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Abstract 

The random phase approximation is summarized for compressible polymer blend mixtures in the homogeneous phase 
region. Similarities with the polymer reference site interaction model are described. The effect of compressibility is also 
discussed in terms of'free volume' by introducing an extra component to represent 'small voids'. Variation of the effective 
Flory-Huggins interaction parameter with composition is found to agree with results obtained using the lattice cluster 
theory. 

1. Introduction 

The random phase approximation (RPA) has 
proven to be very useful in the modeling of small 
angle neutron scattering (SANS) from polymer 
blends in the single phase region. Despite its mean 
field nature, the RPA has been instrumental in 
obtaining Flory-Huggins 'chi' parameters and 
mapping out spinodal lines. The RPA formalism 
has been developed for binary blends [1], and then 
extended to multicomponent mixtures [2-4]; it can 
be applied to either compressible or incompressible 
systems. Extensive details can be found in a recent 
review article [5]. The 'compressible' RPA equa- 
tions are reviewed here and applied to a binary 
blend mixture. The incompressibility constraint 
will be taken as the very last step after working out 
the various partial structure factors [4]. Similarities 
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between the compressible RPA formalism and an 
Ornstein-Zernike (OZ) approach referred to as the 
polymer reference site interaction model (PRISM) 
are discussed. The RPA equations are also used to 
investigate the effect of compressibility on the com- 
position dependence of the Flory-Huggins inter- 
action parameter. 

2. RPA for compressible polymer mixtures 

There are two main approaches to derive RPA 
equations for polymer blend mixtures: the de 
Gennes [1]-Leibler [6] approach based on linear 
response theory and the Ohta-Kawasaki approach 
[7] based on density functional theory. In this 
paper, the de Gennes-Leibler method is followed. 
Consider a binary polymer blend (A and B compo- 
nents) of Gaussian chains with degrees of polym- 
erization NA, Na, volume fractions I~A , ~B, and 
monomeric volumes VA, VB, respectively. When the 
blend consists of a homogeneous phase mixture, 
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linear response theory yields an expression for the 
structure factors of the fully interacting system, 
SAg(Q), SBB(Q), SAB(Q), in terms of those of the 
'ideal' (non-interacting) system S°A(Q), S°B(Q). 
S°g(Q) and S°B(Q) are the single chain structure 
factors (note that SOAB(Q)=0 because A/B 
copolymers are not considered here). Assuming ef- 
fective interaction potentials WAg, WBB and 
WAB between A and B monomers, the linear re- 
sponses of the fluctuating densities (pg(Q))  and 
(PB(Q)) to externally applied (weakly perturbing) 
potentials UA and UB are given, in reciprocal space, 
by 

( P A ( Q ) )  = - -  S ° A ( Q ) [ U A  + W A A ( P A ( Q ) )  

"-[- WAB ( p B ( Q ) ) ' ]  , ( l a )  

( P B ( Q ) )  = - -  SSB(Q)[UB + WBA(PA(Q) )  

-+- WBB ( p B ( O ) ) ]  , ( l b )  

where kB T has been omitted for notation conveni- 
ence and the fluctuation<lissipation theorem has 
been used to relate the response functions to the 
structure factors. Moreover interacting response 
functions (related to the corresponding structure 
factors) obey the following relationships: 

( P A ( Q ) )  = - -  SAA(Q)(UA -- UB),  (2a)  

( P B ( Q ) )  = - -  SBB(Q) (UB - -  UA) ,  (2b)  

so that the externally applied potentials can be 
eliminated from these coupled equations. Note that 
the intermonomer interaction potentials could de- 
pend on the scattering wavenumber, Q. The RPA 
results (for compressible blend mixtures) are, there- 
fore, 

SAA(Q ) = SOA(1 + WeBS°B)/[(1 + WAASOA) 

×(1 + WBBSOB) 2 o o 
- -  W~,BSAASBB], (3a) 

SBB(Q) = S°B(1 + WAASOA)/[(1 + W A g S ° g )  

x ( 1  + W . s S ° B )  2 o o 
- W~,BSAASBB], (3b) 

SAB(Q)-- --S°A WABSOB/[(1 -4- WAASOA) 

X ( I + W B B S % ) - -  2 o o W~BSAASBB ] . (3c) 

Here also, kB T and Q have been omitted. The ideal 
structure factors are related to the familiar Debye 

functions P A ( Q )  and P B ( Q )  as  S ° A ( Q )  = 

NA~AVAPA(Q) and S°B(Q) = NBC~BVBPB(Q). 
Fig. 1 shows the variation of the interacting system 
structure factors for a specific blend mixture. Note 
that the cross-correlations structure factor, SAB(Q), 
is negative. 

The isothermal incompressibility condition 
( ( P A ( Q ) )  + ( P B ( Q ) )  = 0) i m p l i e s  SAA(Q ) = 

SBB(Q) = - -  SAB(Q) which gives the de Gennes for- 
mula 

1/SAA(Q ) = 1 / SOA(Q)  + 1/S°B(Q) - 2ZAB/Vo, (4) 

where Vo = (UAUB)1/2 is a 'reference' volume and the 
Flory-Huggins interaction 'chi' parameter, )CAB, has 
been defined as 

ZAB ~- ~AB - -  ( WAA "~ WBB)/2" (5) 

Fig. 2 shows the variation of the sole structure 
factor, SAg(Q), for an incompressible blend mix- 
ture. 

This approach has been extended to multicom- 
ponent polymer mixtures using an elegant matrix 

soo-"~SS (O) 
600.. ~ NA =1000, NB =2000 

k qA =0,50, (~B =0.50 
4 0 0 - - ~  ~ bA=5, bB=5,VA=I, VB=I 

SAg (O) ~ ~ wag =WBB =-0002,WAB =.0001 

I I I 0.02 0.04 0.06 0.08 
O 

Fig. 1. Partial structure factors for a compressible blend mix- 
ture with: degrees of polymerization N A = 1000, N B = 2000; 
volume fractions @A = 0.5, @n = 0.5; segment lengths 
bA = bn = 5 A; interaction potentials WAg = WSB = 0.0002, 
WAB = 0.0001 (kn T = 1 assumed). Note that monomer volumes 
have been set to unity (VA = VB = 1). 
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3001 ~ ] ~  N A =1000, NB =2000 

2501 ~ CA =0"50' 'B =0"50 

200f ~ bA =5' bB=5 
] X VA=I' VB=I 

15o- X Z AB =-0.0001 

k 

0 .102 " 0.104 0.106 

Q 

0 .J08 

Fig. 2. Partial structure factor for an incompressible blend mix- 
ture with the same parameters as in Fig. 1. Here ZAB = --0.0001 
has been used and the reference volume has been set to unity 
(vo = 1). 

notation [3,4]. The main result for compressible 
mixtures is 

s - ' ( O )  = S o ' ( O )  + w ( o )  or 

S(Q) = I1 + S o ( Q ) ' W ( Q ) } - " S o ( Q )  (6) 

where, for our two-component blend, S, So and 
W are 2 × 2 matrices. The incompressibility con- 
straint is imposed by "sandwiching' S - 1  between 
a 'projector', pT, (=  [1, - 1] for two-component 
case) and its transpose P: 

SA2(Q) = P T . { S o ' ( Q )  + W(Q)}.  P. (7) 

This has the effect of adding the diagonal elements 
and subtracting the off-diagonal elements [4]. In 
this procedure, the incompressibility constraint is 
taken as the very last step. 

3. The Ornstein-Zernike approach 

Defining an interchain structure factor as: 
H(Q) = S ( Q ) -  S0(Q), and using the 'compress- 
ible' RPA equation, the following relationship is 
obtained: 

H ( Q )  = - S o ( Q ) ' W ( Q ) ' S o ( Q )  

- S o ( Q ) ' W ( O ) - H ( Q ) .  (8) 

This equation is identical to the Fourier transform 
of the OZ equation used in PRISM calculations [8] 
except for the fact that, in the OZ equation, the 
direct correlation functions, C(Q), replace the po- 
tentials - W ( Q ) ( r e c a l l  that kBT has been omit- 
ted). This relationship C(Q) = - W(Q)  is reminis- 
cent of the mean spherical approximation (MSA) 
closure relation used to solve the OZ equation. 
A comparable argument showing the similarity of 
the RPA and OZ approaches was pointed out 
before [9]. However, incompressible RPA equa- 
tions were used in that argument. 

The RPA and OZ approaches use similar start- 
ing equations in direct space. PRISM calculations 
use the OZ equation along with a closure relation 
that splits the interaction range into two regions 
r < b and r > b (b is the segment length) in order to 
calculate the direct correlation functions (and the 
intermonomer potentials) 'self-consistently'. The 
RPA uses the intermonomer interaction potentials 
as input 'parameters'. The main difference between 
the two methods is in the modeling of the direct 
correlation function for low r (local packing). The 
RPA uses C(Q) = - W(Q) even for high Q (low r) 
while the PRISM with MSA closure assumes that 
the pair correlation function g ( r ) =  0 for low r. 
This is tantamount to including multiple contact 
interactions which are neglected in the RPA. For 
this reason, PRISM calculations, for example, can 
predict peaked behaviors for the pair correlation 
function while the RPA cannot. 

4. Compressibility effects on the 'chi' parameter 

The issue of compressibility of polymer mixtures 
has been the focus of much attention. A recent 
article [10] summarizes the various theoretical ap- 
proaches used to explain experimentally observed 
composition dependencies of'effective' Flory-Hug- 
gins chi parameters as measured by SANS [11,12]. 
It [10] also uses Monte Carlo simulations to inves- 
tigate such composition dependencies of the effec- 
tive 'chi' parameter coming from equation of state 
effects. Among these approaches, the lattice cluster 
theory [13] predicts mostly peaked behaviors (with 
a maximum for the variation of chi with composi- 
tion). A simple incompressible three-component 
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RPA approach  (where the third componen t  is as- 
sumed to consist of  small 'voids '  also referred to as 
'free volume') is used here to reproduce similar 
trends. The reduction of  the 'voids '  fraction is 
equivalent to an increase in pressure as considered 
by Freed and Dudowicz  1-13]. The incompressible 
three-component  RPA equations are similar to 
Eqs. (3) except for the fact that  in te rmonomer  inter- 
action potentials, WABS, are replaced by the ex- 
cluded volumes, VABS, defined as 

VAA : 1 / S ° c  - 2ZAc/Vo 

VBB = 1 / S ° c  -- 2XBc/Vo 

VAB = l /S°cc + ZAB/Vo -- XAc/Vo -- ZBc/Vo.  (9) 

Here S°c = (Pc Vc represents the 'ideal' contr ibut ion 
of the 'voids '  and the various chi parameters  have 
the usual definition; XIJ = WIj - ( W, + Wjj)/2 with 
(I, J) = (A, B). In our  application, the voids are as- 
sumed not  to interact at all (WAc = WBc = 
Wcc = 0) and to have sizes equal to the m o n o m e r  
ones (Vc and VA, VB are comparable).  Following 
others [10,13], we define an 'effective' chi para- 
meter as 

Xeff  = (1/SOA + 1/S°aa -- 1 /SAA)/2  (10) 

at the thermodynamic  limit (Q = 0). S A A  is taken 
from Eq. (3a). In this approach,  'real '  volume frac- 
tions are defined (~bA + ~bB + ~bc = l) as well as 
'observed'  volume fractions (q9 ° + ~b ° = 1) which 
correspond to the mixing conditions. In order to 
relate these two sets, the void fraction is assumed to 
be shared equally between the two components  
(~)A/t~O=I#B/(~) O= 1 -~bc ) .  The variat ion of  
Xefr with the 'observed'  volume fraction of compon-  
ent A is shown in Fig. 3(a) where the void volume 
fraction is varied from 0% (horizontal line) to 5% 
(bot tom curve). These curves are similar to those 
plotted in Ref. [13]. When the void volume fraction 
is taken to vary linearly with the volume fraction of 
componen t  A (q~c = 0.08q~OA + 0.01), the composi-  
tion dependence of  Z,ff is seen to follow a linear 
behavior  at intermediate composi t ions as shown 
in Fig. 3(b). This last case is reminiscent of  the 
linear composi t ion dependence of  Z~ff observed 
for deuterated polystyrene/polyvinyl methyether 
[14]. 
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Fig. 3. Composition dependence of the effective chi parameter 
obtained from the three-component RPA approach where the 
third component corresponds to small 'voids'. (a) From top to 
bottom, the curves show the variation of the void fraction, q~c, 
from 1 to 5%, respectively. The constant line corresponds to 
a 0% void fraction (i.e., to an incompressible mixture). The 
monomer volumes have been set to unity (VA = V~ = 1). (b) The 
two curves correspond to a constant void fraction (symmetric 
around 50%) and to a void fraction that varies linearly between 
1% (pure B) and 9% (pure A) respectively. 

Using the simple R P A  approach  described here, 
we have not been able to reproduce variations of 
geff that  show a min imum with composi t ion as 
observed in polyolefin blends [11,12]. 
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