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Structure factors, P(q), for regular dendrimeric polymer gels and two-dimensional 
tetrafunctiona1 networks are calculated. Since the low-q limit (q being the scattering wave 
number) region is uninteresting for these systems (the Guinier region yields gel and network 
overall sizes), this paper focuses on the intermediate q region, whereby the scattering radiation 
is probing sizes larger than single blocks but smaller than the whole macromolecule. Kratky 
plots [tiP(q)vs ti] are presented for starburst dendrimer gels with varying functionality and 
correlation range r (with respect to a reference block) and for "crumpled sheet" tetrafunctional 
networks with varying r. For regular networks, the structure factor has contributions from the 
various "lattice animals" that correspond to a chosen pair of correlated blocks. A simple method 
based on multivariate Gaussian distributions is used to express the mean square intermonomer 
distance <,-Tj) for not too complicated correlation diagrams (r < 4). 

INTRODUCTION 

The structure factor for complicated structures such as 
gels or networks is needed in order to interpret scattering 
data from these systems. While a good deal of experimental 
data exist, only limited endeavors at modeling even regular 
systems are availablel

-
3 due to the complexity in describing 

such structures. Because the low-q region is uninteresting 
for large size gels and networks (Guinier plots yield the 
radius of gyration which is huge in these systems), our 
focus here will be on the intermediate-q region (Kratky 
plots). 

Regular gels (the word gel is used here to refer to 
structures that are constructed through multifunctional 
polymerization without closed loops) such as "starburst 
dendrimers" have been modeled4

,5 using Gaussian statis
tics to describe interactions between monomers. A simple 
intermediate-q limit (q being the scattering wave number) 
expression for the structure factor P(q) of a regular star
burst dendrimer will be presented. Variations of the char
acteristically peaked Kratky plot [tiP(q)vs ti] show the 
effect of increased branching (represented by the function
ality f) or range of correlations r (Le., the number of 
intermediate blocks between a pair of correlated blocks 
beyond which correlations are neglected). Zimm plots 
could also have been used to observe trends in the 
intermediate-q region; however Kratky plots were chosen 
because they are more suitable for branched systems. 

It is difficult to describe even regular networks (the 
word network is used here to describe structures that are 
cross linked starting from linear polymers and that can 
contain closed loops). Because of the large number of pos
sible pathways (some involve linear chain portions while 
others involve closed loops) between a pair of correlated 
blocks, only two-dimensional structures will be considered 
here. These do not have to be planar, they can form a 
"crumpled sheet,,6 type of structure. The structure factor 

P(q) for such a two-dimensional regular (on an "amor
phous" lattice) tetrafunctional network has contributions 
from a variety of correlation diagrams (referred to as "lat
tice animals" following a common terminology in the field 
of computer simulation calculations on a lattice). The 
mean square intermonomer distance <,-T) between two 
monomers that belong to a pair of correlated units in the 
network will be worked out for a number of possible path
ways using an old (mostly forgotten) method7 based on 
multivariate Gaussian distributions that allows the "con
struction" of complicated looped structures starting from 
one single chain and introducing cross links judiciously. 
All possible pathways will be worked out up to r= 3. 

STRUCTURE FACTOR FOR REGULAR DENDRIMER 
GELS 

Consider a regular dendrimer gel of infinite extent (in 
order to neglect end effects) and of functionality f [the 
number of blocks is multiplied by a factor (f - 1) between 
one generation and the next]. All blocks in the gel are 
assumed to be identical with n monomers (of segment 
length b) each. Consider a pair of blocks (reference block 
and correlated block as shown in Fig. 1) with r interme
diate blocks in between. Because Gaussian correlations be
tween two monomers i and j decay as exp( -a<,-Tj)/b2

) 

where a=tib2/6, contributions are more important for 
short interdistances rij' For this reason (and for interme
diate q values), correlations are assumed to become negli
gible beyond a given range r. 

The structure factor (for correlations with respect to a 
reference block) is defined as 

P(q) = (~) L L exp( -a <,-T)/b2
) , 

n blocks i,j 

where the first summation is over all correlated blocks, the 
index i runs over monomers that belong to the reference 
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FIG. 1. Regular dendrimer gel. 

block, and j runs over monomers that belong to the cor
related block as shown in Fig. 1 (note that the correlated 
block is allowed to be the same as the reference block). 
P(q) can be expressed as 

r+2 

P(q)=Ps(an)+2F2(an) I (f-Ok-) 
k=2 

Xexp[ -an(k-2)], 

where the single block structure and form factors have 
been defined (for Gaussian statistics) as 

Ps(an) = (~) ~ exp( -a I i- j I) 
I,J 

_ (~) 2[exp( -an) -1 +an] 
- n + (an)2 , 

F(an) = - I exp( -ai) = . (
1) n [I-exp(-an)] 

n i an 

The summations can be performed to give 

P(q) =Ps(an) +2F2(an) [exp[na]] 

X {exp[ -an(r+2)] (f -Or+2-exp( -an) 

X (f -1)}/{exp[ -an](f -1) -I}. 

Note that P(q=O) is equal to the total number of 
blocks N r= 1 +2[(f _or+2_ (f -I )]/(f -2). These ex
pressions are valid in the intermediate-q region where a < 1 
but an(r+2) > 1. Figures 2(a) and 2(b) show the com
parison of the peak height in Kratky plots, 
(an)P(q)vs(an), for varying rand f. Figure 2(c) sum
marizes the variation of the Kratky plot peak position for 
fixed f = 4 and increasing r. 

MULTIVARIATE DISTRIBUTIONS FOR REGULAR 
NETWORKS 

In order to calculate the contributions of the various 
correlation diagrams (lattice animals) for regular net-
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FIG. 2. (a) Kratky plot for a regular dendrimer gel for increasing cor
relation range r (r=I,2,3,4) and a fixed functionality /=4. The curves 
have been normalized to unity for an= 10. (b) Kratky plot for a regular 
dendrimer gel for increasing functionality / (/=3,4,5,6) and a fixed 
correlation range r=4. The curves have been normalized to unity for 
an = 10. (c) Variation of the position of the Kratky peak with the cor
relation range r for a fixed functionality /=4 in the case of a regular 
dendrimer. 

works, a systematic method based on multivariate Gauss
ian distributions is used to construct such structures from 
linear polymer chains. 

For the sake of clarity, a simple case involving corre
lations between two blocks (n monomers each) separated 
by three linear chain portions (n), n2' and n3 monomers, 
respectively) that are joined at the extremities of the two 
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FIG. 3. Correlations between two blocks when their extremities are con
nected by three intermediate blocks of different lengths. 

blocks (see Fig. 3) is considered here. This structure can 
be constructed using a long linear chain (with 2n + n 1 + n2 
+n3 monomers) that comprises two cross links (corre
sponding to r2=O and r3=O in Fig. 3). All segment lengths 
are assumed to be equal to b. The trivariate Gaussian dis
tribution is given by 
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FIG. 4. Correlations around a chosen reference block in a regular tet
rafunctional network. The region of interest within the considered bound
ary depends on the correlation range r. 
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FIG. 5. Indexing scheme for regular 2D tetrafunctional networks. 

where rl =rij' 11 is the determinant of the correlation ma
trix, C, D is its inverse (D=C- l

), and the nine elements of 
C are given by: CfLV=<rfL' rv)/b2 with {,u,v= 1,3}. The for
mation of the two cross links (by setting r2=r3=O) leaves 
a univariate Gaussian distribution: 

P(rl) =P(rJoO,O) / f d 3r IP(r JoO,O) 

= (3/21Tb2 )3/2 DW exp[ - (3/2b2 ) D lJril. 

The average mean square distance between two mono
mers i and j that belong to the blocks of length n is there
fore given by 

(rt)/b2= 1/ DlJ. 

In the specific case considered here (Fig. 3) 

TABLE I. Case of a regular two-dimensional (2D) tetrafunctional net
work for r= 1. List of the various coefficients sij= (?;)/b2 where (?;j) is 
the mean square interdistance between two i and j monomers that belong 
to two different blocks, b is the monomer segment length and n is the 
number of monomers per block. 

Indices 

(O,I,T;I) 
(I,O,L;I) 
(I,I,T;l) 
(O,I,L;I) 
(0,2,T;1) 
(I,I,L;I) 

n-i+j 
(-f2-2ij - /+2in+2jn+3n2)/4n 

2n-i+j 
n-i+j 
2n-i+j 
2n-i+j 
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TABLE II. Case of a regular 2D tetrafunctional network for r=2. 

Indices 

(0,I,T;2) 
(1,0,L;2) 
( 1.I,T;2) 
(2,0,L;2) 
(2,I,T;2) 
(0,I,L;2) 
(0,2,T;2) 
(1.I,L;2) 
(I,2,T;2) 
(2,I,L;2) 
(0,2,L;2) 
(0.3,T;2) 
(1,2,L;2) 
(0,3,L;2) 

(-f+2ij -/-2in+2jn+3n2)/4n 
(-f-2ij -/+2in+2jn+3n2)/4n 

( -f+4jn+4n2)/4n 
( -f-2ij-/+2in+2jn+Sn2)/6n 

-i+ j+3n 
-i+j+n 

(-i-4in+2jn+ 7n2)/4n 
- (4f+2ij +4i+in-lljn-14n2)/15n 

-i+ j+2n 
-i+j+3n 
-i+j+2n 
-i+j+3n 
-i+ j+2n 
-i+j+3n 

C23 =C32 =n2, C33 = (nl +n2) 

and therefore 

(1) =b2[ (-i+ j +n) (n\n2+ nln3+ n2n3) 

+ nln2n3]/(nln2 +nln3 +n2n3)' 

In summary, this method consists in forming the cor
relation diagram using one single chain and choosing judi
ciously the location of cross links. All elements of the cor
relation matrix C need to be calculated so that the first 
element (recall that rl =rij) of its inverse, Dl1 =a l1/a 
(where all is the cofactor of element CII and a is the 
determinant of C) is obtained, therefore yielding <rTj)lb2 

= .Ill all' In order to simplify the notation, < rT} I b2 will be 
called Sij' This procedure will be used in the next section to 
calculate the Sij terms for many lattice animals needed in 
the modeling of regular networks. 

STRUCTURE FACTOR FOR REGULAR 
TETRAFUNCTIONAL POLYMER NETWORKS 

Consider a regular two-dimensional polymer network 
with an infinitely extended structure of blocks comprising 
n monomers each. Starting from an arbitrarily chosen ref
erence block, our aim is to express all possible correlations 
with all other blocks within a correlation range r (see Fig. 
4). For a fixed r, a number of correlation diagrams (lattice 
animals) have to be worked out using the method de
scribed in the previous section. For simplicity the correla
tion range is divided into four quadrants and only the up
per right quadrant is considered explicitly. The other three 
are accounted for by including a degree of degeneracy, d, 
for each lattice animal (i.e., how many times it occurs). 
An indexing scheme has been chosen to represent the var
ious correlation diagrams. As shown in Fig. 5, the first two 
indices represent the coordinates of the bottom left extrem-

TABLE III. Case of a regular 2D tetrafunctional network for r= 3. 

Indices 

(0,I.T;3) 
(1,0,L;3) 
(I.I.T;3) 
(2,0.L;3) 
(2,I.T;3) 
(3,0.L;3) 
(3.I,T;3) 
(0.I.L;3) 
(0.2,T;3) 
(1,I,L;3) 
(I,2,T;3) 
(2.I.L;3) 
(2,2,T;3) 
(3,I,L;3) 
(0,2,L;3) 
(0.3.T;3) 
(I.2,L;3) 
(1,3,T;3) 
(2.2.L;3) 
(0.3.L;3) 
(0,4,T;3) 
(I,3,L;3) 
(0.4,L;3) 

( -32f+9ij-23/-2Sin+S3jn+60n2)/92n 
(-16f-32ij -16i+32in+32jn+33n2)156n 

( -16f+Sij-15i+42jn+49n2)/56n 
(-4f-2ij -4i+5in+5jn+20n2)/15n 

i/5+ j-4f/15n+ 7n/5 
- U+ j -5n) U+ j+3n)/Sn 

j-f/Sn+2n 
(-20f+Sij _20j2-Sin+40jn+2Sn2)/4Sn 
( -15(l+Sij-16/-20in+24jn+6Sn2 )/56n 

- (4P+2ij+4/+in-l1jn-14n2)/15n 
(-15f+2ij-15/-lOin+3Sjn+ 73n2)/56n 
( -14f-4ij-14i+4in+2Sjn+5Sn2)/48n 

-i+j+12n/5 
-i+j+4n 
-i+j+2n 

-i+ jI3-4j2/15n+ 7n/3 
(-15P-2ij-15/-12in+44jn+ 76n2 )/56n 

-i+j+12nI5 
(-15i+ 15j+36n)/15 

-i+j+3n 
-i+j+4n 

(-15i+ 15j +36n)/15 
-i+j+4n 

ity of the correlated block, the third index keeps track of 
whether the two correlated blocks are parallel (L) or per
pendicular (T), while the last index is the correlation 
range r. 

For a fixed correlation range r, the structure factor 
(representing correlations between all correlated blocks 
within r and the reference block) is given by 

lattice 
animals 

(lIn2
) L exp( -asij), 

i,} 

where the first summation is taken over all the various 
lattice animals within the considered range and the second 
over one is over all monomers in each block and where the 
Sij values are given in Tables I-III. As before Ps(an) is the 
single block structure factor and P(q) is normalized as 
P(q=O) =NT • The i,j summations are performed 
numerically. 

When zero or one intermediate block is allowed be
tween the pair of blocks under consideration (r= 1), there 
are six possible lattice animals [see Fig. 6(a)] of which only 
one, with indices (1,0, L; 1 ), involves loop interactions. For 
r=2, there are 14 possible lattice animals [see Fig. 6(b)] 
that involve either bi- or trivariate distributions. The case 
r=3 contains 23 correlation diagrams [see Figs. 6(c) and 
6(d)] some of which involve up to six variate distributions. 
In some cases, in order to construct the desired lattice 
animal [such as for (1,0,L;3), for example], one has tocon
sider fictitious chain portions (say, of length n I) between 
specific cross links and take the limit nl ..... 00 in the 
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FIG. 6, Various lattice animals representing correlations with respect to the reference block for a regular 2D tetrafunctional network (a) when r= I, 
(b) when r=2, (c) and (d) when r=3, 

result for sij= <?;j)lb2
• For example, in Fig. 3, taking 

n\-+ 00 gives the correlation diagram for two blocks (of n 
monomers) grafted at diametrically opposite points of a 
ring (comprising n2+n3 monomers) so that <?;j) =b2[(-i 
+j+n)(n2+n3)+n2n3]/(n2+n3). Kratky plots are pre
sented in Fig. 7(a). 

DISCUSSION 

Comparing the Kratky plots for regular dendrimers 
[Figs, 2(a), 2(b)] and regular networks [Fig, 7(a)], one 

can observe that for a fixed functionality /, the presence of 
correlations involving closed loops increases the peak 
height and width. Increasing / further enhances this peak. 
As shown in Fig. 7(b), loop interactions cannot be ne
glected in the calculation of network correlations, This fig
ure represents Kratly plots for r= I when the only looped 
interaction (I,O,L; I) is either included or replaced by its 
equivalent one (i,I,T; 1) when the loop interaction is 
"opened up," One can observe a difference of 8% in the 
peak height of the Kratky plot for this case (r= I ), 
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FIG. 7. (a) Kratky plot for a regular 2D tetrafunctional network with 
increasing correlation range r (r= 1,2,3). (b) Kratky plot for a regular 
2D tetrafunctional network for a correlation range r= I when the only 
loop interaction ( 1,0, L; I) is included [curve (a) I or replaced by its equiv
alent (I,I,T;I) non looped interaction [curve (b»). 

Fits of the high-q part of the Krady plot for regular 
networks to the form (an)p(q) =A+BI(an) yields an 
asympotic value A=2 for the three cases considered [see 
Fig. 7(a)] and the following values for the slope: B=4.37, 
5.17, and 6.20 for r= 1, 2, and 3, respectively. It is hoped 
that such empirical laws, when developed for more realistic 
three-dimensional networks, will be useful for the evalua
tion of experimental data. One could, eventually, estimate 
average cross link density and functionality. 

Recently Benoit et al. 8 have derived general expres
sions for BIA in the high-q expansion (an)P(q)=A+BI 
(an) for irregular gels without looped structures. Their 
results correspond to the case r=O whereby correlations 
between two blocks are neglected except if these two blocks 
are neighbors. 

In the approach used here to express the structure fac
tor for regular gels and networks, only "topological neigh
bors" were considered. The existence of "spatial neigh
bors" (Le., monomers that are physically close to each 
other but are separated by long chain contours) has been 
neglected. In an intermediate-q description, one can think 
of each block as surrounded by a correlation range beyond 
which two monomers do not feel each other. 

The two-dimensional crumpled sheet description of 
regular networks presented here could serve as a basis for 
the modeling of more realistic three-dimensional struc
tures. 
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