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Synopsis

We use Zimm’s single-contact approximation to investigate the concentration dependence of the
first camulant for partially labeled chains in dilute solutions. This approximation allows us to express
interchain properties (such as the interference part of the generalized mobility) in terms of static
structure factors, which are then modeled using a Gaussian chain model. We present numerical
results for three specific labeling sequences.

INTRODUCTION

The purpose of this paper is to use Zimm’s single-contact approximation?
(SCA) to study static as well as dynamic properties of partially labeled chains
in dilute solution. Specifically, we calculate the concentration dependences of
the static structure factor S(¢) and of the first cumulant £(q) for such chains.
The concentration dependence of S(g) has been thoroughly studied recently by
Benmouna and Benoit? in the case of block copolymers, using the SCA. We
briefly summarize some of their results for completeness. The SCA has been
used earlier? to study the concentration of 2(g) for homopolymers. Here, we
extend this approach to partially labeled chains and present numerical results
for some labeling sequences (diblock DH, triblock DHD, and triblock HDH) to
aid in the interpretation of dynamic scattering experiments, especially in the
assymptotic g region.

CONCENTRATION DEPENDENCE OF THE STATIC
STRUCTURE FACTOR

The static structure factor for elastic coherent scattering from an aggregate
of monomers in solution can be written as \

S(g) = (1/N) {p*(a)p(q)) (1) -

where p(q) is the density of monomers in Fourier space, viz.,

N,
pl@) = Y elaRap (q) (2a)

a=1
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with

Palg) = Z @ qjeliaSa) (2b)
=

The quantity p,{(q) is the monomer density of the ath chain about its center of
mass R, and a,; is the excess scattering length per monomer, i.e., the difference
between its scattering length and the scattering length of the same volume of
solvent (for incompressible solutions). S,; locates the positions of monomers
about the center of mass and N, is the number of chains in the system of volume
V. The normalization factor W is defined as

ff ( > am) (3a)

When the chains are identical, i.e., N, = N (the total number of monomers in
each chain), as we henceforth assume, N becomes

N = Nyn? (3b)
where
N
n=3 Gy 4
i=1

can be interpreted as the number of labeled monomers in each chain if we assume
a4 = 1 for labeled (deuterated) monomers and a; = 0 for unlabeled (normal)
ones. The normalization is chosen such that S(g = 0) N, in the case of
identical chains. .

The thermal average appearing in eq. (1) is takem wj
rium distribution of a single chain in the presence: j'fherefore, it de-
pends on polymer concentration C, = N,/V. 'This'@ependence can be made
explicit by separating single-chain S,(q) and imterference S;(q) parts in S(q)
as

p the equilib-

S(q,Cp) = S(q) + CpS/(q) (5)

where
Ss(q) = (I/n)) (| p1()|?) vy my80) (6a)
S1(q) = (V/n2){eiaR121(q)po(a)) wo(r 181, RS2 (6b)

It is to be noted that both S;(g) and S;(g) are concentration dependent in gen-
eral. However, within the context of the SCA considered in this paper, S;(q)
does not depend on concentration. Also S;(g) will be evaluated in the zero-
concentration limit because it is already multiplied by concentration. In egs.
{6a) and (6b) the thermal averages are taken with respect to the one-chain
W(R1,8:) and two-chain ¥2(R1,81,R,,S,) distribution functions, respectively.
In Zimm’s SCA only one pair of monomers that belong to two different chains
is assumed to experience excluded-volume interaction at a time. W, can
therefore be expanded as follows:

N
Vo(R1,81,R2,82) &~ ¥1(R1,81) ¥1(R2,S2) {1 — x % 0(Rg+ S1k21)) (7

where Y is the excluded volume per monomer. It is assumed, here, that x is the
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same for both labeled and unlabeled monomers. Using eq. (7), the interference
term can be written as, for ¢ # 0,

Si(q) = =xN2%S%(q) (8)
where

1 N )
Sr(q) = N _)% aq;{etaSuimyy g g : (9)
1,

is a partial form factor in which one of the summations is restricted to labeled
monomers only. Sgr(g) becomes the familiar normalized single-chain static
structure factor S;{(g) in the case of totally labeled chains.

The concentration dependence of S(q) is, therefore,

S(q,Cp) = Ss(q)[1 — ks(q)Cp) (10)
with

ks (@) = xN?S3(q)/Ss (q) | (11)

Expressions for both S;{(q) and Sr(q) are derived in Appendices A, B, and C for
diblock DH, triblock DHD (label at both ends), and triblock HDH (label at the
center) chains, respectively. A generalization to more complicated labeling
sequences is straightforward.?2 We should note that in eq. (10), S,;(q) is the
single-chain static structure factor of the visible part only. It will be approxi-
mated in numerical calculations, ignoring the effect of the invisible part com-
pletely, by Ss(q) for a chain identical to the labeled part.

CONCENTRATION DEPENDENCE OF THE FIRST CUMULANT

The first cumulant £(g) can be written in terms of the g-dependent mobility*
u(q) as

Uq) = q*ksTul(q)/S(q) (12)
with
_ 1 Np N q'D(Raa' + Saja’j’)'q iqe , : L
u(q) _ an2 aé,jz,j’aajaa/j/ < q2. € 4 (Raa+sajaj ) (13)
Here we use the conventional symbols for the diffusion tensor D given by

D(Rag) = (kpT/E)16aB + £(1 — 6AB)T(RaB)] (14)

the friction coefficient £ and the Oseen tensor

1 RABRAB)
TR = 1+ 15

(Ras) 8rnRap ( Ris (15

We also choose the direction of g along the z axis.
To obtain the linear concentration dependence of u(g), i.e.,

- 1(g,Cp) = u(@)]1 — ku(q)Cp] (16)

we follow the procedure used in ref. 3, but we restrict the summations to labeled
monomers only; i.e., we separate eq. (13) into single-chain and interference parts.
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The first part gives rise to the generalized mobility in the infinite-dilution
limit:

1 1
2 (2m)3

and does not depend on the unlabeled portion of the chain explicitly. The second
part is calculated using the SCA. Unlike the self part, the invisible portion of
the chain enters explicitly because the labeled or unlabeled monomers in that
portion can experience contacts with monomers of other chains. Therefore, the
interference part contains the partial form factor Sg(q) defined in eq. (9).
Putting both parts together yields

ulq) = fd3K Ta3(K — q) (Ss(K) - i) (17)

B.Co) = w(@) = Cp 5 f dK Tys(K — q) (SR<K) ‘N)2 (18)
The concentration coefficient in eq. (16) can be obtained from eq. (18) as
k.(q) = xN?2I2(¢)/11(q) (19)
where we have defined (neglecting the Rouse term)
I(g) = fd°K T33(K — q) (SS(K) - %) (20a)
Ioq) = fd*K T5s(K - @) (SR<K) - ]%,)2 (20b)

The angular integrations are performed analytically in ref. 3 yielding
w K K2+ K+ 2
o =2 f7ak [ LY @) -2) e

q? |K —q|
o o (KK2+q. |K+g] K2)( )z
Io(q) =% dK(— In Sp(K)-—| (21b)
24q nj; 2 g2 IK—ql ~ @2)\°R

and the K integrations are done numerically for each of the cases considered in
Appendices A-C. '
The concentration dependence of the first cumulant

Q(q,Cp) = A1 + kalg)Cpl (22)
follows from eq. (12) as
kal(q) ~ ks(q) — k.(q) (23a)

or

(23b)

kala) = xv? () - 140)

Ss(q)  I1(q)

which is the main result in this paper. Equation (23b) reproduces the homo-
polymer case® if the chains are totally labeled [i.e., when Sgr(g) = S,(q)].

DISCUSSIONS

Zimm’s SCA was used to estimate static as well as dynamic properties of
partially labeled chains in dilute solutions. This approximation enables one
to express the intermolecular structure factor S;(g) in terms of an intramolecular
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Fig. 1. Variation of ko/xN? vs. gRz(N) in the diblock DH case for the following labeled fractions:
1,34, Y, and Y, (in curves 1, 2, 3, and 4, respectively). Debye functions have been used for the different
static structure factors.

one Sr(q). Another way of estimating S;(g) would be to use an explicit form
for the pair distribution function g(R) as a function of the intermolecular distance
R, as was presented earlier® for homopolymers. In ref. 5, g(R) obtained from
Monte Carlo simulation® of chain interactions was used. The SCA approach
used here does not rely on such g(R) data. It is based on the knowledge of the
static structure factor S(K) over the whole range of momentum transfer K
only.

The ratio ko(q)/x N2 is plotted in Figures 1, 2, and 3 for diblock DH, triblock
DHD, and triblock HDH chains, respectively. We consider four different labeled
fractions n/N =1, 3/, 15, and Y, in each case, and use the Gaussian-chain model
[the completely swollen-chain model”-8 (with » = %) could also be used instead]
for the static structure factors S;(g). As we see in the appendices, the partial
structure factor Sg(q) can be expressed in terms of S, (g) for labeled and unla-
beled portions and for the whole chain. The Gaussian-chain assumption requires
a large number of statistical units; if the labeled sequence becomes too small,
this model becomes questionable and we must resort to direct summations [as
in Eq. (6a)]. .
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Fig. 2. As in Fig. 1 for triblock DHD.
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Fig. 3. Asin Fig. 1 for triblock HDH.

In order to discuss the behavior of the curves in Figures 1-3 near the origin
we consider the zero-g limit of kg(g) in eq. (23b). Since ((q)/q2 approaches the
short-time diffusion coefficient D(Cp) in this limit, eq. (22) can be written as

D(C,) = D(0)( + kpC,) (24)

where kp = ko(0) and denotes the concentration coefficient of the short-time
diffusion coefficient for partially labeled chains. It is given by

kp = xN2[1 ~ I2(0)/1:(0)] (25)
The expressions of 11(0) and 75(0) follow from egs. (21) as

87 @ 1
no = j; dK (SS(K)-n) (26a)
and
8r 1\2
10 =3 £ dK (SR(K)—J—V-) (26b)

For homopolymers for which n = N, eq. (25) can be cast into the form

v oaysly 2Ba - ( _l)z]

kY = 8X [1 e j; dy S (r.N) ~ = @7
if the number concentration C, in eq. (24) is expressed as a volume fraction Cy
using Cy = vyCp, where vy = 4R, and denotes the hydrodynamic volume.
The factor xN? in eq. (25) is replaced by 8vy X3, where X = S/Ry. In the latter,
S denotes the effective radius of excluded volume per molecule, and is defined
as the radius of hard spheres with the same second virial coefficient as the actual
polymers. The numerical value of the integral in eq. (27) is 1.247 when S, (y,N)
is taken to be the Debye function for a chain of length N, and 1.425 when it is
calculated using the fully swollen Gaussian-chain model (Peterlin’s model”) with
v = 0.6. The ratic By/R; varies from 0.665 at the theta point to 0.537 in the
good-solvent limit. The latter value is also calculated using the fully swollen
Gaussian-chain model. With these numerical values one obtains k) = 4.6X3
and 3.7X? using the Debye function and Ry/R¢ = 0.537 and 0.665, respectively,
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- when Peterlin’s model is used one finds k% = 4.1X3 and 3.1.X3 for the same two

values of Ry/R¢ ratio. Other theoretical estimates®1° of k% for homopolymers
cluster around 2 when X = 1, which is a value closer to the experimental results
than those predicted from the above formulas. It is concluded that eq. (27),
which is based on the single-contact approximation, predicts too lage a concen-
tration dependence for the short-time diffusion coefficient in the case of ho-
mopolymers.

In order to discuss the predictions of eq. (25) in the case of partially labeled
chains, we consider 50% deuterated chains and calculate first the ratio DPHD/
DHDH_ Here, DDHD denotes the short-time diffusion coefficient in the zero-
concentration limit of the center of mass of the deuterated portions of length
1/, N each at the two ends (DHD sequence), and DHPH denotes the same in the
case of an HDH sequence. Ignoring the Rouse term we obtain from eq. (17)

DDHD/DHDH = [DHD () /[HDH () (28)

b With the results presented in Appendices B and C one finds

E 1pm() = fo " dK (433 (K,N) + S, (K, YN) = %S, (K,%N)

+ 18, (K,YuN) — %

HDH vy — ® _1
JHPH(0) = ﬂ dK (Ss(k,l/zN) N)

These integrals can be reduced to a single integral of the Debye function if
F S,(K,m) — 1/N is taken to be the normalized Debye function S;(y), wherey =
] KRg(m). Inthelatter Rg(m) denotes the radius of gyration of a chain of length

m including swelling. The result is
DPHD/DHDH = 1 + R (LN)[4RG' (N) + hbRG' (Y4uN) — %RG'(4N)] (29)

In the asymptotic power-law limits Rg{m)/Rg(n) = (m/n)” where v = 0.5 and
0.6 in the theta and good-solvent limits, respectively. Hence

DDHD/DHDH = () 861 (theta)
=(0.869 (good solvent)

A simple physical interpretation of these results can be given when the length
of the deuterated portion n is much smaller than the total length of the chain
N. In this case the hydrodynamic interaction between the two halves of the
labeled sections at the two chain ends in DHD sequence can be ignored (free
draining). Then DPHD becomes equal to one-half of the diffusion coefficient
of a chain of length %n. Since DHDH jg the diffusion coefficient of a chain of
length n, we find

(30)

DDHD/DHDH = 9»—1

which yields 0.707 and 0.758 in the theta and good-solvent limits, respectively.
These numerical values represent lower bounds for the ratio DPHD/DHDH apd
are indeed smaller than those obtained in eq. (30) for 50% deuterated chains.
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Equation (29) can also be used to calculate DPHD/DHDH {or intermediate solvents
in terms of radii of gyration at a given solution temperature.

Since the numerical values in eq. (30) are universal numbers for 50% deuterated
chains they can be tested experimentally by dynamic scattering. However, one
must remember that the diffusion coefficients considered in the above discussion
are all short-time diffusion coefficients.1®1¢ The long-time translational dif-
fusion coefficient of a chain of length N is unique regardless of the length and
arrangement of its experimentally visible portions. Is it then possible to measure
the short-time diffusion coefficients in a dynamic scattering experiment? The
initial decay of the normalized dynamic scattering function S(g,t) is given by
exp[—g2DHPH(n)t], for example, in the case of an HDH sequence. The obser-
vation time interval in which S(g,t) decays by a factor exp(—«) is given by
q?DHPH(n)t = o. On the other hand, long-time diffusion sets in crudely after
the center of mass of the full chain diffuses across the size of the molecule, i.e.,
after t, = R4(N)/6D(N), which is an estimate of the longest Zimm relaxation
time. Hence

_t_=_§¢1_(£ v
t1  q2RZ(N)\N,

In order to observe the short-time diffusion coefficient of the labeled portion,
t/t; « 1 must hold. This implies

a & Ys(N/n)*q?R%E(N)

Since customarily gRg (V) is chosen to be sufficiently smaller than unity in dif-
fusion experiments, an upper bound of « can be taken as Y54(N/n)* with gRg(N)
= 0.5. For a 50% deuterated chain with » = 0.5 this corresponds to only 6% decay
of S(g,t). It appears that the measurement of DHPH by dynamic scattering is
at least difficult if not impossible unless the ratio n/N is#afficiently small. We
note, however, that the first cumulant @(q)/q2 is 4 measure of the short-time
diffusion coefficient of a chain section with an end-to-end distance proportional
to 1/q, insofar as it is an internal motion of the chain and thus accessible without
labeling by increasing q.

Figures 2 and 3 show that the magnitude and shape of the concentration
coefficient kq(q) as function of g are very similar for HDH and DHD sequences.
This is somewhat expected because kg(g) involves hydrodynamic interaction
not only between the labeled monomers but among all monomers, visible or not,
and consequently it is not sensitive to the sequence of the labeled monomers,
at least for 50% deuteration. .

A last observation is that ko(q)/xN? increases when the labeled fraction of
the chain is decreased. This is due to the fact that ko(g) represents the change
in Q(q,Cp) with concentration relative to {(q,0), which increases when n/N is
decreased. Had the concentration coefficient been defined as Q(q,C,) = Q(q)
+ Ko(q)Cp, Kq(g) would probably have decreased when the visible part was
shortened.

The formalism used here can be applied to star and comblike branched chains
as well. Burchard et al.? have recently studied S(q) as well as {(q) for block
copolymeric star molecules in the infinite-dilution limit. The SCA has been
extensively tested in the case of S(¢) and is being routinely used to extract the
radius of gyration and the second virial coefficient from static scattering data.
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as in the diblock case, and

1 (N+n)/2 ) (N-n)/2  (N+n)/2 .
SEDH(q) [, f (eiaSu1)) & i 3 3 {elieSu)) (C2)
nN i j=(N"n)/2+1 nN =1 j=(N-n)/2+1 i
Here also, using '
(N=n)/2  (N+n)/2 . N + n\2 N+ N — n\2 -
- S (etiasun) = ( n) 8. |a. ") - n2S,(q.n) —( ") S, q,N n)
i=1 j=(N—n)/2+1 2 . 2
eq. (C2) becomes
1 (N +n\2 N+ny 1 (N-n)2 N —n\
s - L (N L @
=0 T AN 2 )\ T ©3)

The different static structure factors introduced in these appendices are modeled by Debye
functions

Ss(g,m) = 2/x2)(e~*+x — 1)

where x = g2R%(m) [Rg(m) being the swollen radius of gyration for a chain of length m]; in the case
of the fully swollen Gaussian-chain model”® the following equation could have been used instead:

1 1 1
Fi{— x| - Fl-»x
(21/ ) at/ (v )]
where x = Y5 g2a2m? (v = 35 for good solvents) and the function

F(bx) = y(bx) ~ y(b, x/m?)

Ss(g,m) =

px1/2v

is given in terms of the incomplete gamma function

y(b,x) = j;x dt e—ttd-1

References

imm, J. Chem. Phys., 14, 164 (1946); 16, 1093 (1948).
Benmouna and H. Benoit, Polymer, to appear.
Hammouda and A. Z. Akcasu, Macromolecules, 16, 1852 (1983).
G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University, Ithaca, NY,
197
7. Akcasu and B. Hammouda, Macromolecules, 16, 951 (1983).
F. Olaj, N. Lantschbauer, and K. H. Pelinka, Macromolecules, 13, 299 (1980).
Peterlin, J. Chem. Phys., 23, 2462 (1955).
Z. Akcasu and M. Benmouna, Macromolecules, 11, 1193 (1978).
. W. Burchard, K. Kajiwara, D. Nerger, and W. H. Stockmayer, Macromolecules, to appear.
10. A. Z. Akcasu, Polymer, 22,1169 (1981).
11. C. C. Han and A. Z. Akcasu, Polymer, 22, 1165 (1981).
12. H. Van den Berg and A. M. Jamieson, J. Polym. Sci. Polym. Chem. Ed., 21, 2311 (1983).
13. M. Fixman, Macromolecules, 14, 1706 (1981).
14. A.Z. Akcasu, Macromolecules, 15, 1321 (1982).

Received May 27, 1983
Accepted November 4, 1983

B.
M.
B.
P.
A
0.
A.
A

NS A

o



	1984_hammouda_j_polym_sci_1
	1984_hammouda_j_polym_sci_2
	1984_hammouda_j_polym_sci_3
	1984_hammouda_j_polym_sci_4
	1984_hammouda_j_polym_sci_5
	1984_hammouda_j_polym_sci_6
	1984_hammouda_j_polym_sci_7
	1984_hammouda_j_polym_sci_8
	1984_hammouda_j_polym_sci_9

