ~ 1/Q at high-Q,
this plot tends to a horizontal asymptote. Inter-chain contributions affect only the constant

multiplying this term and not the 1/Q scaling behavior. Deviation from a horizontal
asymptotic behavior indicates a non-Gaussian characteristic for the scattering chains.

For instance, for rigid rods this plot would go to a linearly increasing asymptote Q21 =A+
BQ because the form factor for a rod varies like I(Q) ~ 1/Q at high Q and one has to use a
more suitable Kratky plot for a rod (QI vs Q) in order to recover the horizontal asymptote. In
order to illustrate this in simple terms, three functions that die out differently at high Q are
considered. These three cases are (1) for rigid rods where 1(x) = Ip/(1+x), (2) for Gaussian
chains where I(x) = Io/(1+x%), and (3) for branched systems (or mass fractals) where I(x) =
Io/(1+x%). Here x is the dimensionless variable x = Q& where & is a characteristic length

229



(radius of gyration or correlation length). These functions reproduce the proper low x and
high x limits.
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Figure 10: Symbolic representation of the Kratky plot for the three cases of a rigid rod, a
Gaussian chain and a mass fractal.

Gaussian chains tend to the Kratky plot limit of 1. Stiff chains (for example rigid rods)
increase linearly at high x and branched systems (mass fractals) reach a maximum then
decrease as 1/x at high x.

An example of a Kratky plot is shown for SANS data taken from an isotopic blend mixture
of deuterated polystyrene with non-deuterated polystyrene, i.e., dPS/hPS with My, = 174,000
g/mol and 195,000 g/mol respectively at 50 % fraction (g/g) and measured at ambient
temperature. This plot represents the Gaussian nature of polymer chains in isotopic blends
and tends to the asymptote of 1 at high Q.

230



dPS/hPS

[ [
1

0.8 _
_O
S
x

0.6 -
O

04 - —

02 | | | | | |

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-1
Q (A7)

Figure 11: Kratky plot for an isotopic blend mixture of dPS and hPS with M, = 174,000
g/mol and 195,000 g/mol, 50 % fraction (g/g) measured at ambient temperature. The line is a
smoothing fit as a guide to the eye.

Another Kratky plot is shown for a seventh generation PAMAM dendrimer in D,O. SANS
data were taken from a series of dilute solutions and extrapolated to the infinite dilution limit
(Hammouda, 1992). Measurements were taken at ambient temperature. This plot represents
the branched character of this scattering system. It has not been rescaled at high Q.
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Figure 12: Kratky plot for seventh generation PAMAM dendrimer solution in D,O
extrapolated to the infinite dilution limit (zero concentration). The Katky plot reaches a
maximum then tends to a constant level at high Q.

The manner in which the asymptote of a Kratky plot is reached yields information about
2 2 2 2
chain branching. For instance, in a plot of Q I vs 1/Q (Q I = A + B/Q ) the intercept B is

related to the crosslink density in branched gels and networks (Benoit et al, 1993).
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QUESTIONS

1. What is a Guinier Plot? What can be obtained from it? What can be obtained from the
intercept?

2. Do scattering inhomogeneities have to be spherical for a radius of gyration to be defined
and measured through a Guinier plot?

3. What information could be obtained using a Porod plot for smooth interfaces?

4. How does polydispersity and instrumental smearing affect the Guinier plot and the Porod
plot?

5. Consider the pair correlation function for a sphere of radius Ry, given by:

3
3(r 1 r
r)=1-—| — |+—| — | . Explain the limit g(=2RA) = 0.
Y1) 4(Rj 16[RJ p g(—=2R»)

6. A Zimm plot is linear for what scattering objects?
7. What information can be obtained from a Kratky plot?

ANSWERS

1. A Guinier plot is a plot of Ln(I) vs Q. The radius of gyration (Rg) can be obtained from
the slope of a Guinier plot (slope = Rg2/3). The intercept of a Guinier plot is I(0) which can
yield the aggregation number which is the number of basic scattering units per scattering
“particle”. A scattering unit could be a monomer and a scattering particle could be a
polymer.

2. The Guinier plot Ln(I) vs Q> measures a radius of gyration from any shape objects. These
do not have to be globular.

3. The Porod plot Log(I) vs Log(Q) for scattering objects with smooth interfaces yields an
exponent from the slope and a surface-to-volume ratio from the intercept.

4. Polydispersity and instrumental smearing yield broader forward scattering peaks and
therefore a lower radius of gyration from the Guinier plot. These, however, do not affect the
Porod exponent which remains unchanged.

5. Consider a scatterer inside a sphere of radius R4 and draw another sphere of radius r.
Choosing the first scatterer on the surface of the sphere and choosing a second sphere of
radius r = R4 covers the maximum correlation range of 2R,. Beyond that range, scatterers
are not correlated.

6. A Zimm plot 1/Log(I) vs Q is linear for Gaussian polymer coils.

7. A Kratky plot Log(Qzl) vs Q saturates to a constant level at high-Q for flexible polymer
coils but increase linearly for rigid rods. The break between the constant and the linear
behaviors yields an estimate of the so-called persistence length which is a measure of chain
stiffness.
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Chapter 23 - EMPIRICAL MODELS

Standard plots give the first order interpretation of SANS data. Precise models give a more
detailed approach at obtaining results. Precise molecular models are however not always
available or too complex to use. An intermediate approach consists in using empirical models
that reproduce the main trends observed in the SANS data. Some of these models are
described here.

1. THE CORRELATION LENGTH MODEL

Oftentimes when the scattering intensity I(Q) is a decreasing function with Q, it is modeled
using the following functional form:

C

I(Q=————+B. 1

Q) Qo) (D
Here C and B are (Q-independent) constants obtained for [(Q—0) = C + B and [(Q§—>x) =
B, € is a correlation length and m is a Porod exponent. Note that when m = 2, this functional
form becomes the familiar Lorentzian function. The Fourier transform of a Lorentzian
function corresponds to correlations dying out as exp(-1/€)/r. The correlation length & is large
for systems that are highly correlated like polymers and gels. For example, § is equal to the
entanglement distance for a semi-dilute polymer solution and it is equal to the end-to-end
distance for very dilute polymers. Note that the low-Q limit of this empirical form
reproduces the Guinier law only when m = 2.

A figure shows SANS data from 4 % (g/g) solution of poly(ethylene oxide) or PEO for short
of M, = 41,500 g/mol in D,O at a temperature of 20 °C (Hammouda et al, 2004). Fit to the
correlation length model gave the following parameters: C =0.52 cm™, £ =17.47 A, m =
1.93 and B = 0.069 cm™'. The fit is good except for the very low-Q points where statistics are
poor. The correlation length & gives a good estimate of the average entanglement length for
this semi-dilute polymer solution. The Porod exponent m points to a “mass fractal” for
dissolved polymer chains close to the theta condition. The fractal exponent for chains in a
good solvent is m = 5/3 and that for chains in theta condition is m = 2. The theta condition is
defined when the monomer-solvent, monomer-monomer and solvent-solvent molecular
interactions are comparable.
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Figure 1: SANS data from 4 % solution of PEO (M, = 41,500 g/mol) in D,0 at 20 °C
temperature and fit to the correlation length model.

2. THE BROAD PEAK MODEL

Many SANS spectra are characterized by a broad peak even though they are from amorphous
soft materials. The d-spacing corresponding to the broad peak is a characteristic distance
between the scattering inhomogeneities (such as in lamellar, cylindrical, or spherical
morphologies or for bicontinuous structures). The following simple functional form
reproduces the broad peak feature:

C

+B (2)
1+(0Q-Q, &)"

Q) =

Here the peak position is related to the d-spacing as Qo = 2m/dy. Soft systems that show a
SANS peak include copolymers, polyelectrolytes, multiphase systems, layered structures,
etc.

A figure shows SANS data from 4 % poly(lysine) polyelectrolyte solution in DO at 25 °C

temperature. Poly(lysine) is a poly(amino acid). Fit to the broad peak model gave the
following parameters: C = 0.075 cm™, &€ = 13.10 A, Qo =0.099 A", m = 1.05 and B = 0.064
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cm’'. Here again, the fit is good except for the low-Q points where statistics are poor. The d-
spacing is do = 21/Qo = 63.47 A. This is an average inter-distance between charged
polyelectrolyte domains.
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Figure 2: SANS data from 4 % poly(lysine) poly(amino acid) solution in D,O at 25 °C
temperature and fit to the broad peak model.

3. THE TEUBNER-STREY MODEL
The Teubner-Strey model (Teubner-Strey, 1987) was originally introduced to represent the

structure of micellar systems. These are characterized by a peak representing inter-micellar
interactions. This model assumes a pair correlation function of the form:

d r|. (2nr
y(r) = 2—mexp(— g} sm[Tj . 3)

Here & is a correlation length (length beyond which correlations die out) and d is a d-spacing
(characteristic of a domain size or periodicity). Recall that the coherent macroscopic
scattering cross section is given by:
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S ap2V,P(QS, (Q) = dap? [ a4
0

sin(Qr)
4
o v(r) (4

¢ is the sample volume fraction, Vyp is the scattering “particle” volume, Ap” is the contrast
factor, P(Q) is the form factor and Sy(Q) is the structure factor. Performing this integration
yields:

d2(Q) _ g2 8me’
de { (27@)2:] { (275§j 2:| 2 44
1+ a4 2 +25°1Q°+&7°Q

The functional form for the scattering intensity can therefore be presented in the form:

(Snj

5 +B.
a %1 H2 4
[°2+02Q +Q}

B is a Q-independent incoherent scattering background. The various parameters a,, ¢; and c;
are defined as:

272
T v
n L 22 = ™
¢ g* ¢ g* .

©)

1Q) = = 4 B - gap?

(6)

These are considered as fitting parameters. The correlation length & and the d-spacing d can
be expressed as:

£= 1 )

1 J]a, 1c¢
J— = + -
2\c, 4c,
2n
1ja, le
2\c, 4c,
A factor f, =c, / r4a,c, is defined to represent the amphiphile “strength” which dictates

the microstructure. For example, the ordered lamellar phase corresponds to f, = -1 while the
disordered phase corresponds to f, = 1.

d=
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Consider SANS data from 10 % P85 Pluronic (triblock copolymer of PEO-PPO-PEO)
measured in D,0 at 60 °C (temperature for which the micelles are well formed). Fits of the
SANS data to the Teubner-Strey model yields the following fitting results.

a, = 0.038 9)
¢ =-51.23

¢ = 24,929

B=0.118.

Note that for the functional form to produce a peak, parameter c; has to be negative. These
parameters give the following value for the two characteristic lengths:

£E=96 A (10)
d=186.6 A.
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Figure 3: SANS data from 10 % P85 Pluronic in D,0O at 60 °C plotted along with the fit to
the Teubner-Strey model.
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Figure 4: The pair correlation function y(r) for the Teubner-Strey model.

Note that a peaked behavior in I(Q) results in a pair correlation function y(r) going negative
then positive. This is referred to as the “correlation hole” effect. This happens in block
copolymers, in polyelectrolytes and in concentrated systems.

The Teubner-Strey model applies to concentrated solutions of particles (spheres, cylinders,
etc) and to the bicontinuous structure. It does not do well for lamellar systems and for other
highly ordered morphologies (for example, ordered diblock copolymers). It misses the higher
order oscillations completely. Moreover, the Teubner-Strey model was developed for
water/oil/surfactant ternary mixtures in the micelle-formation region. Using it for
polymer/copolymer mixtures requires some adjustments.

4. THE BEAUCAGE MODEL

The Beaucage model (Beaucage, 1995) applies to systems with different levels of
hierarchical organization. These are characterized by scattering data with more than one
Guinier and Porod regions. The functional form for the one-level case follows.

B. (11)

Q=G exp[_ Q3Rg } + ¢ [erf(Qg,i o +
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G 1s the forward scattering intensity (sometime referred to as lo), R, 1s the radius of gyration,
C is scaling constant, m is the Porod exponent and B is the usual constant background at
high-Q. After correction of the original result, the following relationship applies:

C:Gm{ 6m” } T(m/2). (12)
Rgm (2+m)(2+2m)

I'(m/2) is the Gamma function. In the two-level case, the functional form becomes:

le

~QR_*| C,[erf(QR . /6)]™
+Gzexp[ Q3g2 ]+ [ (Qinf Jor™

I(Q) = Gl CXP{_Q 3Rgl ]+ Cl[erf(QRgl /\/6_)] 1

(13)

Consider SANS data taken from a 4 % poly(ethylene oxide) solution (M, = 41,800 g/mol) in
D,0 taken at 25 °C. The SANS signal is characterized by a low-Q clustering part and a high-
Q solvation part. Only the tail of the low-Q feature is observed. Fits to the two-level
Beaucage model give the following fitting parameters:

G, = 13.53 (14)
Ry, = 725.95

C; =3.0928+%107

mp = 1.91

G, =0.53

Ry, = 25.99

C,=0.0014

mp; = 2.14

B =0.091.

The values of G; and Ry, are not reliable since no Guiner region is observed at low-Q. The

Porod exponents for the low-Q clustering and the high-Q solvation regions point to a mass
fractal.
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Figure 5: Plot of the SANS data from 4 % PEO solution (M, = 41,800 g/mol) in D,0O at 25
°C along with fit to the two-level Beaucage model.
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QUESTIONS

1. What are the three main methods used to analyze SANS data?

2. What is referred to as the Ornstein Zernike functional form? What parameter can be
obtained from a fit to that form?

3. What is the meaning of a peak in SANS data (at Qo for example)?

4. What type of scattering does the Teubner-Strey model apply to?
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5. What are the main parameters for the Beaucage model?

ANSWERS

1. The three main ways used to analyze SANS data are: (1) standard plots (linear plots of
functions of I(Q) vs functions of Q), (2) non-linear least squares fits to reasonable models
including empirical models and (3) molecularly realistic complex methods for particle shape
reconstruction and molecular simulation.

2. The Ornstein-Zernike functional form is a Lorentzian. A correlation length can be
obtained.

3. A peak in SANS data (at Q) means that there is a structure with a characteristic repeat
distance d = 21/Q,.

4. The Teubner-Strey model applies to scattering data with a peak and that decay as 1/Q” at
high Q. These are concentrated systems with inter-particle separation distance comparable to
particle size or to bicontinuous structures.

5. Data fitting to the Beaucage model yields an intercept Iy, a radius of gyration R,, a Porod
exponent m and a surface to volume ratio for the scattering object.
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Chapter 24 - REPRESENTATIVE SANS DATA

SANS data come in many trends and shapes. Most data sets show a forward scattering peak.
Some show a peaked behavior at finite Q. Only a few show a multitude of peaks. The SANS
technique is not abundant in peaks like other characterization methods. Representative SANS
data are presented here.

1. INCREASING FLUCTUATIONS

Increase in SANS intensity is a signature of an increase in density or composition
fluctuations. This is observed for systems undergoing phase transition, aggregation or
crystallization. SANS is a good monitor of phase separation.

A figure summarizes SANS data taken from a phase separating polymer solution as
temperature is increased (Hammouda et al, 2002). The polymer solution is made of 4 %
poly(ethylene oxide) of My, = 41,800 g/mol in d-water. This high-Q signal represents
solvent-polymer interactions (though hydrogen bonding in this case). As temperature is
increased, hydrogen bonding breaks leading to the onset of a lower critical solution
temperature. The upturn at low Q is due to a clustering effect characterizing most water-
soluble systems.
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10 C [ T ]
. I ——85°C ||
rli L —— (0] 4
= 65 °C
S - —50°C ||
Py
® gL — ot~ |-
5 i 25°C |-
IS i °c |-
(@) 8 ]
= i
2
= I
O
n

0.1 |- -

I 1 1 \‘ L1 \‘ |

0.01 0.1
Scattering Variable Q (A ™)

243



Figure 1: SANS data taken from a 4 % poly(ethylene oxide) solution in d-water. The
polymer molecular weight is My, = 41,800 g/mol.

2. ORDERED STRUCTURES

A class of SANS spectra is characterized by a sharp peak. The peak is either due to a well-
defined repeat distance (in lamellar systems for example) or due to the correlation hole
effect.

L]

Scattering Periodic
Factor Density

v

) >

Scattering Pair
Factor Correlation

Figure 2: Representation of the two cases that can give a SANS peak.
SANS data from a polystyrene-polyisoprene diblock copolymer are included. The SANS

peak is due to the correlation hole. At low-temperatures, the morphology formed is highly
ordered (lamellar).
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Figure 3: SANS data from a polystyrene-polyisoprene diblock copolymer solution in DOP
solvent.

3. CONCENTRATED SYSTEMS

Another class of SANS spectra is when an inter-particle peak is formed. This is the case
where the inter-particle spacing is comparable to the particle size and is characteristic of
“concentrated” systems. The case of a 25 % Pluronic P85 (PEO-PPO-PEO triblock
copolymer) micelles in d-water is included. Micelles form above ambient temperature due to
the hydrophobic nature of PPO.
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Figure 4: SANS data from P85 Pluronic micelles. The inter-particle interaction peak is
clearly observed.

4. DILUTE SOLUTION OF MONODISPERSE PARTICLES

The case of dilute solutions is characterized by scattering from “isolated” particles. A 0.1 %
solution of silica particles in d-water is included here. The higher order peaks are a signature
of monodispersity and are limited by instrumental resolution. The fitted sphere radius is R =
563 A.
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Figure 5: SANS data from a dilute solution of silica particles (0.1 % mass fraction) in d-
water and fit to sphere model. The fitted sphere radius is R = 563 A.
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QUESTIONS

1. Why does scattering increase when a phase transition line is approached?

2. What is the “correlation hole” effect in block copolymers?

3. Why does the block copolymer peak broaden when the mixed-phase region is entered?
4. Why are SANS data from concentrated systems characterized by a peak?

5. What is the origin of the higher order peaks observed in SANS data from monodisperse
dilute solution of particles.
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ANSWERS

1. The approach to phase transition conditions is accompanied by composition fluctuations.
Likewise molecules attract each other whereas unlike molecules repel each other.

2. Copolymers are formed of blocks that are covalently bonded. Consider, say, a diblock A-
B. Around each A block, there is a region where another A block cannot reside because of
crowding from B blocks. This region empty of A blocks is referred to as a “correlation hole”
effect.

3. The mixed phase (also called disordered phase) region is obtained by dissolving the
macrodomain morphology formed in the ordered phase. The SANS peak in the ordered phase
is sharp due to the characteristic (lamellar, cylindrical or spherical) morphology. The SANS
peak in the disordered phase is due to the correlation hole effect.

4. SANS data from concentrated systems are characterized by a peak because the inter-
particle d-spacing becomes comparable to the size of the particles. The SANS peak position
characterizes the nearest neighbor inter-distance. It is due to the inter-particle structure factor
Si(Q).

5. The single-particle scattering factor for a single spherical particle is given by the spherical
Bessel function P(Q) = [3j:(QR)/QR]* where R is the sphere radius and j;(X) = sin(X)/X*-
cos(X)/X. This is an oscillatory function with many higher order peaks.
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Chapter 25 - SANS FROM ORIENTED SAMPLES

Scattering from oriented samples is rich in peaks and anisotropic features as observed on the
2D detector. A series of these “interesting” spectra is included here in order to sample the
wide variety of possibilities.

1. ORIENTED FIBERS

Collagen from a kangaroo tail tendon is characterized by a fiber-like structure along the
oriented fibers with repeat spacing of 667 A.
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Figure 1: Scattering pattern from highly ordered biopolymer (collagen from a kangaroo tail
tendon) showing the strong first and third Bragg peaks as well as weak higher order peaks;
the second peak is not allowed. The ordered structure is along the fibers and has a d-spacing
of 667 A.
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2. SINGLE NANOCRYSTAL

Anisotropic SANS data from P85 Pluronic micelles sheared in a Couette shear cell are
included. The characteristic hexagonal peak pattern (six fold symmetry) points to a cubic
structure formed by the spherical micelles for 25 % mass fraction P85 in D,O solutions. P85
is a triblock copolymer of poly(propylene) which is hydrophobic in the middle of the
molecule and poly(ethylene oxide) which is hydrophilic on the outside of the molecule
(PEO-PPO-PEO). P85 micelles are well formed at ambient temperature. Shearing helps the
packing of the spherical micelles into a face centered cubic structure (Slawecki et al, 1998).
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Figure 2: SANS data from 25 % P85 Pluronic (PEO-PPO-PEO triblock copolymer) in D,O
under Couette shear (5 Hz frequency) at 40 °C. The micelles form a cubic “single crystal”
structure.

3. MULTILAYER VESICLES

Multilayer vesicles are formed by mixing AOT surfactant with a brine/D,0 solution. A brine
solution contains more than 100 g/l sodium chloride salt. Shearing the multilayer vesicles in
an in-situ Couette shear cell shows orientation along the shearing direction (i.e.,
horizontally). The sheared structure resembles a horizontally elongated “onion skin”
structure. Two weaker spots along the equatorial axis show weak orientation of the vesicle
layers parallel to the shearing cell walls as well. This SANS image was obtained with
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oscillatory (i.e., reciprocating) shear and with the neutron beam incident tangentially to the
shear cell through a vertical beam defining slit (Bergenholtz-Wagner, 1996).
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Figure 3: SANS data from multilayer vesicles formed of AOT in brine/d-water solution
under oscillatory Couette shear. This view corresponds to a configuration where the neutron
beam is incident tangentially to the shear cell.

4. ORIENTED MEMBRANE

Highly oriented samples containing supramolecular peptide assemblies imbedded in
multilayer membranes have been investigated. Samples were prepared in the form of
orientated multilayers that were held between several parallel quartz plates. Deuterated water
fills the inter-layer space for enhanced neutron contrast. Peptides form inter-layer “pores”
that can be clearly observed. Temperature and relative humidity were controlled during
SANS data acquisition. Fully hydrated samples show no inter-layer correlation. Dehydrated
samples show strong such correlation that shows up as rich anisotropy in the SANS pattern
characteristic of “single crystal” structure. The shown data set was taken from magainin
peptide in dimyristoyl phosphatidylcholine (DMPC) bilayers at the peptide-to-lipid ratio of 1
to 30. In order to sample both the in-plane and the out-of-plane structures, the oriented
membrane was tilted with respect to the neutron beam (Yang et al, 1998).
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Figure 4: SANS data from oriented DMPC/DMPG membranes containing magainin peptides
in DMPC bilayers and D,0. The sample was oriented at 60 ° to the neutron beam direction in
order to observe structures both parallel and perpendicular to the membrane surface.

5. MAGNETIC MATERIAL

SANS from a single-crystal of NdBa,Cu30O7 (high T, superconductor) at 100 K is shown.
This sample is twinned (i.e., is formed of two orthogonally orientated crystals) and the
nuclear scattering overwhelms the magnetic scattering. Crystal boundaries occur when two
crystals intergrow with a highly symmetrical interface, often with one crystal being the
mirror image of the other; atoms are shared by the two crystals at regular intervals. De-
twinning of the crystal is necessary in order to reduce the nuclear scattering thereby
enhancing the magnetic scattering component (Lynn et al, 1989).
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Figure 5: SANS data from the high T, superconducting NdBa,Cu3;O7 cuprate at 100 K. Most
of the scattering is due to the nuclear structure. The oriented structures characterizing the two
crystals forming the twinned crystal are orthogonal (with orthorhombic symmetry) yielding
the cross-like SANS patterns.
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QUESTIONS

1. If a sample is oriented along the vertical direction, is the most likely axis of symmetry of
the iso-intensity contour maps in the vertical or horizontal direction? Is this always the case?
What is the exception?

2. When scattering contains bright peaks, why are peaks at high Q broader than peaks at low
Q?

3. Thinks whether you could learn more about a sample of your research interests by aligning
it (either though shear, rubbery stretch, or by applying a magnetic field).

ANSWERS

1. If a sample is oriented along the vertical direction, the most likely axis of symmetry of the
iso-intensity contour maps is in the horizontal direction. Direct space and reciprocal space
form a conjugate pair and are therefore characterized by orthogonal asymmetry. This applies
in most cases. The known exception is the case of the “butterfly” pattern whereby the
asymmetry in the scattering plane and the direct space plane are along the same direction.

2. Bright spots in the 2D SANS image are usually broader at high Q due to the increase of
the instrumental resolution with Q. Recall that the variance of the resolution function has two
contributions: (1) one due to geometry which is independent of Q and (2) one that varies like
the square of the relative wavelength spread (AL .

3. SANS data from aligned samples always contains more information than from randomly
oriented samples. If the SANS image contains spots, the d-spacing in the two orthogonal
directions could be different pointing to anisotropic structures. Bright spots turn into
scattering rings when the sample orientation is random.
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Chapter 26 - RADIUS OF GYRATION CALCULATIONS

The radius of gyration is a measure of the size of an object of arbitrary shape. It can be
obtained directly from the Guinier plot [In(I(Q)] vs Q°] for SANS data. The radius of
gyration squared Rg2 is the second moment in 3D.

1. SIMPLE SHAPES

First consider some simple shape objects.

»
»

0 > x

r cos(d)

Figure 1: Representation of the polar coordinate system for a disk.

For an infinitely thin disk of radius R, Rg2 is given by the following integral using polar
coordinates.

2anrz cos” (¢)rdrdd T r3dr2ncos2 ()do
R2
Rgx2= 00 — — 0 T 0 = — T . (1)
[ [ rdrdo [rdr[ do
00 0 0
R’ , R?

Similarly for Rg,* = ik For an infinitely thin disk Ry’ = Rg’+ Rgy =
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Figure 2: Representation of the spherical coordinate system for a sphere.

In the case of a full sphere, the integration is performed with spherical coordinates.

T R
sin(0)do| r’dr r?
2 l- © ! _ 3R’
R, = L )

T

jsin(e)deTrzdr
0 0

The radius of gyration (squared) for the spherical shell of radii R; and R, is given by:

3 Y
R =—F"—— [4nr'dr (3)
4n(R,” -R, )R1
_3(Ry-R))
5(R,’ -R,)
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< w >
Figure 3: Representation of the Cartesian coordinate system for a rectangular plate.

For an infinitely thin rectangular object of sides W and H, the integration is performed in
Cartesian coordinates.

W/2
dx x? WY
2_ - _
R o

1(HY 1(w) (BHY
Similarly for R,.>==| — | . The sum gives R,>=—|| — | +| — .
FO e 3[2j S R 3{(2j [2”

Note that the moment of inertia I for a plate of width W, height H and mass M is also given
by the second moment.

-ne = 2 (3T (4) ®
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2. CIRCULAR ROD AND RECTANGULAR BEAM

Circular Rod

Rectangular Beam

Figure 4: Representation of the cylindrical rod and rectangular beam.

The radius of gyration for a cylindrical rod of length L and radius R is given by:

2

S =SS Tt (6)

R R> 1(L) R? L?
2 12

The radius of gyration for a rectangular beam of width W, height H and length L is given by:

2 2 2
R -1 [Ej {Ej +(Ej . )
£ 3102 2 2
This formula holds for a straight “ribbon” where W<H<<L.
The value of Rg2 for a cylindrical rod with radius R = 10 (diameter D = 20) and length L. = 10

is Rg2 = 58.3. This value is to be compared with the case of a rectangular beam with sides W
=L =20 and length L = 10 for which R,” = 75.

3. COMMENTS

The radius of gyration squared can be calculated for other more complicated shapes as the
second moment for each of the symmetry direction.

Note that Rgx2 for a horizontal strip is the same as that for the whole square plate Rgx2 =
2
l(ﬂj . Rgx2 is independent of the height of the object. Of course ng2 depends of the height

302
but not on the width.
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Figure 5: Case of a horizontal flat strip.

4,

» X
4— \
/

Figure 6: Case of a circular ring.

The radius of gyration for an infinitely thin circular ring of radius R is Rgz2 =R’ This is
obtained by spinning the ring in the horizontal plane (around the z-axis). Note that it is the
same value for an infinitely thin spherical shell of radius R.

4. TWISTED RIBBON

The radius of gyration for rigid twisted shape objects are worked out here. Consider the
simple case of a rigid helical wire, then the case of a rigid twisted ribbon with finite size
thickness.

Helical Wire

Consider a very thin helically twisted wire aligned along the vertical z axis. Choose the

origin of the Cartesian coordinate system at the center-of mass of the twisted wire. The helix
has a radius R and a height L so that -L/2 < z < L/2. The parametric equation of the helix is:

X =R cos(d) (8)
Y =R sin(¢)
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Z =pd/2m.

Here p is the helix pitch and ¢ is the azimuthal angle in the horizontal plane. The wire

position along the helix is represented by the vector ;(d)) . Note that by definition of the
center-of-mass, the average of this vector is null, <;((|)) >=0.

\ Z

C09.00)

R »

Twisted Wire

Figure 7: Schematic representation of the twisted wire.

The radius of gyration (squared) Rg2 is defined as follows:

[ dor*(9)

R, =<r’(9)> = ao

)
Here r*(¢) = X*+Y*+Z* = R + (pd/2n)*. The azimuthal angle ¢ varies in the range:
-nl/p < ¢ < wl/p.

The ¢ integration is readily performed to give:

1LY
RA=R*>+—| =] . 10
pers (1) w

Note that this is the same result as for a cylindrical shell of radius R and height L. This is not
surprising since a cylinder could be built by a number of twisted wires stacked vertically.

Thin Twisted Ribbon
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The case of a thin twisted helical ribbon of width W can be worked out similarly using a two-

variable parametric notation r’(¢,z) where ¢ is the azimuthal angle and z is the vertical
ribbon width with -W/2 < z < W/2.

Twisted Ribbon

Figure 8: Schematic representation of the thin twisted ribbon.

Here, the variable Z is replaced by Z+z. The radius of gyration (squared) is therefore given
by:

do|dzr*(9,2)
Ry = <r’(¢,2) = Joof (11)
jd¢jdz

¢ 2
r’(¢,z) is now given by r’(¢,z) =R* + (g— + zj . The integrations can here also be readily

T
performed to give:

2 2
Rg2:R2+l£ AN (12)
302 302

These involve contributions from <Z*> and <z*>. The cross term gives no contribution
because it involves the null average <z> = 0.
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Thick Twisted Ribbon

For the case of a twisted ribbon of horizontal thickness T, the variable R is replaced by R+p
where -T/2 < p < T.

YR}

Thick Twisted Ribbon
Top View

Figure 9: Top view of a thick twisted ribbon.

The calculation of the second moment proceeds as before:

X = p cos(9) (13)
Y =p sin(¢)
Z =po/2m.

Here p is the polar coordinate variable in the horizontal plane with limits: R-T/2 < p <
R+T/2. In this case r(Z,z,p) = p* + (Z+z)* where z is the same parameter as before. Rg2 =
< p*> + <(Z+z)*> involves two averages. The first average is:

2n

R+T/2

[do [pdpp?

R-T/2

1
4

(R+T
2

)

4
R_JTJ
2

<p?>= 0

2n

R+T/2

[ [pdp

0 R-T/2

1

(14)

The final result involving both (horizontal and vertical) averages is:

2
R, =R*+ (Ij + l(
2 3

j2+

()

(15)

Note that all terms add up in quadrature since all cross terms (first moments) average to zero.
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5. GAUSSIAN POLYMER COIL

The radius of gyration (squared) for a polymer coil is defined as:
R =1y<s? 16
. = HZ< O (16)

Si refers to the position of monomer i with respect to the center-of-mass of the polymer coil
and n is the total number of monomers per coil. The inter-distance vector between two

monomers within the same macromolecule is defined as ’gij =S i S, . Consider the following

relation:

3§, =08 +n3§7-235 S, . (17)
i,j i j i,j

The last summation is null zgl S i = Z§1 zg ; =0 since by definition of the center-of-
i

i,j i

mass Zgl = 0. The radius of gyration (squared) is therefore simplified as:

1 & 5 1 &,
R’ = <S8’ >= <1’ >. 18
g 2n2 g ] 2n2 ; 1 ( )

The vectorial notation has been dropped for simplicity.

Figure 10: Schematic representation of a Gaussian coil showing monomers i and j and their
inter-distance r;;. Note that gij = T1; in the notation used.
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<S;i™> = a’li-j|. (19)

Here a is the statistical segment length, and <...> is an average over monomers. The
following formulae for the summation of arithmetic progressions are used:

-, n(n+1)

;k— > (20)
o, 2 n(m+1)(2n+1)

kz;k = p :

The radius of gyration squared becomes:

By a’ & a’ & k
R "= i—jl=— 1-—)k 21
s =g 2= A0 1)
2 2 2
:a_(n l)zan forn>>1.
6 n 6

Note that taking the n >> 1 limit early on allows us to replace the summations by
integrations. Using the variable x = k/n, one obtains:

1 2
2_ 2 2 1 1 _a n
R, =a n_([dx(l—x)x:a H(E_Ej_ - (22)

Similarly, the end-to-end distance squared R, for a Gaussian polymer coil is given by:

Rin"=a’n forn>>1. (23)

These results are for Gaussian coils that follow random walk statistics (Flory, 1969).

6. THE EXCLUDED VOLUME PARAMETER APPROACH
The Flory mean field theory of polymer solutions describes chain statistics as a random walk

process along chain segments. For Gaussian chain statistics, the monomer-monomer inter-
distance is proportional to the number of steps:

<8;"> = a’i-j[*". (24)

Here a is the statistical segment length, v is the excluded volume parameter, S;; represents an
inter-segment distance and <...> is an average over monomers. The radius of gyration
squared for Gaussian chains is expressed as:
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1 u 2 az LA .2
R’= <SS’ >= i—i 25
. 2n2§ i an; il (25)
2 n 2
:a—2(1—5)k“ = 2 n?.
n < n 2v+DH(2v+2)

i and j are a pair of monomers and n is the number of chain segments per chain. Three cases
are relevant:

(1) Self-avoiding walk corresponds to swollen chains with v = 3/5, for which Rg2 =
25 o605

176

(2) Pure random walk corresponds to chains in theta conditions (where solvent-solvent,

monomer-monomer and solvent-monomer interactions are equivalent) with v = ', for which
1
Rg2 = —a’n.
6
(3) Self attracting walk corresponds to collapsed chains with v = 1/3, for which Rg2 =
9 2

—a’n
40

Note that the renormalization group estimate of the excluded volume parameter for the fully
swollen chain is v = 0.588 (instead of the 0.6 mean field value).

Note also that the radius of gyration for a thin rigid rod can be recovered from this excluded
volume approach by setting v = 1 and defining the rod length as L = na.

2 2.2 2
2 a 2V:an_L

R, = n L
£ T Qv+1)(2v+2) 12 12

(26)

This is the same result derived earlier for a thin rod.
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QUESTIONS

1. How is the radius of gyration measured by SANS?

2. How is the center-of-mass of an object defined?

3. Why is the radius of gyration squared for an object related to the moment of inertia for that
object?
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4. Calculate R, for a full sphere of radius R. Calculate R,” for a thin spherical shell of radius
R.

5. What is the value of Rg2 for a Gaussian coil of segment length a and degree of
polymerization n? How about the end-to-end distance?

6. What is the radius of gyration squared for a rod of length L and radius R?

ANSWERS

1. The radius of gyration is measured by performing a Guinier plot on SANS data. The slope
of the linear variation of In[I(Q)] vs Q? is Rg2/3.

2. The center-of-mass of an object is defined as the spot where the first moment is zero.

3. The radius of gyration squared and the moment of inertia for that object are both expressed
in terms of the second moment.

4. Rg2 for a full sphere of radius R is given by:

™

n R R 2
Rg2 = U sin(e)dej.rzdrrzj/( .[ sin(0)do j rzdrj = 3}: . Rg2 for a thin spherical shell is simply
0 0

0 0
given by: Rg2 =R
5. For a Gaussian coil of segment length a and degree of polymerization n, one can calculate
the radius of gyration squared as Rg2 = a’n/6 and the end-to-end distance squared as Rj,> =
a’n.
6. The radius of gyration squared for a rod of length L and radius R is given by:

2 2
R.> =R_+1(£] ,
£ 2 32

269



Chapter 27 — SINGLE PARTICLE FORM FACTORS

1. DEFINITION OF SCATTERING FACTORS

Consider a scattering object consisting of n scatterers occupying a volume Vp. The scattering
density and its Fourier transform are defined as:

n(r)=Y5( 1) (1)

n(Q) = 21 exp[—iQF .

Note that these quantities vary randomly with position T and scattering vector Q . The

average density being constant (<n(r)> = n = n/V,), a fluctuating density and its Fourier
transform are defined as:

An(r)= Y 8(i ~1) T @

An(Q) = Yexp[-iQE ]~ (2n)’T3(Q).

Here S(Q) is the Dirac Delta function which does not contribute except at Q =0 (along the

very forward scattering direction) which is experimentally irrelevant. The static form factor
for the scattering “particles” is defined as the density-density correlation function summed up
(or integrated) over the particle volume:

P(Q) =

< n(—Q)zn(Q) > _ in< expliQ.(f,—1))] > ()
n D

= [dF jd?‘%g(rvbexp[ié.(f'—f)] .

The form factor of various shape objects are worked out next (Guinier-Fournet, 1955;
Glatter-Kratky, 1982; Higgins-Benoit, 1994; Hammouda, 1995; Roe, 2000).

2. FORM FACTOR FOR A UNIFORM SPHERE

Consider a sphere of radius R and uniform density (this could be a spherical domain in a
microphase separated block copolymer or a latex particle in a colloidal suspension). The
single particle form factor P(Q) involves integrations over the volume Vp of the sphere (in
spherical coordinates):
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P(Q) == ”(‘?1)2“(@ Z — [dp[dp ) > n(rl)ﬁ(r') Z exp[iQ.(F-T)]. (4

Since the scattering elements are not correlated, the average of the product <n(r)n(r")> is
equal to the product of the averages <n(r)><n(r")> and therefore:

P(Q) = F(Q) [*. (5)
Here the amplitude of the form factor F(Q) has been defined as:

F(Q) = [di S0 > o[-0 5] (6)

n

For uniform density, the average over configurations <n(r)> becomes trivial:

<n(r)>= 2 =q if r<R (7)
Vp
<n(r)>=0. if >R
Therefore:
3 R, ' 21
F(Q) =— Jr’dr [ dexp[iQry] [} ®)
4nR" o -1 0

3 g (@) _ 33, QR) o

Qr QR

0

Here the spherical Bessel function j{(x) has been defined as:

)= S0 (10)

The spherical Bessel function j;(x) is related to the cylindrical Bessel function J3,(x) as
shown. It is also related to jo(x) as follows:

510 = ==Ly (0] and g0 =22, (11)
X X

The form factor for the sphere is therefore:

3jl(QR>T:[ 3 [sin(QR)_COS(QR)Hz_ 1)
QR QR (QR)’ QR

P(Q)= {
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Note the following normalization P(Q — 0) =1 and recall the calculation of the radius of

gyration squared for a uniform density sphere of radius R as Rg2 =3R"? / 5.

The low-Q Guinier expansion follows:

P(Q)—) 1_(QR)2 +(QR)4 2 ~1_&+1(QR)4 (13)
10 280 | 5 175
2R 2 4R 4
=1—Q £ +Q £ for QR < 1
3 21
Form Factor for a Sphere
I I I I
0 |
calculated
2 L i
o
a
2 a4 :
—
6 L i
-8 !
0 2

Figure 1: Plot of Log[P(Q)] vs QR for a uniform sphere showing many order oscillations.

3. SPHERICAL CORE-SHELL

Consider a sphere with an inner core and an outer shell. Three regions can be defined
corresponding to the inner core, the outer shell and the solvent. Three cases are considered
where (1) the shell is visible (with matched core and solvent scattering lengths), (2) the core
and shell scattering length densities are matched and (3) the core is visible (with matched
shell and solvent scattering length densities).

272



Note that the “correlation hole” peak is enhanced in case 1 for which the shell is visible
whereas the core is not (i.e., it is matched to the solvent). Polydispersity (/R = 0.3) has been
included in order to damp higher order oscillations. This level of polydispersity was enough
to damp oscillations for case 3 but not enough for case 2.

polydisperse core-shell sphere

1000 E T T T T T T ‘ T T T T L ‘
100 £ i
E case 1
case 2
F case 3
2 10 4
8 E
= F
c
L
3}
+§ case 2 —I_
U) 01 = —
case 1 I—I
| case3 |
r R T
0.001 el B
0.001 0.01 0.1 1

Scattering Variable Q (A ™

Figure 2: Scattering factors for a core-shell sphere of inner radius R = 20 A and radial shell
thickness T =20 A. Case 1 corresponds to the core scattering length density matched to the
solvent. Case 2 corresponds to matched scattering length densities for the core and shell.
Case 3 corresponds to the shell scattering length density matched to the solvent. The vertical
scale is arbitrary and a constant background value of 0.001 has been added.

4. FORM FACTORS FOR OTHER SPHEROID SHAPES

Following the same procedure, the form factor for a spherical shell between radii R and R,
(and hollow for r<R;) can be calculated as follows:

FQ) =

3 R, ) +1 . 2n
T J rodr [duexp[-iQrp] [dé (14)
4n(R,” =R R, -1 0
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I (3jl(QR2JR 3_(31}(@1{1}{3
(R23—R13) QRZ 2 QRl e

For an ellipsoid of half axes a, b, ¢ oriented so that its axes make angles o, 3, 6 with the Q
direction, an effective radius Rg is defined as:

R’ =a’ cos’(a) + b* cos*(B) + ¢ cos’(0). (15)

[

The form factor amplitude is the same as the one for a sphere of radius Re:

N
F(Q,u)=%. (16)

The form factor (for a randomly oriented sample) is an average over all possible orientations
of the ellipsoid:

PQ = [dul FQu . (17)

p = cos(0) and 0 is the angle between the major axis of the ellipsoid and the Q direction. It is
straightforward to extend these results to an ellipsoidal shell.

5. FORM FACTORS FOR CYLINDRICAL SHAPES

The form factor amplitude F(Q) for a uniform cylinder (rod) of radius R and length L
oriented at an angle 0 from the Q direction is the product of a longitudinal (z along the rod)
and a transverse (L perpendicular to the rod) contributions in cylindrical coordinates:

F(Q, M) = Fz (Qo “)FJ_ (Qa M) (1 8)
_ 1Lz . _sin(QuL/2)
F,Q.p = T 7Lf/621ZCXP[ 1Quz] = TQuL/z
R 2n
FLQw=—7] dpp(f) dgexp[-iQy/1-p’ cos(p)p].
0

Here 1 = cos(0) and 0 is the inclination angle. The following definition of the cylindrical
Bessel functions are used (Abromowitz-Stegun, 1972):
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17 )
Jo(2) = ;J‘dd) exp[izcos()]. (19)
0
= .
Ji(2) = EJ d¢ exp[iz cos(9)]cos(9)
0
One obtains:
2 R
FL(Q ) == [dppl, (QV1-1p). (20)
0
An integration variable change to t = p/R is made and the following integral is used:
‘ 1
J-tdtJO(at):—Jl(a). (21)
a
0

The following result is obtained:

21,(QY1-w'R). )

F.(Quw = 2
Qy1-p"R

The final result for the form factor amplitude for an oriented rod is:

sin(QpL/2)}[2J 1(Qy1 —MQR)]. (23)

QuL/2 Qy1-p*R

FQ.w) = {

The form factor for a randomly oriented rod is therefore given by the following orientation
average:

PQ = [du [ FQw . (24)

In order to model the scattering from very dilute solutions of rods, the last integral (over 0) is
performed numerically.
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X

Figure 3: Geometry of the uniform rod.

Form Factors for a Rod
1 I I I I I

E— [2J1(X)/X]2

— [sin(X)/X]?

Log Scale
&)
I

Figure 4: Plots of the two functions [2] 1(X)/X]2 and [sin(X)/X]2 that give the variations of
the form factor perpendicular and parallel to the rod axis respectively.
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Cylinder with R=20 A, L =400 A

0.1 ~

0.01 ~

cylinder

0.001 +

Form Factor P(Q)

0.0001

10° -

0.001 0.01 0.1

Scattering Variable Q (A ™)

Figure 5: Form factor P(Q) for a cylinder with radius R =20 A and length L = 400 A.
Note that the result for a rod of length L applies also to a disk of thickness L.

For a disk of radius R and negligible thickness, the L — 0 limit in the general result is taken
so that:

R 21
F,(Q.p) = nf{z fdpp [ dbexpl-iQy1 - cosp] (25)
_2,Qf1-wR)
QI-uR

Averaging over orientations is performed as follows:

1-pu’R

1 _u’R ?
P - % Id{ngQ\/I n )] 26)
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_ 2 [I_Jl(zQR)}
(QR)’ QR |

To obtain the form factor for an infinitely thin rod of length L, we take the R — 0 limit
instead, and obtain:

1t [sinQuL/2) T
P(Q) = j du[—QML = } . 27)

Integrate by part once to obtain:

1 sin”(QLu/2) SR 2sin(QLu/2)cos(QLu/2)
Q ﬂ (QL/Z)ZH l 1 +J. H (QLu/2) } (28)

sin*(QL/2)
(QL] 1 (QL/2)*

Si(x) is the sine integral function defined as:

sm(u)

Si(x) = j du (29)

6. FORM FACTOR FOR A PARALLELEPIPED

Consider a uniform density rectangular parallelepiped of sides a, b, c. In Cartesian
coordinates, the form factor amplitude can be split into the product of three parts that depend
on the three coordinates respectively:

1 [a2 . b/2 . ¢/2 .
F(Q):E{ jdxexp[—lex)}[ j'dyexp[—ley)}[ jdzexp[—lQZz)} (30)

Cl-a/2 -b/2 —c/2

| sin(Q,a/2) | sin(Q,b/2) |l sin(Q,c/2)
| (Qal/2) | @Q,b/2) | (Q,e/2) |

The form factor is, here also, an average over orientations:
1
1 2
PQ) = [dnFQuw " (31)
-1

p = cos(0) and 0 is the orientation angle between Q and one of the symmetry axes of the
parallelepiped.
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7. TWISTED RIBBON FORM FACTOR

The parametrization of the twisted ribbon was described in an earlier section when
calculating the radius of gyration. Consider a helically twisted ribbon aligned along the
vertical z axis with a helical radius R, height L, width W and ribbon thickness T. Define the
helix pitch p and the azimuthal angle ¢ in the horizontal plane. Define also the polar
coordinate variable in the horizontal plane p and the vertical variable z. The parametric
position along the ribbon is given by:

2
r<¢,z,p>=\/p2 +[@+zj . (32)
27
The single twisted ribbon form factor amplitude is given by:

doldzlod sin[Qr(cb,z,p)uq
Jaefeefo ‘{ Qr(h,2,p)n

[do[dz[pdp

FQ,w) = (33)

All three integrations can be performed numerically using the following limits: -tL/p < ¢ <
nl/p,-W/2 <z < W/2 and R-T/2 < p < R+T/2.

Here also, the form factor is given by an average over orientations:
1
1 2
PQ) = [du|FQuw [ (34)
-1
u = cos(0) and 0 is the orientation angle between Q and the vertical axis of the ribbon.

8. PAIR CORRELATION FUNCTIONS

The form factor P(Q) is the Fourier transform of the probability distribution function P(T):

P(Q) = [d’*rexp(—iQ.F)P(T). (35)

Given an infinitesimal scattering volume chosen randomly inside the considered "particle",
P(r) represents the probability of finding another scatterer within the particle a distance t

away. Usually, a one-dimensional probability distribution p(r) (also referred to as "distance
distribution function") is defined instead:
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Do) (36)

_ 1% sin@Q
PQ) = ! =5

p(r) is available for some of the common shape objects. For a sphere of radius R:

2 2

r r r

N)=12| —||l-—| | 2+— 37
el ) o) o
2 3
=3 L 1-— EL + L L .
R 4R 16\ R
Note the other definition p(r) = 3(r/ R)2 v(r) where y(r) is the radial pair correlation function

) 3r 1(rY
iven b rN=|1-——+—| — .
& y ¥(®) ( 4R 16[Rjj

For a disk of radius R, the distance distribution function is given by:

8 r r r r Y
p(r) = EE[MCCOS(EJ BT 1- (Ej } . (38)

For an infinitely thin rod of length L, the integration is performed from 0 to L and the
normalization constant is 1/L so that:

T
p(r) = 2(1 - fj . (39)

Note that the probability distribution function P( 1) is better known when defined for the
"inter-particle" structure factor Sy(Q) and is often referred to as pair correlation function
g(1)=VP(1) (where V is the sample volume):

S,(Q) = - [dFexpl- 107 f®) - 1] (40)

Here the following constant term:

Jdf exp(-iQ.F) = (22) 5(Q) (41)

has been subtracted from g(r). This term has no contribution except in the (experimentally

irrelevant) forward scattering direction (for which Q= 6).
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QUESTIONS

1. What is the relationship between the form factor P(Q) and its amplitude F(Q) for the case
of a uniform sphere? How about the case of a Gaussian polymer coil?

2. What is the form factor for a uniform sphere of radius R?

3. What is the form factor for a disk of radius R with its axis of rotation oriented parallel to
the Q direction?

4. What is the form factor for a disklike lamella of thickness L with its normal axis oriented
parallel to the Q direction?

5. What is the form factor for a cylinder of radius R and length L oriented perpendicular to
the Q direction?

6. How is the averaging over random orientations performed for the calculation of the form
factor?

7. Write down the radial pair correlation function y(r) for a uniform sphere of radius R. y(r) is

R .
defined through the following 1D Fourier transform: P(Q) = 1 [dr4mr? m}/(r) .
\4 Q

PO r
8. What are the various parts that are used to calculate the SANS macroscopic scattering
cross section for a solution of compact scatterers?
9. What is the Porod exponent for an infinitely thin rod of length L?
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10. Define the spherical Bessel function of first order j;(x). What is J;(x)?
ANSWERS

1. For a uniform sphere P(Q) = |F(Q)|2. For a Gaussian coil, there is no uniform density and
the form factor amplitude cannot be defined.

2. The form factor for a uniform sphere is given as P(Q) = [3 j;(QR)/ QR]2 where j;(QR) is
the spherical Bessel function.

3. The form factor for a disk of radius R with its axis of rotation oriented parallel to the Q
direction is given by P(Q) = [sin(QR)/QR]’ .

4. The form factor for a disklike lamella of thickness L with its normal axis oriented parallel
to the Q direction is given by P(Q) = [2] (QL/ QL]2 where J;(QL) is the cylindrical Bessel
function.

5. The form factor for a cylinder of radius R and length L oriented perpendicular to the Q
direction is given by P(Q) =[2J,(QR)/QR[’.

6. The form factor for a randomly oriented object with its symmetry axis along the z-

1
direction is calculated as P(Q) = (1/ 2) .[ duP(Q,p) where P(Q,u) is the form factor for the

-1
object oriented at an angle 0 from the Q direction (1 = cos(9).
7. The radial pair correlation function for a uniform sphere of radius R is given as

3r 1(rY
r)={1-——+ Note that y(r=2R) = 0.
v()[ 1R 16()] Y(r=2R) =
8. The SANS macroscopic scattering cross section for a solution of compact scatterers is the
product of (1) the contrast factor, (2) the number density of scatterers, (3) the scatterer’s
volume squared, (4) the form factor and (4) the structure factor.
9. Since P(Q) for an infinitely thin rod of length L is given by

P(Q) = Id {N {(Qy RR)] one would think that the Porod law gives P(Q) — 1/ Q°.
—u’

However after orientational averaging, one obtains the following

sin®(QL/2)
P(Q) = (QLJ 1(QL) - —(QL/Z) —, so that P(Q) — 1/Q. The Porod exponent for an

infinitely thin rod is 1.

10. The spherical Bessel function of first order is given by j,(x) = s1n(x) _cosx)

i(x) s

the cylindrical Bessel function.
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Chapter 28 - FORM FACTORS FOR POLYMER SYSTEMS

1. THE DEBYE FUNCTION FOR GAUSSIAN CHAINS

Polymer coils in theta solvents or in the melt state follow Gaussian chain statistics whereby
the inter-monomer distance r;j is given by the following Gaussian distribution function:

3/2 P
P(r)=| — | exp ) (1)
2n<r” > 2<r >

Here <rij2> is the variance given in terms of the statistical segment length a as:
<r’>=a’|i-j|. )

1

The single-chain form factor is given by:

1 o
P(Q) = T2 exp[-1Q.1; ] > €)
i.j
= injdi:ijp(rij ) exp[— ié-fij ]
n ij

I < I Q’ < rij2 >
n’ IZJ“ P 6

L [ Qafi-j
=— ) exp| ———— |.
n’ ,ZJ: p_ 6
The following property of the Gaussian distribution has been used:

2 2 2 2
<Xj > <r;" >
< exp[-iQ,x;]>= exp[_ QXfU] ) eXp[_ QXTU] (4)

Q’ <1’ >
- :

< exp[—iQ.?ij] >= exp[—

The following general identity is used:
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iF(|i—j|)=n+zi_(n—k)F(k). 5)

Assuming that the number of chain segments n is large (n>>1), one obtains the Debye
function (Debye, 1947):

P(Q) = —z{n + 2Zn: (n —k) exp{— Q 2 k}} (6)

1
n k=1

PO = bR, 107k, ]

g

The radius of gyration is given by RgZ\/ a’n/6.
Small-Q and high-Q expansions of the Debye function are:

2 2
Q'R,
3

2

2 2"
Rg

P(QR, <<1)=1- (7)

P(QR, >>1) =

Two approximations are included here for the Debye function:

PQ=7—F—x ®)

PQ = .

The first form agrees better at low-Q and the second form agrees better at high Q.
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Figure 5: Variation of the Debye function P(Q) along with two approximations that bracket
its variation. The form 1/ (1 +Q° Rg2 /3] is a good approximation at low-Q and the form

1/ (1 +Q’R g2 /2) is a good approximation at high-Q.

Polymer chains are not characterized by uniform density. The form factor (Debye function)
is not a square and cannot therefore be expressed as a square of the amplitudes.

2. SINGLE-CHAIN FORM FACTOR FOR GAUSSIAN CHAINS

Consider a flexible polymer coil where each monomer pair located a distance T; apart obeys
the Gaussian distribution:

32 2
P(r) = 3 ex ——3rij 9
ij/ = 2 p 2 . ( )
2n<r > 2<r" >

The average of the segment inter-distances squares is kept in the general form:

<r’>=a’|i-j[". (10)
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v is the excluded volume parameter. Note that §ij =T, in the notation used where T; is in the

laboratory reference frame and gij is in the center-of-mass reference frame. Within this
approach, the single-chain form factor is expressed as:

1 n Lo
P(Q) = S.< exp[-iQ,]> (11)
1’.]
1 o -
= n_zizj;jdrijp(rij)exp[_ IQ-rij]

] Q Q%a’ . .ZV}
=— D exp| - =g .
n’ i { 6

Note that the monomer pair is always correlated through chain connectivity so that the
simplifying approximation P(Q) =/ F(Q)|* (which is made for uniform density objects) is not

valid for polymers. The typical manipulations (as in the case of the Debye function described
previously) are performed.

Assuming that the number of chain segments n is large (n >> 1), one obtains:

1 N Q2a2 2v
P(Q) = n—222(n-k)exp —Tk . (12)
k=1
Going to the continuous limit:
1 2.2
P(Q) =2 dx (1—x)exp{—QT"‘n2szv}. (13)
0

This integral is “almost” analytical and can be expressed in terms of the incomplete gamma
function:

¥(d,U) = [dtexp(-t)t"". (14)

The result is:

1 1 1 1
P(Q)=—y(—,U)- ——y(=,U). 15
Q) O Y(Zv’ ) O Y(V, ) (15)
Q2a2n2v

The modified variable 1s U = <

The high-Q limit of this form is given by:
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1 1 1 1
P(Q—WO)—VUWF(E) - VU—WF(;)- (16)

Here I'(x) = y(x,%0) is the gamma function. The asymptotic limit is dominated by the first
1 1
term ———I'(—) which varies like U ~ Q"".
VUI/ZV (2V) Q
Polymer chains follow Gaussian statistics in polymer solutions: they are swollen in good

solvents, are thermally relaxed in “theta” solvents and partially precipitate in poor solvents.
The familiar Debye function is recovered when v = 5.

3. OTHER POLYMER CHAIN ARCHITECTURES

Many polymer chain architectures exist: "stars" consist of many equal size branches
connected to a central core, "combs" consist of side branches grafted onto a main chain,
"rings" consist of looped chains, "gels" consist of highly branched structures that are grown
outwardly (dendrimers are the most regular gels), "networks" consist of crosslinked systems
that contain a large number of inter-connected structures, etc. These various polymer systems
are made in the homopolymer form (all monomers are chemically identical) or copolymer
form (each chain portion consists of blocks of monomers that are chemically different).
Single-chain form factors for such architectures have been worked out and are summarized
elsewhere (Burchard, 1983; Hammouda, 1993; Higgins-Benoit, 1994). Basic elements are
included here.

In the same spirit used to derive the form factor for an isolated polymer chain (Debye
function):

P(Q) :Q%R;[exp(_QzRgz)_1+QzRg2], (17)

one can also derive the form factor amplitude for a polymer chain anchored at one end. In
this case:

F(Q) =%iexp{— W} (8)

B l—exp[—QzRg 2]
a QzRgz :

Similarly, a propagation factor can be defined (involving no summation):

E(Q) =exp[-Q°R,’]. (19)
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P(Q) F(Q) E(Q)

Figure 6: Schematic representation of the summation variables for the various scattering
factors for Gaussian polymer chains.

The three scattering factors E(Q), F(Q), and P(Q) can be used to work out the form factors
for many polymer architectures.

Consider the simple case of a diblock copolymer A-B consisting of two blocks with No-Ng
segments. The various partial form factors follow:

P(Q)=n,’P,, (Q)+n, Py (Q)+2n,n,P,;(Q) (20)

P,s(Q) =F,(QF;(Q).

Consider now an A-B-C triblock copolymer with na-ng-nc segments. The form factor
involves many terms:

P(Q)=n,’P,,(Q)+n, Py (Q) +1n."Pec (Q) 1)
+ 2nAnBPAB (Q) + 2anCPBC (Q) + 2nAnCPAC (Q)

PAB (Q) = FA (Q)FB (Q)

P, (Q) =F,(Q)F.(Q)

P,c(Q) = F, (QEL(QF.(Q).

The scattering lengths have been omitted for convenience. They have all been assumed to be
equal. In order to calculate the SANS scattering cross section, one would have to include the
contrast factors, the segment volumes, the polymer macromolecules number densities, and
the inter-polymer structure factors.

Other more complex architectures can be handled this way.
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Star Polymer Comb Polymer Dendrimer

Figure 7: Various possible polymer architectures exist.

4. STAR POLYMER ARCHITECTURE

The simplest case of polymer chain branching is the star polymer which is considered here.

Figure 8: Representation of a star polymer with 5 branches.

The form factor for a star polymer containing n, branches and n statistical segments per
branch is given by:

P(Q) = —(n,n*P(m) +n, (n, ~Hn’F*(n)). (22)

n,’n

P(n) is the form factor for a chain with n segments (Debye function) and F(n) is the form
factor amplitude. Consider the following relationship (identity):

(2n)’P(2n) = 2n°P(n) + 2n°F*(n). (23)
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Therefore:

P(Q)=— (2P(2n)+(n ~2)F?(n)). (24)

b

This is the result for the form factor for a Gaussian polymer star. More complicated
architectures (comb, dendrimers, arborescent structures, etc) can be handled this way.

5. POLYMER RINGS

The form factor for a polymer ring can be calculated using a multivariate Gaussian
distribution approach. For a Gaussian polymer ring, P(Q) can be calculated as follows:

PQ) =5 Zexp[ V< ] (25)

In order to evaluate <r;*>, construct the ring from a linear chain which is then closed.

i

Figure 9: A polymer ring can be constructed by closing a linear chain.

A bivariate Gaussian distribution is defined as:

L 3 V1
P(rl’rz):(znazj Xexp(_

Here 1, =T, A is the determinant of the correlation matrix C, D is the inverse (D = C_l)

3 & .
3 Zr“.Dw.er. (26)
[TRY

and the 4 elements of C are given by: C,, =<T,.T, >/ a’ with {u,v=1,2}. The ring closing

step is formed by setting 1, = 0. This leaves a univariate Gaussian distribution:

P(1,,0)

= 27)
[diP(0)

P(1) =
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3
3 Y2 3 3 -
:(znazj D, eXp(‘EDMHZ}

The average mean square distance between 2 monomers i and j that belong to the blocks of
length n is therefore given by:

L= (28)

More specifically, in this case:

2
<r > . .
C, =" =(j-) (29)
a
<r22>
Cyp = 22 =n
So that:
n
=— — (30)
b li=jl (= i-j)
<rij2>:a2|i—j|(1—uj.
n
The form factor for the polymer ring is therefore:
L3 Qzazli—j|( |i—j|}'
P(Q)=—) exp| — 1- 31
Q) nziZJ; p{ 6 ) €1y

1 N k a’k k
:F{n+2n§(1—zjexp{—Q Z I—Hﬂ}

The first term is dropped for n >>1. In order to simplify this equation, we take the continuous
chain limit (whereby Q*a*/6<<1 and n >>1 but keeping Q”*a’n/6 finite) and change the
summations into integrations:

2.2

P(Q) = Z_i. ds(l - s)exp[— Q 2 1 s(l - s)} . (32)

We notice the following identity:
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2‘id5(l ) exp{— ngzn s(l - s)} = ids exp{— Q p n s(l - s)} . (33)

Therefore:

P(Q) = jds exp{— Q 2 2501 —s)} . (34)

After integration variable changes and a few manipulations, one obtains the final result:

D(U)

P(Q) = 0 (35)
Here D(U) is Dawson’s integral:
D(U) = exp(- U? )| dtexp(t* ). (36)

The variable U is given by U = Qzazn/6/2 =QR, /2.

The method described here for a single ring can be generalized to calculate more complex
structures containing looping features.

6. MORE COMPLEX RING-CONTAINING ARCHITECTURES

Another case involving correlations between 2 blocks (n monomers each) separated by 3
linear chain portions (n , n, and n, monomers respectively) that are joined at the extremities

of the 2 blocks is considered here. This structure can be constructed using a long linear chain
(with 2n+n +n,+n, monomers) that includes 2 crosslinks (corresponding to T, =0 and

T, = 0). All segment lengths are assumed to be equal to a for simplicity.
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Figure 10: Correlations between two (outer) blocks for a particular polymer chain
architecture.

A trivariate Gaussian distribution describing this structure is given by:

9
. 3 )21 3 - -
P(rl’r2°r3):(2na2) —3exp(— 2azzru.Dw.rV]. (37)
[TRY

Here also T, =T; andC has 9 elements. The two crosslinks are formed by setting T, =, =0
leading to P(7,).

In this case:

C,= (n-i+j+n1+n2+n3) (38)
C, =G, =,y

C;=C; =)

C,, = (n,tn,)

Cp=Cyy=n,
C,; = (n,+n,).

Therefore:

crloeg? (—i+j+n)(n1n2 +n,n, +n2n3)+ n,n,n, . (39)

1)
nn, +nn; +n,n,

The partial form factor describing correlations between the two outer blocks is given by:
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P(Q) = Zexp[ ¢ <6r” J (40)

which can be written simply as:

=l (sl
1 2 3 an

In summary, this method consists in forming the correlation diagram using one single chain
and choosing judiciously the location of crosslinks. All elements of the correlation matrix C

need to be calculated so that the first element (recall that 1, = 1) of its inverse, D, =A /A

(where A, is the cofactor of element C , and A is the determinant of C) is obtained therefore

yielding <rij2>/a2=A/A11. This procedure is useful for the calculation of correlations needed
in the modeling of more complicated architectures ("olympic rings", regular networks, etc).
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QUESTIONS

1. What is the form factor for a Gaussian polymer coil of radius of gyration R,?

2. Calculate the form factor Poc(Q) between the two outer blocks for a triblock copolymer A-
B-C.

3. What is the form factor for a Gaussian polymer ring?

4. Calculate the radius of gyration for a Gaussian ring polymer.

ANSWERS

1. The form factor for a Gaussian polymer coil is given by the Debye function
P(Q) = Z[eXp(—QZRg2 )— 1+ QzRg2 ]/ Q‘R," where R, is the radius of gyration.
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2. The form factor Poc(Q) between the two outer blocks for a triblock copolymer A-B-C is
1- exp[— QZRgA 2] exp[— QzRgB 2 ] 1- exp[— QzRgC 2]
(QZ]KgA2 QZRgB2 (QZ]KgC2

radii of gyration of the blocks.

given by P,.(Q) =

where R,’s are the

U
3. The form factor for a Gaussian polymer ring is given by P(Q) = {exp(— U® )/ U}j dt exp(tz)
0

where U = Ry/2.
4. The radius of gyration squared for a Gaussian ring polymer is given by:
1 1 2 3 4! 2 2
R 2:1’1212.|’(],SS(1—S)2:nazjds(s_zsz-|-s3):na2 S__25__+_S_ na 1 na
) 0 0 2 3 4

0
2

Recall that for a linear polymer Rg2 =1 Heren is the degree of polymerization and a is

the statistical segment length.
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Chapter 29 - EFFECT OF POLYDISPERSITY

Most scattering systems are characterized by a size distribution regardless of their shapes and
sizes. Polydispersity is discussed briefly here by introducing the main polydispersity size
distributions used in the literature and presenting averages over these distributions for a few
quantities relevant to SANS measurements.

1. SCATTERING FROM A MONODISPERSE SYSTEM

Consider the following scattering cross section for an infinitely dilute solution of
monodisperse particles (think spheres) containing N particles of radius R.

d=(Q) _ (EjApzvpzp(QR) _ (ngpz(%j R°P(QR) (la)

dQ A%
¢ 2v7 2 2 4m 3

¢ is the particles’ volume fraction (¢ = NV, /V), Ap” is the contrast factor, V is the sample

volume, V5 is the particle volume and P(Q) =| F(Q) |” is the form factor for the scattering
particles.

The forward scattering cross section is obtained for Q = 0; i.e., for P(QR) = 1. The radius of
gyration (also called Guinier radius) is given by the low-Q expansion:

2 2
QR,
3 5

P(QR)=1- 2)

2. EFFECT OF POLYDISPERSITY

Consider polydisperse size particles with distribution f(R) which is normalized as

Jde (R) =1. The polydispersity averaged cross section can have one of two forms:
0

d=(Q)] (N, ,[(4n)'% ]

{—dQ }—(—VjAp (—3 j z[de(R)R P(QR) (3a)
dZ(Q) . of 41 T 3

{—dQ }—d)Ap (—3 j'([de(R)R P(QR). (3b)
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These two forms apply depending on whether the number density (N/V) or the volume
fraction ¢ is independent of polydispersity.

The first formula is used in the literature (Kotlarchyk-Chen, 1983; Walter et al, 1985).

The low-Q Guinier expansion for P(QR) =1-Q?R?/5 yields either one of the two
following cases:

e [
e
-2

S

(4b)
d2(Q=0)| 4\
{ i }_d’Ap(sj{R}

o2

Note that these results do not apply only to spherical particles but to other arbitrary shapes.

3. THE GAUSSIAN POLYDISPERSITY DISTRIBUTION

The Gaussian polydispersity distribution is given by:

exp {_ M} _ (5)

f(R) = 5

1
ov2n

o is the standard deviation and R,, is the average radius (R,y=<R>). Their ratio is defined as
p =0o/Ry.

The N™ moment is given by:

R¥}|=R,N(1+A,p>+3A,p*+ 3*5A,p° +..) (6)
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The following coefficients have been used:

=2 ™)
- NN-DIN-2D(N-3) NI
41 (N -4)!4]
A= N
(N -6)!4!

N! represents “N factorial” given by N! = N(N-1)(N-2)...3.2.1. The Ay are the even
coefficients of the N"-nomial expansion:

(1+R)N =1+ AR + A,R*+... A\RY (8)

AL = N(N-D(N-2)..(N-k+1) _ NI
' k! (N-k)'k!

The average scattering particle volume is given by:

Vo= R = TR, (139, ©)

The low Q (Guinier) expansion involves the following averages:
R}=R,(1+3p?) (10)
R*}=R,*(1+10p> +15p*)
R
j

R¥}=R, " (1+28p* +210p* +420p° +105p*).

R, (1+15p> +45p* +15p°)

4. THE LOG-NORMAL POLYDISPERSITY DISTRIBUTION
The log-normal polydispersity distribution is identical to the Gaussian distribution but with

the variable In(R) instead or R. It is sometime used to describe bicontinuous (non-particulate)
structures and is given by:

_ 1 _ (In(R)— )’
f(R) GRmexp{ = } (11)
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K = In(Rpeq) and Ryneq is the median radius. The various relevant averages are as follows:

{ N}=exp(Nu+N22"2] (12

R} - exp[w%aj

V}= 4?R{R“f: ?exp(ﬁw%czj

Rk = exp(u ~-c’ )

The low Q (Guinier) expansion involves the following averages:
{R3}:exp 3u+%02j (13)

{RS}: exp 5u+%02

{R(’}: exp 6“-1-%62

{Rg}: exp 8p+%02 .

5. THE SCHULZ POLYDISPERSITY DISTRIBUTION

The Schulz polydispersity distribution (Schulz, 1939) was introduced to describe the
molecular weight distribution of synthetic polymers. It is given by:

21 2 exp[—(z +1)x]

fR) =(e+1) R, T(z+1)

for z> -1 (14)

R,y is the average radius and x is the scaled variable x = R/R, , p is given by the ratio of the

av ?

standard deviation o to the average radius as p=o/R,, and z = 1/ p° —1 is the width

parameter. ['(z+1) is the Gamma function. Note that ['(z+1) = zI'(z) = z! (factorial z). The
Schulz distribution tends to the Gaussian distribution at large z (i.e., for the highly
monodisperse case).
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The various relevant averages are calculated through the N™ moment:

RY}= TdRRNf(R) (15)

T N z+1 R ’ - R Rav
= [dRR(z+1) (R j eXp[R(Z;(Z)H/) |

av

o0

- z+N _ 1 R R
_[ar(z 1yt R wLEIDRR,)
0 R, * R, T(z+1)

Integrate by parts once:

{RN}: (Z+N)R

& RN exp[—(z+1)R/R,, ]
(z + 1) o

dR(z +1
R ° R, T(z+1)

(16)

S ey 8

It is noted that [R. exp{— (z+DR/ Rav}]zo = 0. Integrate by parts N times to obtain the final
result:

Ry Z+ N TdR(zH)”‘ R*™" exp[-(z+DR/R ] (17
z+1)" "y R’ R, T(z+1)
N
{RN}: R, (z+N)!
z+D)N oz

This can be used to obtain:

e
(z+1)

The low Q (Guinier) expansion involves the following averages:

Re)- R 3 (z+3)(z+2)

(z+1)° (18)

{Rs}zR s (z+5)!

Y (z+1)z

{Rﬁ}_R ¢ (z+06)!

o (z+1)°z
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{Rg} R 8 (Z+8)'

T (z+1)%z

These averages are used to calculate {%} and {R g2 }

A figure compares the Gaussian and the Schulz polydispersity distributions.

polydispersity distributions
0.05 \ \ \ \

0.04 - Gaussian B

Schulz

0.03 -

0.02 ~

0.01 -~

Polydispersity Distributions

-0.01 \ \ \ \ \ \
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Figure 1: Comparison of the Gaussian and Schulz polydispersity distributions for Ry, = 50 A
and o = 10 A. The Schulz distribution is skewed toward larger sizes (it crosses over the
Gaussian distribution R around 80 A).

REFERENCES
G.V. Schulz, Z. Phys. Chem. 43, 25-46 (1939).
M. Kotlarchyk and S.H. Chen, J. Chem. Phys. 79, 2461-2459 (1983).

G. Walter, R. Kranold, T. Gerber, J. Baldrian and M. Steinhart, ‘“Particle-Size Distribution
from Small-Angle X-Ray-Scattering Data”, J. of Appl. Cryst. 18, 205-213 (1985)

301



QUESTIONS

1. What is the effect of polydispersity on SANS data?

2. Which of the polydispersity distributions is used for polymers?

3. Calculate <R> using any distribution.

4. Calculate <R*> using the Schulz distribution.

5. How to calculate the polydispersity averaged scattering cross section for a dilute system?

ANSWERS

1. Polydispersity has the same effect as instrumental smearing. It tends to broaden peaks and

fill in valleys.

2. The Schulz distribution is the best choice for describing polydispersity effects in polymers.
It yields compact analytical results for characteristic chain properties (radius of gyration and

form factor).

3. <R> = R,y by definition regardless of the distribution used.

3(z+3)(z+2)

4. For the Schulz distribution < R* >= R,, 5
(z+1)

. In order to demonstrate this,

integrate by parts three times.
5. The polydispersity averaged scattering cross section for a dilute system is calculated

2 o0
through the following integration: {%} = (EjApz (4?%) def (R)R°P(QR).
0

A%
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Chapter 30 - SCATTERING FROM DILUTE
POLYDISPERSE SYSTEMS

As the next step towards calculating the scattering cross section for realistic systems, we
introduce the case of non-interacting systems. A good example for this could be a non-
interacting (think infinitely dilute) solution of spheres or a non-interacting solution of
polymer coils. Consider the simple monodisperse cases first then introduce the effect of
polydispersity.

1. INIFINITELY DILUTE SOLUTION OF MONODISPERSE SPHERES

The macroscopic scattering cross section for a solution of non-interacting monodisperse
spheres (of radius R) contains the spheres number density (N/ V) , the contract factor Ap?, the

2
particle volume squared [%Rj and the single-particle form factor P(QR) given by:

3jl(QR)T _ [3[sin(QR)—(QR) COS(QR)T. 0

P(QR) =
QR { (QR) (QR)’

Putting these terms together, one obtains:

d=(Q) :(EJA 2(4_nR3J2 3,@QR) | o
o \v) P13 QR) |-

Note that this cross section has units of cm™ and that the single-particle form factor is
normalized to unity, i.e., P(QR=0) = 1. This result is for non-interacting spheres only (in the
so-called infinite dilute limit). The effect of polydispersity is included next.

2. INFINITELY DILUTE SOLUTION OF POLYDISPERSE SPHERES

Consider a solution of non-interacting polydisperse spheres (or radius R) and include
polydispersity to the sphere size by choosing the Schulz distribution for the sphere radius
with R,y as the mean radius and o as the standard deviation. Defining the polydispersity

av

(o}

d2Q) _ (Na )2 T 4nV30@QR) T
o [ " jAp ! de(R)( S R j { x } 3)

parameter z = —1, the macroscopic cross section becomes:

Where f(R) is taken to be the Schulz distribution:
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_ z+1 R ’ 1 B i ]
f(R) = (z+1) (Rvj RaVF(Z+1)eXp{ (z+1)R }forz> 1 4

a av

Therefore:

dX(Q) _ (&jAp (47?] 32 %
dQ v 3
(éj ! dR(z +1)"" (RRW J RWFEZ D exp{— (z+ 1)%}[@1(@1) —(QR)cos(QR)[ .
®)

av

This long formula could not fit in one line. The integral in the second line involves Laplace
transforms of trigonometric functions multiplied by powers of the variable R. The integration
steps are too tedious to report here. The final result is (Bartlett-Ottewill, 1992):

@{EJAP (475] 32 %
dQ A\ 3

1. 1(z+2) 1 (221
{ ) Z+]) (QR)’ [G(2QR)] cos[(z+1)F(2QR)]

(z+2)

—(QR)[G(2QR)] 2 sin[(z+2)F(2QR)]

P (Z+2)[

+(Q)( o

(2QR)] 2 cos[(z+3)F(2QR)]} (6)

The following functions have been defined:

_ (z+1)?

CQR) (z+1)* +(2QR)? @
_ -1 2QR

F(2QR) = tan ( - 1)]

Tan™ is the inverse trigonometric function sometime referred to as Arctan. This result is for a
solution of non-interacting polydisperse spheres.

3. DILUTE SOLUTION OF NON-INTERACTING MONODISPERSE POLYMER
COILS
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The macroscopic scattering cross section for a solution of non-interacting polymer coils (of
radius of gyration Ry) contains the coils number density (N/V), the contract factor Ap’, the

coils volume squared (nV)2 where n is the degree of polymerization (number of monomers
per coil) and the single-particle form factor

(8)

g _

(Q°R,)’

P(QR,) is also referred to as the Debye function. Note that in this case, the single-coil form
factor cannot be written as a square like in the spheres case. Putting all terms together gives:

dZ(Q) :(EjApZ(nV)Zz exp|:_Q2]E{gz]_l—l—QZ]E{g2 (9)
dQ \ (Q’R,)? '

Defining the polymer volume fraction as ¢ = Nnv/V, this result can also be written as:

% = Ap’ndvP(Q). (10)

This non-interacting coils’ result applies to very dilute solutions only. Concentration effects
are not included here at all. Instead, polydispersity effects are discussed.

4. DILUTE SOLUTION OF NON-INTERTACTING POLYDISPERSE COILS

Consider polydisperse coils that follow the Schulz distribution f(n) with average number of
monomers per coil (degree of polymerization) n = {n} and standard deviation ¢ =

N {n2 }— {n}2 . The polydispersity variable z is related to ¢ and to the degree of polydispersity

ilﬂ as:
nf

Z+2—(ET+1—@. (11)

z+1 n

The scattering cross section for a solution of non-interacting coils is given by:

dX(Q) (N), , »7 > .| exp[—on]—1+on
o (vjAp v Z[dnf(n)n 2{ (on)’ } (12)
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Another scattering variable is introduced as o = Q%6 (a being the statistical segment
length). The polydispersity integral can be performed to obtain the cross section for
polydisperse coils (in the infinite dilution limit):

—(z+])
a(Q) _ (EjApzvz.i{[lﬂx n J 1+an} (13)
dQ \Y% o (z+1)

n is related to the number average molecular weight as:

M,=m{n} = mn (14)

m is the molar mass of one monomer. The weight average molecular weight is defined as:

Mw=m@=mnz+2, (15)
{H} z+1

The polydispersity index is defined as the ratio:

M, I’} _ z+2 (16)

M, )  z+1

n

The results derived in this section apply to polydisperse non-interacting coils (Aragon-
Pecora, 1976; Higgins-Benoit, 1996).
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QUESTIONS

1. Write down the scattering cross section for a dilute polydisperse solution of spheres. There
is no need performing the integral.

2. Write down the scattering cross section for a dilute polydisperse solution of polymer coils
using the Schulz distribution.

3. Write down the degree of polydispersity for polymers using the Schulz distribution.
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ANSWERS

1. The scattering cross section for a dilute polydisperse solution of spheres is given by the

ing integral Q@ _ (Na 2 1 an V@R |
following integral 10 ( v jAp .!;de(R)( : R j { OR } .

2. The scattering cross section for a dilute polydisperse solution of polymer coils is given by

—(z+1)
the following expression % = (EjApz V%%Kl +a ] -1+ om} where o =
o

\" (z+1)

Q%a%/6 and standard notation has been used.

2
3. Using the Schulz distribution, the degree of polydispersity is given by My - M )
M
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Chapter 31 - STRUCTURE FACTORS FOR POLYMER SYSTEMS

Up to now, this book has focused on infinitely dilute systems only. Such systems are non-
interacting and require solely the calculation of the form factor P(Q) for isolated particles.
More concentrated (or interacting) systems require the calculation of the structure factor
S(Q). Structure factors for fully interacting polymer systems are considered here. These
apply to semi-dilute and concentrated polymer solutions and polymer blend mixtures in the
homogeneous phase.

1. SCATTERING FROM INCOMPRESSIBLE SYSTEMS

Consider a system consisting of N “particles” of scattering length bp occupying the sample
volume V. The following would still hold if the word “polymers” were substituted for the
word “particles”. The scattering cross section is proportional to the density-density
correlation function as follows:

dx 1 5 !
S =y cemliQh )= by L enQmp@ >, ()

Here np(Q) is the fluctuating particle density in Fourier space. The cross section for particles
in solution is given by:

dz 1 !
_dg?) =by’ & <np(-Qnp(Q) > +bs” = <ng(-Qng(Q) >
#2bybg < <np (-Qng(Q) > @)

The subscripts P and S stand for particle and solvent respectively. For the sake of
convenience, the following scattering factors are defined:

2

Spp(Q) = VT <n,(-Q)np(Q) > 3)

Sgs (Q) =%< ng(-Q)n(Q) >

Vp Vg
A/

Sps (Q) = < np(_Q)ns(Q) >

The volumes vp and vs and scattering length densities p, =b, /v, and pg =bg /v are

defined for the polymer and the solvent respectively. To clarify, vp is the monomer volume
and vg is the volume of the solvent molecule. The scattering cross section becomes:
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d=(Q) _

40 Spp(Q)-l-Ps SSS(Q)+2pPpSSPs(Q)- (4)

Most scattering systems are incompressible. It is often convenient to make the following
incompressibility assumption:

v, (Q)+veng(Q)=0. (5)
This introduces the following simplification:
vpo <n,(-Qny(Q)>=vs" <ng(-Q)ns(Q) > (©6)
=—Vv,Vg <n,(-Q)ng(Q) >.
In other words:

Spp(Q) =S5 (Q) = =S5 (Q) = =S, (Q) (7
This simplifies the cross section to the following form:

dx
B (o, )51 (Q) = 497S,5(Q). ®)

dQ
This is reasonable since the contrast factor Ap” is always calculated relative to a
“background” scattering length density value. Here, the solvent’s scattering length density is
taken to be that reference value.

2. INTER-PARTICLE INTERACTIONS

Consider a system consisting of N polymers of contrast factor Ap” occupying volume V.
Each polymer comprises n monomers of volume v each so that the polymer volume is vp=
nv. Let us separate out the intra-polymer and the inter-polymer terms in the scattering cross
section as follows:

BEQ) oy {

o= BIJ oc#Bi,j

The indices o and 3 run over the polymer chains and the indices i and j run over the
monomers in a specific polymer chain. Consider a pair of polymer coils (called 1 and 2) and
sum over all pairs.
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27 . n ~
dz(Q) _ Ap2 Y| NY < exp(— iQ,?m.)> +N(N-DY < eXp(— iQ.fm-)> - (10)
dQ VI ij ! i :

Note that this formalism holds if the word “particles” were to be substituted for the word
“polymers” assuming (of course) that the particles have internal structure (think monomers).

Figure 1: Schematic representation of the coordinate system showing a pair of scatterers that
belong to two different polymer coils.

The inter-distance between the scattering pair T;,; can be expressed as T;,; =-S;; +S,; + R,

. and the inter-particle average can be split into the following parts:
< exp(— ié.fmj )> =< exp(i(}.gli ) >< exp(— iQSzj )>< exp(— ié.ﬁlz ) > (11)

The first two averages are within single particles and the third average is across particles.
The summations become:

i < exp(— iQSmj ) > =< exp(— iQR,, ) > i< exp(iQSli ) >i < exp(— iQSzj ) >.(12)
i j

i,j

The form factor amplitude is defined as:

F(Q) = %z< expl-i08,)> = - 3< expl- 103, ). (13)

nj

The single-particle form factor itself is defined as:
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1 n o
PQ=33< exp(- 108, )>. (14)
1]

For uniform density particles, the following relation holds P(Q) = F(Q) |°. This is not true,
however, for non-uniform density object such as polymer coils.

An inter-particle structure factor is defined as:
1 N —
$1Q) = < exp(-iQR o )>. (15)

The cross section can therefore be written as follows:

dZ(Q) = Ap 2 v’

5 [P(Q)+ [FQ) I (5,(Q-1)]. (16)

Note that the statistical average < exp(i().fli2 i ) > involves integration over the following
probability distribution P(%;,T,;, R,,) which can be split to show a conditional probability
P(%;, 1), R,)=P(,.%, il R,,)P(R,,) . For compact scatterers which do not interfere with
each other’s rotation P(t;, T, | R,,) is independent of R,,. P(R,) is the probability of

finding the centers of mass of polymer coils 1 and 2 a distance ﬁlz apart.

== N. = = =
The cross section for systems in this case is given by:

dZ(Q) =Ap2 v’n N

FQFP [FQF
dQ

$,(Q)- )} (18)

This result applies to systems with non-spherical symmetry and non-uniform density such as
polymers. Polymer are, however, so highly entangled that an inter-chain structure factor
Si(Q) is meaningless except for dilute solutions whereby polymer coils do not overlap. Inter-
chain interactions for polymer systems are better handled using other methods described
below.

Uniform density scatterers (such as particles) are characterized by P(Q) =| F(Q) |?, so that:

dxQ) _pp? YN v’n’

10 P(Q)S Q). (19)

Defining a particles’ volume fraction as ¢ = Nnv/V, the following result is obtained:
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d2Q) _ , »
o ArSQ (20)

S(Q) = n¢vP(Q)S,(Q).

This is a well-known result. It is included here even-though it does not apply to polymer
systems so that the derivation does not have to be repeated when covering scattering from
particulate systems later. Note that the scattering factor S(Q) and the inter-particle structure
factor S;(Q) should not be confused; S(Q) has the dimension of a volume whereas S;(Q) is
dimensionless.

3. THE PAIR CORRELATION FUNCTION

Recall the definition for the inter-particle structure factor for a pair of particles (named 1 and
2):

$,(Q) = N < exp[-iQR,, )>= % %ﬁ< exp(-iQR,, )> 1)

1 N o -
= WEJ&RQB exp(— QR 4 )P(RQB) .

P(R o) 18 the probability of finding particle 3 in volume d3Ra[5 a distance Raﬁ away given

that particle o at the origin. When the self term (o = ) is omitted, this result becomes:

1 N - - -
$1Q)-1= 1y LR, exp(-iQ.R o JP(R o) (22)

N ~ == —
= de3R12 exp(— 1IQR, )P(Rlz) .

The probability P(f{u) is referred to as the pair correlation function and is often called

g(lilz) . Removing the forward scattering term yields the following well known result:

$;(Q)-1= %J&Ru exp(-iQR,, Ja R p) - 1]+ 2m)*8(Q). (23)

The last term (containing the Dirac Delta function) is irrelevant and can be neglected. This
last equation shows that S;(Q)—1 and g(f{lz) —1 are a Fourier transform pair. Note that

g(lilz) peaks at the first nearest-neighbor shell and goes asymptotically to unity at large

distances. The total correlation function is introduced as h(ﬁlz) = g(ﬁlz) —-1.

4. POLYMER SOLUTIONS
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In the case of polymer solutions, the Zimm single-contact approximation (Zimm, 1946;
Zimm, 1948) is a simple way of expressing the inter-polymer structure factor. Within that
approximation, the first order term in a “concentration” expansion is as follows:

n . 2 2
§j< eXP(— 1Q.1y55; )> =— V\';" {VVHZP(Q)J +... (24)

Vex 18 @ dimensionless factor representing interactions. The cross section becomes an
expansion:

VCX

Q) _ " (S,(Q))’ +} (25)

dQ

Ap’ |:So Q-

This expansion can be resumed as follows 1—x +x?...=1/(1+x) to yield:

42Q) _ 2 Si(Q

dQ v

. (26)
1+ V S,(Q)

The bare structure factor for non-interacting polymers has been defined as:

Nn’v?

SO(Q) = v

P(Q) = n¢vP(Q). (27)

Resuming the series extends the single-contact approximation’s applicability range to a wide
concentration regime. The single-contact approximation applies best to semi-dilute solutions.
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Included Interactloﬂ

Excluded Interactions

P H

Figure 2: Typical interactions that are included and those that are excluded within the single-
contact approximation.

5. THE ZERO CONTRAST METHOD

The zero contrast (or scattering length density match) method also called the high
concentration method for polymer systems consists of using a mixture of deuterated and non-
deuterated polymers and deuterated and non-deuterated solvents in order to isolate the single-
chain form factor; i.e., in order to cancel out the inter-chain interaction terms. The scattering
cross section for a polymer solution containing both deuterated and non-deuterated polymers
is given by:

di(f(;) = AP Spp(Q) + Apy Sy (Q) +24p AP Sy (Q) (28)

The scattering length density differences between the deuterated (or hydrogenated) polymer
and the solvent are:

Apy, = (pD - ps): (V___J (29)
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Apy = (py —ps)=£b—H—b—sJ-

Vy Vg

The various partial scattering factors are split into single-chain parts and inter-chain parts as
follows:

Spp(Q) = 1y vy [P*5(Q) + ¢ P'on (Q))] (30)

St (Q) = Ny by vy [P*1 (Q) + by Pl (Q)

Sup(Q) = ’\/an)HVH '\/nD(I)DVD '\/(I)H(I)DPIHD Q).

Note that the inter-chain structure factors could be negative depending on the volume
fraction. Assume that deuterated and hydrogenated polymers have the same degree of
polymerization (n,, = n, =n, ), and the same volume (v, = v, = v, ), and define the
polymer volume fraction as ¢, = ¢, + ¢, . The contrast match method consists in varying

the relative deuterated to hydrogenated volume fraction but keeping the total polymer
volume fraction constant.

Define the following “average of the square” and “square of the average” polymer contrast
factors:

2 Zd)]) 2¢H
AB,2 1=| Ap 2 *D L Ap 200 31
{P}[9D¢P+pH¢J (31)
) bp ou |
AB, Y =| Ap. *2 4 Ap, B |
{AB, | {pD¢P+ pH(d

The scattering cross section becomes:

B a8, oy, P Q)+ {AB, Py (Q)

= (1B, |- {AB, ¥ b0, v, Py (Q) + {AB, 1,0, v, P (Q). (32)
The following definition has been used:
Pr(Q)=Ps(Q)+¢,P,(Q). (33)

Note the following simplifications:

(AB,? |- {AB, ' = (py —py, ) 220 (34)
¢
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(I)D ¢H ¢D d)H
ABP =A D, A H . —Pp— H T —Ps-
B = Aoy 4 Au Ty = Po g Py P
The final result follows:
dig)) =(pp —pu) ¢41)3:1’2H npq)PVPPS(Q)-i-[pD $—1:+pH i—i‘—sz n,4,v,P.(Q). (35)

Setting the second contrast factor (between the polymer and the solvent) to zero cancels the
second term containing P(Q) leaving only the first term containing the single-chain form
factor Pg(Q). This zero contrast condition is therefore:

dp Oy
p, TPu, TPs- 36
p ¢P+p o, p (36)

Note that in general in order to achieve this condition, the solvent must also consist of
mixtures of deuterated and non-deuterated solvents. Defining the following four indices DP,
HP, DS, and HS for deuterated polymer, non-deuterated (hydrogenated) polymer, deuterated
solvent and non-deuterated solvent, the contrast match condition becomes in the general
case:

¢ o o ¢
pDP£+pHP£=pDS = +pﬁsis (37)

dp dp ds g

Note that ¢pp + ¢pup= ¢p , Pps+ Pus = ¢p and dp+ Pps= 1.

6. THE RANDOM PHASE APPROXIMATION

The random phase approximation (de Gennes, 1979, Akcasu-Tombakoglu, 1990;
Hammouda, 1993; Higgins-Benoit, 1994) is a simple mean-field approach used to calculate
the linear response of a homogeneous polymer mixture following a thermodynamic
fluctuation. Consider a binary mixture consisting of a mixture of polymers 1 and 2 with
fluctuating densities n;(Q) and ny(Q). The interaction potentials between monomers 1 and 2
are Wi, Wi, Wa; and Wy,. Assume an external perturbation represented by potentials U
and U, and a constraint u that helps apply the incompressibility assumption. The parameter u
can be thought of as a Lagrange multiplier in an optimization problem with constraints. The
constraint here is the incompressibility condition. The linear response equations follow:

U, +u+ W, vin, (Q)+W,v,n,(Q)

vin, (Q) = _8?1 Q) T

(38a)
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U, +u+W,vin (Q+W,v,n,(Q)

38b
- (38b)

v,n,(Q) = _ng Q)

vin, (Q)+v,n,(Q)=0. (38¢)

The last equation represents the incompressibility constraint. The non-interacting or “bare”
structure factors S/, (Q) and S5, (Q) have been defined. These equations have assumed that

no copolymers are present in the homogeneous mixture; i.e., that S}, (Q) =SJ,(Q)=0.

In order to solve the set of linear equations, we extract the perturbing potential u from the
second equation and substitute it into the first equation to obtain:

vin,(Q) =S, (Q){% v, (Qn, (Q)} . (39)

This applies along with the following equation representing the response of the fully
interacting system:

v, (Q)=-S, (Q)[%} . (40)

The factor v;;(Q) and the Flory-Huggins interaction parameter 7, are defined as:

_ b 2x,
m(Q)—SgZ(Q) v (41)

X2 =

_ Wi, _ Wi + W, '
k,T

2k, T
Here vy is a reference volume (often taken to be v, =4/v,v, ).

The RPA result for a homogeneous binary blend mixture follows:

1 _ 1 N 1 2y,
S, (Q) S?I(Q) ng(Q) Vo

(42)

8?1 Q) =n,9,v,P(Q).

P,(Q) = Q4]32{ 2 [exp(_QZRglz)_l+Q2Rg12

gl
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Ry is the radius of gyration. The incompressibility assumption yields the simplifying
relations:

$1(Q) =8, (Q) =-5,,(Q) =S(Q). (43)

The scattering cross section is given by:

(0) P
30 =(p, —p,)"S(Q) (44)
(p1 _pz)z _ 1 n I 2%
d2Q  8/(Q SLQ v,
dQ

This is the so-called de Gennes formula representing the scattering cross section for polymer
blends in the single-phase (mixed phase) region. This is based on the Random Phase
Approximation that applies for long degree of polymerizations (n;>>1 and n;>>2) and far
from the phase boundary condition. This approach does not apply inside the demixed phase
region.

This formalism also applies to polymer solutions by replacing one of the polymers (say
component 2) by solvent; i.e., by setting n,= 1 and P,(Q) = 1. In the case of polymer
solutions, the excluded volume effect is included in the polymer form factor P;(Q). Note that
the second virial coefficient can be defined for polymer solutions as A, = v,,;(Q =0)/2.

The phase separation condition is achieved when the scattering intensity “blows up”; i.e., in
the limit S,,(Q =0) — oo. This is achieved for

$° (0) + 5% (0) — 2212.0 ()%, (0) = 0. 45)

Vo

This is the so-called spinodal condition. Note that with the simplifying assumptions that n; =
n; =n, vi = vp=vp and ¢; = ¢, = 0.5, the spinodal condition for polymer blends simplifies to
X =2.

7. THE ISOTHERMAL COMPRESSIBILITY FACTOR
Most mixed polymer systems have finite compressibility. The scattering cross section
consists of a Q-dependent coherent scattering term which is a good monitor of the structure,

a Q-independent incoherent scattering term (mostly from hydrogen scattering), and another
Q-independent “isothermal compressibility” term expressed as:

318



dz )
- =Ap  k,Ty.. 46
|:dQ}iso—comp p ’ XT ( )

Here Ap” is the contrast factor, kgT is the temperature in energy units and yr is the
isothermal compressibility which is defined as:

1(oV
Xt = _V[O_PJT (47)

The isothermal compressibility term is usually small compared to the other terms. For
example, y1 = 4.57*10™ cm?/J for pure water at 25 °C and atmospheric pressure (Weast,
1984). yr is set equal to zero altogether for incompressible mixtures.
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QUESTIONS

1. What is the primary effect of the incompressibility assumption on the scattering cross
section?

2. If an incompressible polymer solution is characterized by one (independent) structure
factor, how many structure factors describe the equivalent compressible solution?

3. What is the Zimm single-contact approximation?

4. Does the inter-chain structure factor (with excluded volume) for dilute polymer solutions
tend to increase or decrease the scattering intensity at low-Q?

5. What is the use of the zero contrast condition in concentrated polymer systems? What is
the procedure to follow?
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6. The Random Phase Approximation applies in what conditions?

7. What is the origin of monomer/monomer interactions in polymer mixtures?

8. Are polymer chains in mixed polymer blends characterized by excluded volume; i.e., are
they swollen?

9. What is the pair correlation function g(r)?

10. Estimate kg Tyt (¢t is the isothermal compressibility) for pure water for 25 °C and 1
atmosphere pressure.

ANSWERS

1. The primary effect of the incompressibility assumption is to simplify the scattering cross
dz
% - pPZSPP Q)+ pszsss (Q) +2pppsS,s(Q) (where P and S

represent the polymer and the solvent respectively) to its simplified form

di_g)) =(Pp —Ps)’Spp(Q) = Ap®S,,(Q) . This is due to the incompressibility condition

relating the various partial structure factors S;, (Q) = S (Q) = =S,5(Q) = =S4, (Q) .

2. An incompressible polymer solution is characterized by one structure factor Spp(Q). The
equivalent compressible polymer solution is described by three structure factors: Spp(Q),
Sss(Q) and Sps(Q).

3. The Zimm single-contact approximation assumes that inter-chain interactions occur only
through single contacts or chains of single contacts. Double contacts within the same chain
or between two different chains or higher order contacts are not included.

4. The inter-chain structure factor (with excluded volume) for dilute solutions decreases the
scattering intensity at low-Q. Recall the negative sign in Zimm’s single-contact

section from its full form

VCX

" (S,(Q) +}

5. The contrast match method is a way to extract single-chain properties (such as the radius
of gyration) from concentrated polymer systems. This method consists in using a mixture of
deuterated and non-deuterated polymers and deuterated and non-deuterated solvents in the
zero average contrast condition. This involves varying the deuterated to non-deuterated
polymer fraction but keeping the total polymer fraction constant.

6. The Random Phase Approximation applies for high molecular weight polymers in the
single-phase (mixed phase) region. It does not apply in the demixed phase region.

7. Monomers interact with each other and with organic solvent molecules due to Van der
Waals interactions mostly. Hydrogen bonding dominates in water-soluble polymers.

8. Polymer coils follow random walk statistics in mixed polymer blends. They are not
swollen like in polymer solutions. Their form factor is the well-known Debye function.

9. The pair correlation function g(r) is the probability of finding a scatterer at a radial
distance r from another scatterer at the origin.

10. kgT = 1.38*10° [1.K'1*295 [K] = 4.112*10%' [J] and 31 = 4.57*10"* cm?/J so that
ksT 1= 1.879%107* cm’.

approximation formula: % =Ap® [SO Q) -
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Chapter 32 - STRUCTURE FACTORS FOR PARTICULATE SYSTEMS

Scattering factors from nanostructures consisting primarily of particles (think spheres) in a
background medium (think solvent) are described here in the case of non-dilute systems. The
Ornstein-Zernike approach is a suitable way to describe inter-particle contributions.

1. THE ORNSTEIN-ZERNIKE EQUATION

The radial distribution function for a pair of scattering particles with no internal structure
separated by a distance r is called g(r). It is the probability of finding a scatterer at radial
distance r provided that there is a scatterer at the origin. g(r) is related to the inter-particle
interaction potential U(r) as follows:

g(r) = exp[-U(r)/kgT] . (1

Since the potential of mean-force U(r) contains contributions from many-body interactions, it
is expanded in terms of binary (wij), ternary (Wijk)’ and higher order interactions:

U(r) = Zwﬁ(r)+2wﬁk(r)+... )

ijk

Note that g(r) is zero for very short distances since two particles cannot occupy the same
space and is equal to one for large distances since at far enough distance, a particle can be
located for sure.

Direct interactions between the pair of interacting particles are represented by the direct
correlation function c(r) whereas interactions through other particles are represented by the
total correlation function h(r) = g(r) -1.

Figure 1: Direct and indirect inter-particle interactions.
The Ornstein-Zernike integral equation (Ornstein-Zernike, 1918; Hansen-McDonald, 1986)

is a relation between the direct correlation function ¢(r) and the total correlation function
h(r).
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h(r) =c(r) + ﬁj dr'c(r —t")h(1"). 3)
N= N/V is the particle number density.

In the Fourier variable space, this equation reads:

H(Q) = C(Q)+ N C(Q) H(Q). 4)
The inter-particle structure factor is defined as:

1

SI(Q)ZI—I—EH(Q)ZW'

©)

Note that the Ornstein-Zernike equation contains two unknowns (h(r) and c(r)). It can be
solved only if another (so called "closure") relation is added. Many of these closure relations
have been introduced (hypernetted chains, Born-Green, Percus-Yevick, Mean Spherical
Approximation, etc). Using one such closure relation, numerical solutions of the Ornstein-
Zernike equation yield realistic inter-particle structure factors. The last two closure relations
(Percus-Yevick and Mean Spherical Approximation) are discussed here because they permit
simple analytical solutions to the integral equation.

Three inter-particle interaction potentials can be considered: hard sphere, screened Coulomb
and square well. The hard sphere potential is used with the Percus-Yevick closure relation
and the screened Coulomb potential is used with the Mean Spherical Approximation.

Hard Sphere
Screened Coulomb

u(r)

Square Well

Figure 2: Representation of the various inter-particle interaction potentials.
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2. THE PERCUS-YEVICK APPROXIMATION

The Percus-Yevick approximation (Percus-Yevick, 1958) uses the following closure relation
in order to solve the Ornstein-Zernike integral equation:

(1) = g(r){l - exp[— ;’{”?ﬂ ©)

Assume the following hard sphere interaction potential between particles:

w(r)=0 forr>D (7)
w(r) =0 forr<D.

Here D is the sphere diameter. Solution to the Ornstein-Zernike equation is analytical:
c(r)=0 forr>D (8)

o(t) = —h — 601, = -2 T forr<D
1 2D 7 1D3 :

The following parameters have been defined:

_(1+2¢)

M=) ©)
_—(+/2)]

Sy

¢ is the particle volume fraction (¢ = 7ND’ / 6), N is the density of scattering particles and
D is the "effective" particle diameter.

The Fourier transform of the direct correlation function can be calculated as:

sin(QD) - (QD)COS(QD)} — 600, {(QD)2 cos(QD) - 2(QD)sin(QD) -2 cos(QD) + 2}

N :_24('){7{ QD) (D)’

4 Ay {(QD)‘* cos(QD)—4(QD)’ sin(QD)—-12(QD)’ cos(QD)+ 24(QD)sin(QD) + 24 cos(QD) - 24}}

2 (QD)’

(10)

The structure factor for a liquid of structureless particles is given by:
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Q=S )
Percus Yevick Model
1.6 T \
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Calculated
1.2 + s
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o ]
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0 | |
0 5 10 15

QR

Figure 3: Inter-particle structure factor S;(QR) vs QR prediction from the Percus-Yevick
model (with hard sphere potential) for ¢ = 0.30. Note that the sphere radius is R = D/2.

The scattering cross section involves the product of the form factor and the structure factor:

d2(Q)

o AP 2V, PQ)S;(Q). (12)

Here Ap” is the contrast factor, ¢ is the volume fraction and V5 is the particle volume
(V, =4nR’ / 3). Note that in this simple “hard sphere” interaction potential model, the

sphere diameter that enters in the form factor is taken to be the same as the hard sphere
radius used in the structure factor.
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Percus Yevick Model
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Figure 4: Form factor P(Q) for isolated spheres (infinite dilution limit), and product
P(Q)Si(Q) for a solution of spheres with a volume fraction of ¢ = 0.30. The Percus-Yevick
model (hard sphere potential) has been used to model the inter-particle structure factor S;(Q).

3. THE MEAN SPHERICAL APPROXIMATION

When Coulomb interactions are present, another closure relation to the OZ equation is
applied; the Mean Spherical Approximation (Hayter-Penfold, 1981). Consider a scattering
system consisting of macroions (charged positive), counter ions (charged negative) and
solvent. The Coulomb interaction potential is defined as:

U(r) = ne, gD’y exp(- Kr(r -D)) forr>D. (13)

The macroion surface interaction potential is given by:

z
__ Zm 14
Vo ne,e(2 + kD) (14

The following parameters have been defined:
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€o: Permittivity of free vacuum

e: Dielectric constant

D: Macroion diameter

k : Debye-Huckel inverse screening length

Zm: Macroion electric charge (number of electrons).

The Debye-Huckel screening parameter (inverse length) squared is expressed as follows:

K=——z N (15)

Here e is the electron charge, z,e is the macroion charge, N is the macroion number density
(number per unit volume) and kgT is the sample temperature in absolute units.

Dimensionless parameters are defined:

r 1
x=—,k=xD, K=QD and f=——. 16
b Q p KT (16)
Along with the following contact potential (for r = 2D) as:
yexp(-k)=PBne,ey;. (17)

The Mean Spherical Approximation (MSA) closure relation to the Ornstein-Zernike equation
is given by:

c(r) =—BU(r) forr>D (18)
h(r) =-1 forr<D.

Note that the limiting case for which y — 0 or k — o yields the Percus-Yevick result.

The MSA closure is used to solve for c(r):

c(r)=A+Bx+ l(1)Ax3 + Csinh(kx) + F(cosh(kx) — 1) for x<1
2 X X
o(r) = —y PR for x>1. (19)
The structure factor is obtained as:
$,(Q)=———— (20)
! 1- NC(Q)

With:
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— ) BKz - I]K cos(K) +2sin(K) - 2}
NC(Q) _ A(sin(K) - K cos(K)) s K’ K

24¢ K’ K’
24 6 ) . 12 24
. ¢A[K3 + 4(1 - sz sin(K) — (1 e + K‘JK cos(K)}
2K°
. C(k cosh(k)sin(K) — K sinh(k) cos(K))
K(K? +k?)
. Flk sinh(k) sin(K) — K (cosh(k) cos(K) — 1)]
K(K? +k?)
F(cos(K) - 1) Y exp(— k)(k sin(K) + K cos(K))
+ - . 1)
K? K(K? +K?)

The macroion volume fraction ¢ = nND’ / 6 has been expressed in terms of the macroion

number density N. The forward scattering limit is given by S;y(0) = -1/A.
Note that expressions for the constants A, B, C, and F are too lengthy to reproduce here.

They can be found in the original publication (Hayter-Penfold, 1981). F is the solution of a
4™ power polynomial equation.
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Figure 5: Variation of the structure factor S;(Q) obtained from the MSA for a spherical
macroion diameter of D = 40 A, macroion charge of z,, = 20 electrons, a volume fraction of ¢
=0.01 and at T =25 °C. The dielectric constant € = 78 is for D,O at 25 °C.

4. THE RANDOM PHASE APPROXIMATION
Consider now particles with internal structure or polymers made out of spherical monomeric
units. Note that spheres are assumed to fill the particles or replace the monomers in

polymers. The Random Phase Approximation (RPA) provides another closure relation used
to solve the OZ equation. The RPA assumes that ¢(r) = —w(r)/k, T . Note that within the

RPA, different notation is used for interaction potentials. By convention, these are called
w(r) for polymers and U(r) for particulate systems.

The intra-particle contributions are included in the Ornstein-Zernike equation as follows (in
Fourier space):

H(Q) = S,(Q)C(Q)S, (Q) +8,(Q)C(QNH(Q) . (22)

Along with the RPA closure relation:
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No@ =2, (23)

This closure is reminiscent of the MSA closure relation for r > . Note the following
relations for particles with internal structure (or polymers with spherical monomers):

1
S,(Q) = _ 24
@ 1-S,(Q)NC(Q) 29
S,(Q)
S(Q) =S, (Q)S,(Q) = )
Q) (Q)S,(Q) 1S.(QNC(Q)
It follows that:
$7(Q=8,"(Q + (25)

kT

This is the Random Phase Approximation result obtained for compressible polymer mixtures.
The scattering cross section is given by:

dX(Q) 2
——==Ap~S(Q). 26
10 pP~S(Q) (26)
Note that this approach can be extended to the multi-component case by changing the various
structure factors to matrices.

Note also that the mean field approximation does not model the local interactions properly
for inter-particle inter-distances smaller than particle sizes since packing effects on
thermodynamics and phase separation are neglected. For this reason, the g(r) obtained from
such a mean field approach does not show realistic oscillations for the neighboring
coordination shells. The appeal of this approach, however, is that it gives simple analytical
results.
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QUESTIONS

1. Does a numerical solution to the Ornstein-Zernike integral equation (with a realistic
closure relation) describe local packing adequately? How about a mean field analytical
solution (using the mean spherical approximation)?

2. Can the scattering cross section for a concentrated solution of particles (colloidal
suspension for example) be described as the product of a single-particle and an inter-particle
structure factors?

3. Name the closure relation that yields an analytical solution to the OZ integral equation in
the case of hard sphere interaction potential.

4. What approach gives the most realistic solution to the Ornstein-Zernike equation?

5. What is the Mean Spherical Approximation (so called MSA)? What systems are well
described by the MSA?

6. Are the Random Phase Approximation (used to describe polymer systems) and the
Ornstein-Zernike equation (used to describe particulate systems) related at all?

ANSWERS

1. A numerical solution to the Ornstein-Zernike integral equation along with a realistic
closure relation describes local packing well. A mean field analytical solution is too
simplistic and yields correct overall trends but incorrect local packing information.

2. The scattering cross section for a concentrated solution of particles can be described as the
product of a single-particle and an inter-particle structure factors provided that the particles
are not elongated (i.e., are isotropic).

3. The Percus-Yevick closure relation yields a simple analytical solution to the OZ integral
equation for the hard sphere interaction potential.

4. A numerical solution to the Ornstein-Zernike equation along with one of the closure
relations gives more realistic results than highly approximated analytical solutions.

5. The Mean Spherical Approximation (MSA) is a closure relation used to solve the
Ornstein-Zernike equation. Charged systems are well described by the MSA since Coulomb
interactions are included. The MSA yields analytical (albeit lengthy) results.

6. The Random Phase Approximation (used to describe polymer systems) is a mean-field
closure relation to the Ornstein-Zernike equation. The RPA closure is a simplified form of
the MSA closure.
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Chapter 33 - SCATTERING FROM FRACTAL SYSTEMS

Consider a system of interacting particles in a medium. The particles could have fractal
(rough) surfaces or they could form a mass fractal structure through clustering. In general
terms, the scattering cross section is given by:

dx
E — ap*V,P(Q)S, (@ 1)
N= (N/ V) =¢/V, is the particle number density, Vp is the particle volume, ¢ is the particle

volume fraction, P(Q) is the form factor, Ap2 is the contrast factor and Sy(Q) is the structure
factor. The two types of fractal behavior (mass fractal and surface fractal) have been
investigated (Bale-Schmidt, 1984; Teixeira, 1988) and will be discussed in turn.

1. MASS FRACTAL

A mass fractal is a structure containing branching and crosslinking to form a 3D network.

Figure 1: Schematic representation of a mass fractal structure containing branching points
and crosslinks. This structure is made out of monomeric units or small particles that are
clustered.

The inter-particle structure factor is given by:

S,(Q) =1+4nN]drr[g(r)—1] SinéQr) . @)
0 T
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Here g(r) is the pair correlation function. It is the probability of finding another scatterer at
position T given that there is a scatterer at the origin. Defining a mass fractal dimension Dy,
g(r) can be modeled as follows:

ﬁ[g(r) - 1] = 47]c)rmD"‘ O3 exp(— é] . 3)
0

This comes from a particle number density that varies like a mass fractal:

Dm
N(r)=N }dr g(r)dmr? = (Lj . “4)
0

Iy

The parameter & is a characteristic size for the mass fractal and r is the radius of the
individual particles making up the fractal object. Performing the Fourier transform, one
obtains:

1 D,I(D, -1
Q) 1+1/(Q2e2 >

Note that tan”'(z) is also called arctan(z). The small-Q limit is obtained using standard
expansions:

Q) =1+ rysin|(D,, ~Dan(Q2).  (5)

3

tan_l(z—>0):z—%... (6)
sin(z—>0)=z—z?j...

(D (D +1
sl(Q—>0)=1+r(Dm+1)(5] {1—%@@2}.

Ty

This gives an estimate of the radius of gyration for a mass fractal as:

2 _Dy(D,, +E?

R
¢ 2

(7

The high-Q limit is obtained using the following expansion which yields the asymptotic Q-
dependence:

tan_l(z—>oo)=§—l... (8)
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1 , 1
$1Q= ) =1+ o5 5 Pl (D —1){Sln[(Dm —1)%} —cos{(Dm _1)3}—@8& >} .

for £7'<Q< 1"071 . This is a modified 1/QP behavior. The mass fractal dimension D, varies
between 2 and 3 and is equivalent to the Porod exponent. Note that when Dy, = 2,

cos{(Dm —l)g} =0 so that the asymptotic behavior varies with a Porod exponent D,,. When

D =3, sin{(Dm — l)g} =0 instead and the Porod exponent is Dy, +1.

Mass Fractal Model, Rg =100 A, D =3

0.01 -
0.001 -

0.0001 -

1(Q)/1(0)

10° — —r =10 A, without P(Q)
i r =10 A, with P(Q)
10°® - | —r,=20 A, with P(Q)

0.001 0.01 0.1 1

Q

Figure 2: Normalized scattering intensity for the mass fractal model with and without the
form factor P(Q) and with R, = 100 A and D, = 3.

Note that the form factor P(Q) for the individual particles that make up the mass fractal was
modeled here by spheres or radius ry with smooth surface. The case of particles with a fractal
(i.e., rough) surface is considered next.

2. SURFACE FRACTAL

Consider a particle with fractal (rough) surface of fractal dimension Ds between 3 and 4.
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Figure 3: Schematic representation of a surface fractal structure of intermediate roughness.

The Porod law can be generalized to fractal surfaces through the following scaling for the
surface:

S, (1) ~ [ri] . )

The form factor for the particle with fractal surface becomes at high-Q:

d)VPP(Q—)oo):d)ns]—PF(S—DS)sin[n(D;_l)} L o

6-D,
P

Note that this result yields zero for Ds = 3. In the case of the mass fractal model, a similar
inconsistency was avoided by going to a higher term in the high-Q expansion.

A Porod plot (Log[I(Q)] vs Q) yields a slope of -6+Ds. A surface fractal dimension Dg = 2
corresponds to a smooth surface which, for high-Q, gives:

38, 1

P(Q—)OO):zr3V—§

(11)

Sp and Vp are the particle surface and volume. This is the well known Porod law for smooth
surfaces.

3. FRACTAL POROD EXPONENTS

A figure summarizes the various fractal Porod law exponents for mass fractal systems such
as polymer chains and networks and for fractal surfaces.
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Figure 4: Assortment of fractal Porod exponents.
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QUESTIONS

1. What is the Porod exponent for scattering from a fully swollen polymer coil?

2. What is the Porod exponent for scattering from a very rough surface? How about from a
smooth surface?

3. What is the range of mass fractal Porod exponents for scattering from a clustered network?

ANSWERS

1. The Porod exponent for scattering from a fully swollen polymer coil is 5/3.

2. The Porod exponent for scattering from a very rough surface is 3. For a smooth surface,
the Porod exponent is 4.

3. Scattering from a clustered network has a range of mass fractal Porod exponents between
2 and 3.
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Chapter 34 -THE MULTI-COMPONENT
RANDOM PHASE APPROXIMATION

1. COMPRESSIBLE POLYMER MIXTURE

Consider a homogeneous mixture consisting of m polymer components. Components are
homopolymers, blocks in copolymers or solvents. Within the Random Phase Approximation
formalism (De Gennes, 1979; Benmouna et al, 1987; Akcasu-Tombakoglu, 1990) for
compressible mixtures, the scattering cross section for this system is expressed in general
terms as follows:

d%(Q) _

o P S(Q)p . (1

Here S(Q)is an m*m matrix and pis a column vector containing the m scattering length

densities. p' is the “transpose” row vector. The fully interacting scattering factors S(Q) are

expressed in terms of the non-interacting (so called “bare”) scattering factors S,(Q) and

inter-monomer interaction potentials W as follows:

=

5 (Q=8, (Q+ T )

This equation can easily be derived using the linear response approach without the
incompressibility constraint. The incompressibility condition simplifies things as described
next.

2. INCOMPRESSIBLE POLYMER MIXTURE

Now consider one of the m polymer components as the “background” component. This can
be a homopolymer or a solvent. It cannot be a block that belongs to a copolymer. Imposing
the incompressibility condition eliminates the background component. This leaves (m-1)
explicit components. Even though this formalism is general, it is described here explicitly for
four components (m = 4). Component 4 is referred to as the “background” component. The
Random Phase Approximation formalism for incompressible mixtures yields the following
macroscopic scattering cross section:

d2(Q)

o =Ap"8(Qp 3)

= Ap,”S,,(Q) +Ap,’S,, (Q) + Ap,”S 1 (Q) + 2Ap, Ap,S,, (Q) + 2Ap,Ap,S 1, (Q) + 2Ap,Ap,S,, (Q)
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In this general RPA formalism (Akcasu-Tombakoglu, 1990; Hammouda, 1993) S(Q) is an
(m-1)*(m-1) matrix and Ap is an (m-1) column vector for the scattering length density

differences (the scattering length density of the background component is subtracted for each
component). The new general relation follows:

STQ =S, (Q+¥(Q )

S(Q) =1 +8,(Q¥@]) ' 3,(Q).

The “bare” scattering factor S, (Q) is a diagonal matrix for homopolymer blends and

homopolymer solutions. Mixtures containing copolymers contain off-diagonal elements.

SH(Q) SL(Q) SiH(Q)
Q)= Sgl Q) S(z)z Q) 883 Q).
$5(Q) $5,(Q S5(Q)

S

[=}

)

The interaction matrix is expressed in terms of the bare scattering factor for the background
component and the various Flory-Huggins interaction parameters.

Vi(Q) = — oM gri=123 (6)

S?m Q) Vo

Vi(Q =t T K03
Su@Q vy vy v,

The various scattering length densities for the various components are given by:

Ap; =p; —p4 fori=1,23.

(7)
The incompressibility assumption in this case becomes:
vin(Q) + vana(Q) + van3(Q) + vans(Q) = 0. ®)
$11(Q) =< vin; (=Q).vin;(Q) >==8,(Q) =8;(Q) =S,(Q)..
Note that the spinodal condition is obtained for
Det(] +8,(0).v(0) J=o0. (9)

Here 1 is the identity matrix and Det(...) denotes the determinant of a matrix.
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3. THE SINGLE-CHAIN FORM FACTORS

The various single-chain form factors for homopolymers and block copolymers are
expressed as follows:

Si(Q) =n,¢,v,P.(Q) (10)
SE(Q) = \/ni(l)ivinjd)jvjpij Q)

P.(Q) = Qﬁi [exp(-Q°R )~ 1+ Q2R ]

Py(Q) = FQE(QF Q)= [1 - GXSER}RQ )J(expmzRgﬁ){l - CXQPE; jzjo )J.

For Gaussian chains, the radii of gyration are given in terms of the degree of polymerization
n;, and statistical segment lengths a; as follows:

R 2= M (11)

The last expression is better explained through examples. This is done next. Consider
examples of block copolymer sequences.

Figure 1: Examples of block copolymer sequences.

F(Q) is used for the two blocks under consideration and E(Q) is used for the blocks in-
between. Some inter-block form factors are given here:

P,(Q) =F(QF Q) (12)
P (Q) =K (QE,(QF(Q)
Pey (Q) = F(Q)E; (QE(QF, (Q).

These results are valid for Gaussian chains following a random walk (theta condition). For
fully swollen chains, the excluded volume parameter approach could be used.
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4. BINARY HOMOPOLYMER BLEND MIXTURE

The simplest case to consider is that of a binary blend mixture of two homopolymers

(components 1 and 2). In this case, component 2 is taken to be the background component.
The results are:

8/ (Q=n,6,v,P,(Q (13)

I N 7%
Q=@ .

1 _ 1
$,(Q  S)(Q

+v,,(Q)

$)(Q)

Q= Qsh@

This is the so-called de Gennes formula (De Gennes, 1979) used to describe binary polymer
blends in the mixed-phase region.

5. TERNARY HOMOPOLYMER BLEND MIXTURE

The case of a ternary homopolymer mixture is worked out similarly. Component 3 is taken to
be the background component. The results are:

S1(Q) =n,¢,v,P,(Q) (14)
ng (Q) =n,¢,v,P,(Q)
S(3)3 (Q) =n,¢,v,P,(Q)

1 X3
" =— —2== 15
"uQ S3(Q) Vo (1
1 X 23
2 =0 —2==
T R

1 Xis X
v, (Q) = n Xi2 13 23

823 Q) vy vy v,

The partial scattering factors for the fully interacting mixture are as follow:
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S,,(Q) = ( SII(Q)(1+V22SZZ(Q)) (16)

1+ Vlls?l (Q)Xl + szsgz (Q))_ VIZZS?I (Q)ng Q)

S, (Q)= S (Q)(l +v,S) (Q))
: (14+v,8% QN1+ v,,8% (Q) - v,,’S%, (Q)S%,(Q)

S, (Q)= - S?l (Q)Vlzsgz Q)
P (1 v, 8% QU+ V1,85 (Q)) - v, SH (Q)S% (Q)

Recall that the cross section for an incompressible ternary blend mixture is given by
(Benmouna et al, 1987; Akcasu-Tombakoglu, 1990):

d2(Q)

o =Ap,’S,,(Q)+Ap,’S,, (Q) +2Ap,Ap,S,(Q). (17)

This case applies to a ternary polymer mixture in the homogeneous phase region.

6. BLEND MIXTURE OF A COPOLYMER AND A HOMOPOLYMER

The case of a homopolymer and a copolymer mixture is also readily obtained from the RPA
formalism. In this case, the background component is taken to be the homopolymer
(component 3). The diblock is formed of components 1-2. The results follow.

Sll (Q) = S?I (1 + VZIS?Z + V22ng )_ 8102 (V2ls?l + V22Sgl)
0 0 0 0 0 5 5 >
(1 FVuSi + VRS Xl +VauSiy + Sy )_ (Vllslz +V;,Sy XVZISII +V5,S) )

(18)

S,,(Q) = - Sgg (1+Vlzsglo+Vlls?lo)_sgl(vlzosgz +V11()S?z) . .
(14 v,,S% +v,SY N1+ V5,8 +v5,8% )= (v1,S% + v158% fvaiS®, +v,,8% )

S, (Q) = _8?1 (Vllsloz +Vlzsgz)+sloz (1+Vlls?1 +Vlzsgl)
12 =
(1 + VIIS?I + VIZS(Z)I Xl + VZISloz + szsgz )_ (VIIS?Z + Vlzsgz XVZIS?I + szsgl )

The (Q) dependence has been dropped to lighten the notation.

7. THE DIBLOCK COPOLYMER CASE

The RPA result for polymer mixtures containing only copolymers (no homopolymers or
solvent) is more complex and will not be included here. It has, however, been worked out
explicitly using a matrix notation and assuming one of the blocks as the background
component. The result for the simple case of a diblock copolymer is included here.
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S?l (Q)ng (Q) B S?z (Q)Sgl (Q)

55,00 +5%,(Q) + 2%, (@)]- 22 [ (Q)st (@) -t Q@S2 Q)]

Su(Q) = (19)

This is the so-called Leibler formula (Leibler, 1980). This formula can be derived using the
linear response approach. Note that the binary blend case is recovered by setting the bare

scattering factor cross term S, (Q) =0.

8. THE TRIBLOCK COPOLYMER CASE

Consider a triblock copolymer in solution. In our terminology, this is a four “component”
case with the triblock as components 1-2-3 and the solvent as component 4. Block 1 is
connected to block 2 which is connected to block 3. Block 1 is not connected to block 3.
Consider component 4 as the “background” component and apply the multi-component RPA
formula:

SHQ) SLQ 0
5,(Q=]82(Q 5%Q S%(Q)|. (20)
0 S5,(Q S5(Q

In order to work out the various elements S;;(Q), 3*3 matrix inversion and matrix
multiplication are needed. The result is too lengthy to reproduce here. The derivation is,
however, straightforward (Akcasu et al, 1993).

9. MIXTURE OF POLYELECTROLYTES

Consider a binary mixture containing a charged polymer (polyelectrolyte). The RPA
formalism can be adapted to include charge effects. The scattering equations for a binary
mixture (where component 1 is a polyelectrolyte) are summarized here (Benmouna-Vilgis,
1991).

1 _ 1
$,(Q  S)(Q)

+,,(Q) 21

S11(Q)

Q508N @

Vi(Q) =v,,(Q+vp,(Q)

! 2&

v (Q)= ng(Q) - vy
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1 4nly
Vv =

i’ =4n1B(fﬂ+M).
Vi Vsalt
vpu(Q) is the extra “Debye-Huckel” term that accounts for Coulomb interactions, I is the
2

Bjerrum length given by I, = and f'is the electron charge fraction per monomer. vy; is
B

the interaction factor (V12V11 is the so-called “excluded volume”). As described previously for

incompressible neutral polymer mixtures, the scattering cross section for polyelectrolyte

mixtures is given by:

d2(Q) _, >

o Ap,"S,(Q) (22)
8?1 (Q=n,9,v,P,(Q)
ng (Q) = n,6,v,P,(Q)

P,(Q) = Q4]2{ 2 [exp(_QZRglz)_l-i-QZRgl2 .

gl

ny, vi, ¢1, o, v, ¢2, are the degree of polymerization, the volume and the volume fraction for
components 1 and 2 respectively. P;(Q) and P,(Q) are the familiar Debye functions for
Gaussian coils. This describes the general case of a polymer blend. If the binary mixture is a
polyelectrolyte solution instead, then n, = 1, P»(Q) = 1 and v;; becomes independent of Q.

Consider the following parameters for a polyelectrolyte solution:

£=0.5 (23)
n; = 1000

d1=10.04

vi=100 A’

Osait = either 0.01 (small salt addition) or 0.1 (large salt addition)
Vat = 100 A

IB =10 A

Vi1 = 0.05 A-3

R, =100 A.

The scattering factor S;(Q) is plotted for two salt conditions. The polyelectrolyte peak is
observed when small amount of salt is added. When lots of salt is added, the “interaction”
peak disappears due to the screening of Coulomb interactions.
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Polyelectrolyte Solution
8 [ T T T T T T ‘ T T T ‘

Scattering Factor 511(Q)

O L. I I | I I I | I I I | I I I | I I I
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Scattering Variable Q (A ™

Figure 2: Variation of the scattering factor S;;(Q) for two salt conditions.
The polyelectrolyte interaction peak position obtained corresponds to the maximum in the
S11(Q) function. The Debye function is approximated by a simple form and the notation is

modified for convenience.

1

P -

1(Q) QR (24)

1+ £
2

U 14 v v QIS (Q) 1T+ [vy, + GQIF(Q)

B,Q_  FQ  FQM.FQ+GQFQ+GQFQ]
Q  1+[v, +GQIFQ) {1+[v,, + GQIFQ)Y’
The peak position is obtained for the condition:
aSll(Qmax) — 0 (25)
oQ
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This implies:

F'(Q o) = F(Q i )G'(Q i) (26)

8l
Qmax2 — 2y n;9, TEZB .
VIRgl

The so-called Lifshitz line corresponds to the condition for which the polyelectrolyte
interaction peak disappears (i.€., Qmax = 0).

The spinodal temperature corresponds to the “blowing up” of the scattered intensity; i.e.,
when the denominator becomes equal to zero.

L+[V,, + Ve (Q = 0)IS, (Q = 0) = 0. 27)

The interaction factor vy, is plotted as function of salt volume fraction ¢,y v1; is related to
the Flory-Huggins interaction parameter which depends (inversely) on temperature.

Polyelectrolyte Solution

0 T T 0.3
. _ Lifshitz Line |
mixed phase region i
0.25
-0.1 - 8
spinodal line i
) ' |
£ ' 0.2
- ! i
< -0.2 + ! .
8 phaseiseparated region | ©
£ < ! 1015 % _
& o >
> e
§ -0.3 + :
a - 0.1
> |
0.4 ]
- 0.05
05 | 1 0
0 0.02 0.08 0.1
¢salt

Figure 3: Variation of the interaction factor v;; and the of polyelectrolyte peak position Qmax
with increasing salt volume fraction ¢g,y. The spinodal line and the Lifshitz line are included.
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The polyelectrolyte peak feature is due to the modified monomer-mononer interactions that
become characterized by two sizes: the actual monomer size and the screened Coulomb

interaction distance (represented by k). This produces a “correlation hole” effect. The
screened Debye-Huckel interaction potential varies like Vi, (r) ~ exp(—«r)/r. Charged
interactions tend to stabilize the phase diagram and favor mixing. Adding salt tends to favor
demixing. The interaction factor v, is related to the Flory-Huggins interaction parameter y 2
which is inversely proportional to temperature. The RPA approach outlined here can apply to
more complex polymer mixtures containing polyelectrolytes and neutral polymers.

10. DISCUSSION

The RPA approach described here can handle more complex polymer mixtures containing
complex architectures and blockiness (Hammouda, 1993). It amounts to inverting and
multiplying larger matrices. The effect of chain stiffness has also been included in limited
cases. Mixtures of flexible and stiff polymer chains are characterized by the familiar spinodal
condition as well as by the isotropic-to-nematic phase transition (Hammouda, 1993).

It should be emphasized, however, that this mean-field approach applies strictly in the
mixed-phase region (not too close to the phase boundary line). Non-mean field corrections
have been worked out. These are, however, outside the scope of this book.
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QUESTIONS

1. Write down the generalized Random Phase Approximation formula for multi-component
incompressible polymer mixtures. Does it apply to pure copolymers?

2. Write down the scattering cross section for a multi-component polymer mixture of
arbitrary composition in matrix form.

3. What is the size of the matrix to be inverted for an incompressible mixture with four
polymer components?

4. Write down the so-called de Gennes formula for scattering from a binary polymer blend
mixture. Define the various terms.

5. Write down the S;;(Q) interacting scattering factor for a ternary polymer blend mixture.
6. Write down the so-called Leibler formula for scattering from a diblock copolymer.

7. Stiff (rodlike) polymers are characterized by orientational phase transitions beside the
spinodal and binodal lines. Name the two best known phase transitions.

8. What is the extra interaction term which is added to account for screened charge-charge
interactions and thereby extend the multicomponent RPA approach to included
polyelectrolytes?

ANSWERS

1. The Random Phase Approximation general formula for multi-component incompressible
polymer mixtures expresses the fully interacting scattering factor S(Q) in terms of the “bare”

(non-interacting) scattering factor S,(Q) and the various interaction factors v(Q)as
§_1 Q) =S, Q)+ v(Q) . This does not apply to pure copolymers since a “background”

component (either a homopolymer or a solvent) is required.
2. The scattering cross section for a multi-component polymer mixture of arbitrary

composition is expressed as % =p" S(Q).p where .p is a column vector containing all

of the scattering length densities and S(Q) is a matrix containing all of the scattering factors.

3. A homogeneous polymer mixture with four components generates a 3*3 RPA matrix to be
inverted. The fourth component is taken to be the background component.
4. The de Gennes formula for scattering from a binary polymer blend mixture is expressed as

2
L _ 5 ! +— L2t . Here S%1(Q) and S"»(Q) are the bare scattering
S, (Q Su(Q S'2(Q v,

factors, 7, is the Flory-Huggins interaction parameter and v, is a reference volume usually

expressed as v, = ./v,v, where v; and v; are the specific monomer volumes.
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5. The scattering factor for a ternary polymer blend mixture is given by
S’ 1+v,,S°
Su(@ =1 W(Qll+v28"(Q)

14 v, 8" QN1+ v5,8°2(Q))- v,,’S",,(Q)S°2(Q)
defined in the text.

. The various factors are

2
6. The Leibler formula is expressed as S,,(Q) = W(Q)/[S(Q) Bl M W(Q)} where
Vo
W(Q) =S5%1(Q)S’2(Q)-S%2(Q)S"21(Q) and S(Q) =S"11(Q)+S°2(Q) +25"2(Q).
7. Stiff polymers are characterized by the spinodal and binodal temperatures as well as
orientational transitions leading from the isotropic to the nematic or smectic phases.
8. The extra interaction term added to extend the multicomponent RPA approach to include

: 4nl
polyelectrolytes is the Debye-Huckel factor v, (Q) = 1 _dnly

V12 Q2 +x?2

monomer volume, k' is the screening length, and lg is the Bjerrum length given by

where v; is the
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Chapter 35 - INTRODUCTION TO POLYMERS

Polymer research makes up a good fraction of beamtime use on SANS instruments. Using
the partial deuteration method, SANS has been useful for investigations of chain
conformations and miscibility in polymer solutions and polymer blend mixtures as well as in
other polymeric systems. Many aspects of polymer research have benefited from the SANS
technique.

1. WHAT ARE POLYMERS?

Polymers are synthetic macromolecules that make up a great deal of what we use in our daily
lives. They include low-cost disposable conveniences (like milk containers or soda bottles) to
high-tech structural materials (like hip joint replacement or computer CDs). Polymers are
split into “bunching” categories like solutions or blends (alloyed polymers), thermoplastics
(that can deform) or thermosets (that are hard to deform), with linear or branched
architectures, that are amorphous or crystalline, etc. (Bandrup-Immergut 1975; Kawakatsu,
2004). Liquid crystal polymers contain stiff mesogen groups that increase material
toughness. Their high degree of alignment makes them useful in optical devices. Polyolefins
(polymers that containing C=C double bonds) are at the heart of petroleum chemistry. Much
SANS research has been performed on polyolefins. SANS from polymers research is broad
and deep. Only the simplest aspects of this research are covered here.

Polymer research has bloomed over the past fifty years (Flory, 1969; de Gennes, 1979;
Higgins-Benoit, 1994). The development of light scattering in the 1960s and of neutron
scattering in the 1970s along with advances in polymer synthesis and computational power
have greatly benefited polymer research. Impact of the SANS technique has been substantial
in many areas of polymer research.

2. SANS FROM POLYMERS

Polymer research has benefited greatly from the SANS technique which matured in the
1970s and 1980s. SANS was first developed to the scale of a user program at the ILL
(Grenoble, France) then spread to most neutron scattering facilities. Polymer research
accounted for the largest share of SANS beamtime. The advent of judicious sample
environments brought about renewed interest. These include temperature and pressure
control, the application of in-situ shear, etc. The development of scattering theory for
polymer systems such as the Random Phase Approximation helped promote growth in the
use of the technique. Most neutron scattering facilities maintain SANS instruments that are
overbooked. SANS from polymers research has developed from cutting edge research for
hardcore users into a routine characterization method for laboratories that have access to the
technique. For example, the Exxon Mobil company has maintained constant use of the SANS
technique and its constant funding at the NCNR for almost twenty years. Moreover, the
National Science Foundation has copiously funded the SANS program at many US facilities.
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3. POLYMER CHAIN CONFORMATIONS

The partial deuteration method helps observe the conformation of polymer chains in the
environment of a solvent or of other polymers. This is similar to the staining method in
microscopy. An apparent radius of gyration is often estimated from SANS data in the
Guinier region. The Porod region yields chain conformation details such as the degree of
chain swelling or solvent quality in polymer solutions. This region also shows the onset of
chain stiffness whereby the polymer chain persistence length can be measured.

The SANS technique has permitted measurements of the radius of gyration of polymer
chains in various polymer systems whether in solution or in blends. The contrast match
method has helped the separation of single-chain properties even in concentrated mixtures. It
was found for example, that polymer chains follow random walk statistics in “theta”
solvents, in concentrated solutions as well as in polymer melts.

4. THERMODYNAMICS OF POLYMER MISCIBILITY

SANS intensity increases close to phase separation lines due to enhanced composition
fluctuations. This makes SANS an effective tool for the investigation of miscibility
thermodynamics. Polymeric systems phase separate either through heating and are
characterized by a lower critical solution (or spinodal) temperature (LCST) or through
cooling and are characterized by an upper critical solution temperature (UCST). Some
polymer solutions or polymer blend mixtures are known to phase separate through both
heating and cooling and are characterized by a miscibility gap. Others phase separate only
within a specific temperature region and are characterized by a closed loop immiscibility
island. Polymer solutions in organic solvents tend to be characterized by UCSTs whereas
water soluble polymers tend to be characterized by LCSTs. The four major types of phase
diagrams are summarized in a figure. Combination of these basic types is also possible; for
example UCST at low temperature and closed loop immiscibility at high temperature.
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Figure 1: The four main types of phase separation diagrams for polymer blends showing the
variation of the phase separation temperature with polymer composition. Upper left: LCST,
upper right: UCST, lower left: miscibility gap, lower right: closed loop immiscibility island.

The SANS technique has permitted the determination of Flory-Huggins interaction
parameters and the mapping out of miscibility phase diagrams. The advent of in-situ pressure
and temperature control has brought about a better understanding of polymer
thermodynamics.

5. CRYSTALLINE POLYMERS

The SANS technique probes density fluctuations (just like SAXS using x-rays) as well as
composition fluctuations. Crystalline polymers are characterized by a strong low-Q signal
below the crystallization temperature. This is due to the density fluctuations component. The
use of partially deuterated chains allows the monitoring of chain conformation inside
crystallites. Early findings have found, for instance, that polymer chains follow Gaussian
chain statistics in the crystalline lamellae as well as in the melt state. It was also found that
melt crystallization is characterized by “random re-entry” of the polymer chains to form
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lamellae. Solution crystallized polymers, however, are characterized by an “adjacent re-
entry” scheme.
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QUESTIONS

1. When was the “golden age” for polymers research?

2. What are thermoplastics? How about thermosets?

3. Name some contributions of the SANS technique to polymer research.

4. Why is the SANS technique a good probe for thermodynamics investigations? How is this
manifested?

ANSWERS

1. Polymers research was very strong for the past 50 years. Lots of progress was made in the
1960s and 1970s.

2. Thermoplastics can recover their original shapes when they are deformed. Thermosets are
highly cross linked. It is hard to deform them.

3. The SANS technique has had broad impact on polymer research. A few examples follow:
single-chain conformations in polymeric materials, phase separation thermodynamics, chain
properties in crystalline polymers, clustering in water-soluble polymer solutions, etc.

4. The SANS technique is a good thermodynamics probe since it can monitor density and
composition fluctuation. The intensity increases close to phase transition boundaries.
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Chapter 36 - POLYMER CONTRAST FACTORS

The SANS scattering intensity is proportional to the neutron scattering contrast factor. The
contrast factor for a polymer in solution or a polymer blend mixture is defined as (by/vm —
bs/Vs)z. Here by and vp are the neutron scattering length and volume for the monomer that
forms the polymer. bs and vg are for the solvent molecule or for another monomer in the
polymer mixture.

1. COHERENT SCATTERING LENGTHS FOR A FEW MONOMERS

The following table summarizes scattering lengths for a few monomers (Bandrup-Immergut,

1975). These have been calculated using tabulated values for the scattering lengths of the
various elements and their relative amounts.

Table 1: Coherent scattering lengths for a few synthetic monomers in fm (1 fermi=10" cm).

Polymer Name Formula Hydrogenated | Deuterated
(fm) (fm)
Polystyrene [CH,-CH(C H,)] 23.30 106.62
Polymethylmethacrylate [CH,-C(CH,)(CO,CH,)] 14.95 98.27
Polymethylacrylate [CH,-CH(CO,CH,)] 15.78 78.27
Polyvinylchloride [CH,CH(CD)] 13.78 45.03
Polyethylene [CH,-CH,] -1.66 40.0
Polycarbonate [CH,-C(CH,),CH,-0-CO,] 71.50 217.30
Polyvinylmethylether [CH,OH(OCH,)] 3.32 65.81
Polytetrahydrofuran [C,OH] 9.97 72.46
Poly o chlorostyrene [CH,-CH(C H,CD)] 38.74 111.64
Polyurethane [NH-CO,-CH,-CH, ] 22.23 74.31
(Ethylcarbonate)
Polyethylene oxide [CH,CH,0] 4.139 45.78
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Figure 1: Chemical formulas for a few monomers.

2. COHERENT SCATTERING LENGTHS FOR A FEW SOLVENTS

The following table summarizes scattering lengths for a few commonly used solvents.

Table 2: Coherent scattering lengths for a few solvents.

Solvent Name Formula Hydrogenated | Deuterated
(fm) (fm)
Toluene CH,CH, 16.64 99.96
Benzene CH, 17.47 79.96
Cyclohexane CH,, -4.97 120.01
Acetone CH,-COCH, 3.32 65.821
Chloroform CHCI, 31.60 42.05
Methylene Chloride CH,Cl, 22.57 43.40
Carbon Disulfide CS, 1226 | --—--
Tetrahydrofurane C,OH, 2.47 85.81
Tri-m-Tolylphosphate CH,-CH,P, 43.26 95.53
Trimethylbenzene CH,(CH,), 14.98 139.96
Water H,O -1.675 19.145
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Figure 2: Chemical formulas for a few solvent molecules.

Table 3: Coherent scattering length densities for a few deuterated solvents.

Molar Mass Density Scattering Length

Solvent Name Formula (g/mol) (g/cm3) Deﬁszity
(A7)

d-Ethylene Glycol C,0,D4 66 1.113 4.47%10°
d-Dioxanel-4 C4D50, 96 1.129 6.46*%10°
d-Toluene C;Dg 100 0.943 5.66%10°
d-Benzene CsDg 84 0.950 5.43*%10°
d-Ethanol C,DsO 52 0.888 6.07%10°
d-Methanol CD,O 36 0.888 5.8%10°
d-Water D,0 20 1.107 6.37%10°
d-Chloroform CDCl; 120.35 1.50 6.16%10°
d-DMF NC;D;0 80 1.03 6.33*%10°
d-Xylene CsDio 116 0.953 5.92%10°°

3. AFEW NEUTRON CONTRAST FACTORS FOR POLYMER MIXTURES

Consider a two-component polymer system (say component 1 homogeneously mixed with
component 2). The neutron contrast is defined as the square of the difference between two

scattering length densities (b /v, - b2/V2)2 where b, and b, are the scattering lengths for

monomers 1 and 2 and v, and v, are the monomer molar volumes for the two components.

Component 2 could represent a solvent for polymer solutions. A few contrast factors have
been calculated for the following polymer mixtures.

Table 4: Poly(ethylene oxide)/Deuterated Water (hPEO/D,0) Solution.

Substance

Notation

Formula

Scattering Length
(cm)

Specific Volume
(cm’/mol)
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Poly(ethylene oxide)

hPEO

C,H40

4.139%10

38.94

Deuterated water

d-water

D,O

19.14%10

18

Contrast Factor: (

b hPEO

VipEO

Vb,0

N, is Avogadro's number

2
b
_&J N,, = 5.498*10° mol/cm*

Table 5: Deuterated Poly(ethylene oxide)/Water (IPEO/H,0) Solution.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPEO C2D,0 45.78*10°" 38.94
Poly(ethylene oxide)
Water h-water H,0O -1.67*107"° 18
buro _ Prno

Contrast Factor: {

VipEO

Vh,0

2
J N,, =9.657*10” mol/cm*

Table 6: Deuterated Polystyrene/Polyvinylmethyether (dPS/PVME) Blend.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPS D, 1.06%10° 100
Polystyrene
Poly(vinyl methyl PVME CHO 330%10 554
ether)

Contrast Factor: (

deS

Vaps

_ b pyue

v PVME

2
J N,, =6.07*10” mol/cm*

Table 7: Deuterated Polystyrene/Hydrogenated Polystyrene (dPS/hPS) Blend.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPS D, 1.06%10° 100
Polystyrene
Polystyrene hPS CHy 023%10 100
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b
Contrast Factor: [ﬁ

Vaps

Vips

2
b
—ﬂJ N,, =4.18*10” mol/cm*

Table 8: Deuterated Polystyrene/Polybutylmethacrylate (dAPS/PBMA) Blend.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPS C.D, 1.06%10° 100
Polystyrene
Poly(butyl hPBMA CH140, 124%10°" 133
methacrylate)

Contrast Factor: (

Vaps

v hPBMA

2
bd_PS—thﬂJ N,, =5.61*10" mol/cm*

Table 9: Polystyrene/Polyisoprene (PS/PI) Blend.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPS D, 1.06%10° 100
Polystyrene
Polystyrene hPS CH,, 023%10 100
Poly(isoprene) hPBMA CsHg 033%10 76

b
Contrast Factor: (ﬂ -

Vips

b
Contrast Factor: (ﬂ

Vips

Vbt

Vipr

2
b
ﬂj N,, =2.09*10™* mol/cm*

2
—%] N, =6.20*10" mol/cm*

Table 10: Deuterated Polystyrene/Dioctylphthalate (dPS/DOP) Solution.

Substance Notation Formula Scattering Length Specific Volume
(cm) (cm’/mol)
Deuterated dPS C,D, 1.06% 10'“ 100
Polystyrene
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Dioctylphthalate DOP ‘ C,H,,0, ‘ 4.07% 10-12 390

2

b b

Contrast Factor: [ﬂ - D—Opj N,, =5.48%10” mol/cm*
Vars  Vpor
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QUESTIONS

1. Consider a polymer dissolved in a specific solvent. What would happen to the contrast
factor if one were to “switch” the scattering length densities for the polymer and the solvent?
2. Which one of the two following dilute solution samples would you rather prepare for a
SANS experiment: a deuterated polymer in hydrogenated solvent or a hydrogenated polymer
in deuterated solvent?

3. Scattering from a non-deuterated polymer mixture is dominated by what type of
fluctuations?

ANSWERS

1. If one were to “switch” the scattering length densities for the polymer and the solvent, the
contrast factor would remain the same. This is the so-called Babinet principle.

2. The best sample to prepare for a SANS experiment from a dilute solution is a
hydrogenated polymer in deuterated solvent. This minimizes the amount of hydrogen (and
therefore incoherent background) in the sample. This enhances the signal (coherent
scattering) to noise (incoherent scattering).

3. Scattering from a non-deuterated polymer mixture is dominated by density fluctuations.
The same would be observed using x-ray scattering.
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Chapter 37 - SANS FROM POLYMER SOLUTIONS

Solubility is a determining factor in the synthesis, mixing ability and end-use of polymers. A
general model for describing solubility (Flory, 1953) is discussed here with an emphasis on
what information is obtained from SANS measurements from polymer solutions. SANS data
from specific polymer solutions are discussed in some detail.

1. POLYMER SOLUTIONS BASICS

Most non-polar polymers dissolve in organic solvents and some polar polymers dissolve in
water. Concentration ranges vary from dilute to semi-dilute to concentrated solutions. The
borderline between the dilute and the semi-dilute regimes is referred to as the overlap

concentration (c*) which is estimated as ¢c*~ M / (4n/ 3)Rg3 (M,, is the molecular weight

and R, is the radius of gyration). The polymer concentration c is related to the volume
fraction ¢ through the density d as ¢ = ¢d.

2. CASE OF A SIMPLE POLYMER SOLUTION

As an example of a polymer solution, the case of poly(ethylene oxide) PEO in water is
discussed (Hammouda et al, 2002; Hammouda-Ho, 2007). The PEO monomeric unit -
(CH,CH,0)- is the simplest one for a water-soluble polymer . When dissolved in water, PEO
is characterized by hydrophilic interactions (hydrogen bonding of water molecules to the
oxygen atoms on the polymer) and hydrophobic interactions (the CH,CH; groups repel
water). PEO dissolves in water for a wide range of temperatures and concentrations. Its
homologues, PMO (-CH,0-) and PPO (-CH(CH3)CH,0-) do not dissolve in water an
ambient temperature. This may be due to the fact that the oxygen-oxygen inter-distance on
the PEO chain matches the oxygen-oxygen inter-distance in the structure of pure water.

A typical SANS spectrum from a 4 % PEO/d-water (weight average and number average
molecular weights of My, = 100,000 and M, = 96,000 g/mol respectively) is plotted for the T
= 10° C temperature. This sample is well in the semi-dilute region (c* is estimated to be
0.0275 g/cm’ which corresponds to 2.4 % volume fraction). The low-Q feature characterizes
large size clusters (of no interest to us here) and the high-Q feature characterizes the polymer
chains.
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4% PEO/d-water, MW:100,OOO g/mole, T=10°C
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Figure 1: SANS data for a PEO/d-water sample over a wide Q range showing a low-Q
feature and a high-Q feature. Only the tail of the low-Q feature is observed. Focus here is on
the high-Q feature.

3.FIT TO ASIMPLE MODEL

In order to characterize our results, the following empirical functional form is fitted to the
data:

I(Q) =

A C
— +B. 1
Q" 1+ M

The first term describes Porod scattering from clusters and the second term describes
scattering from polymer chains. This second term characterizes the polymer/solvent
interactions and therefore the thermodynamics and is of interest here. The two multiplicative
factors A and C, the incoherent background B and the two exponents n and m are used as
fitting parameters. The final parameter & is a correlation length for the entangled polymer
chains. It gives an estimate of the entanglement length (average distance between
entanglements). Non-linear least squares fits to the empirical functional form yield & = 20 A,
and m = 1.9 for the 4 % PEO/d-water sample. This empirical model should be used with
caution since it does not reproduce the Guinier limit properly (except for m = 2).
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4. THE CORRELATION LENGTH

The correlation length & decreases with increasing polymer volume fraction because the
entanglement length increases. & goes from close to 80 A at low polymer volume fraction to
under 10 A at high volume fraction. At low polymer volume fraction and at high-Q, the

chains radius of gyration is given by Ry = V2 £ =113 A and the end-to-end chain distance is
Ri,= 6 R, =277 A.

PEO/DZO, MW = 100,000 g/mole
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Figure 2: Variation of the correlation length with polymer volume fraction.

5. THE SPINODAL TEMPERATURE

The correlation length & and the coefficient C increase with increasing temperature T due to
increased composition fluctuations when approaching phase separation. The PEO/d-water
system is characterized by a lower critical solution temperature (LCST), i.e., it phase
separates upon heating. The spinodal (phase separation) temperature T is obtained when C
diverges; it can be accurately estimated from the intercept of a C' vs T™' plot of data taken at
various temperatures. In this case of 1 % PEO/d-water, one finds Ts= 127 °C.
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Figure 3: Variation of the high-Q inverse intensity C"' with inverse temperature T"'. The
intercept represents the spinodal (phase separation) boundary line.

6. THE EXCLUDED VOLUME PARAMETER

Our fitting results (high-Q Porod exponent) for the 1 % PEO/d-water solution show that
chains are mostly swollen at low temperatures (m = 1.85 which corresponds to an excluded
volume parameter around v = 1/m = 0.54) and change to theta conditions at high
temperatures (m = 2.02 which corresponds to an excluded volume parameter around v = 0.5)
as the spinodal temperature is approached.
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Figure 4: Variation of the Porod exponent with temperature. Polymer chains change from a
swollen state to a “theta” condition as the spinodal temperature is approached.

7. BRANCH OF THE PHASE DIAGRAM

The spinodal temperature T was obtained from the various PEO volume fraction samples
that were measured. A branch of the LCST phase diagram was obtained. What is interesting
is that the phase boundary line T is estimated through extrapolation (i.e., before reaching it).
For some of our samples, T happens to be above the boiling temperature of water (and
therefore unreachable except when measurements are made inside a pressure cell). The
SANS technique is a good monitor of phase separation because it is sensitive to composition
fluctuations which get enhanced close to phase boundary lines.

364



PEO/DZO, MW = 100,000 g/mole
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Figure 5: Limited branch of the phase diagram for the PEO/d-water polymer solution system.
Phase separation is obtained upon heating (LCST behavior).

8. POLYMER SOLUTION THERMODYNAMICS

Polymer solutions can phase separate upon heating (LCST behavior) or upon cooling (UCST
behavior). Polymers that dissolve in organic solvents tend to be characterized by a UCST
whereas water-soluble polymers tend to follow LCST thermodynamics. The Flory-Huggins
approach is a mean-field theoretical model that predicts phase separation behavior. This
model will be discussed later for polymer blends.

9. THE ZERO AVERAGE CONTRAST METHOD

The zero average contrast method (also called “high concentration” method) uses variation of
the fraction of deuterated polymer and deuterated solvent but keeping the total polymer
concentration (or volume fraction) constant to measure the single-chain form factor even at
high concentrations because the interchain contribution cancels out.

A series of PEO/water solutions were prepared whereby the total polymer fraction was kept

constant (volume fraction of 4 %) but the relative amount of dAPEO/hPEO was varied. In
order to isolate the single-chain contribution, we used mixtures of D,O and H,O solvent
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molecules that match the average polymer scattering-length density in each case. For such
hPEO/dPEO/H,0/D,0 mixtures, the scattering intensity is given by:

dE(Q)Z({AB 24 {AB, }* 1,05 v, P (Q) +{AB, n,0,v, Py Q) (2)
{ pD2¢—D+APH2$—j
{APD +A9Hi—ﬂ

App, = (P ps)=(3—i—b—j

Apy =Py ps)=[3—:—zj

Here, by and bp are the scattering lengths for the hPEO and dPEO monomers, vy and vp are
the corresponding volumes, and ¢y and ¢p are the corresponding polymer volume fractions
(and similarly for the solvent scattering length density bs/vs). In order to arrive at this
formula, it was assumed that the protonated and deut