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combined polymer-solvent interactions are more favorable 
than either set singly and there is a minimization of the 
free energy when the mixed solvent has a specific com- 
position. 

We are continuing work in this area in order to provide 
further evidence in favor of this simple interpretation for 
cosolvency, which appears to depend largely on the en- 
thalpic interactions associated with each system rather 
than entropic ones. 

Registry No. Polystyrene (homopolymer), 9003-53-6; me- 
thylcyclopentane, 96-37-7; acetone, 67-64-1; diethyl ether, 60-29-7. 
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ABSTRACT: The dynamic scattering matrix S(q,t)  for scattering from multimodal systems is formulated, 
and explicit results in the case of bimodal system are presented in the small-q limit. The total dynamic scattering 
function is expressed in this limit as a weighted sum of two exponentials with decay rates rl and r2. Both 
the decay rates and the weighting factors are calculated in terms of the concentrations and molecular weights 
of the two components. The dependence of the apparent diffusion coefficient D, on the concentrations 
of both components is calculated, and the results are compared to experimental cfata for polystyrene (M, 
= 1.79 X lo6 and 1.05 X lo6) in cyclohexane at the 8 point. The magnitude of the interference effect on the 
concentration dependence of Dapp is studied quantitatively. The concentration dependence of the apparent 
diffusion coeffici’ent and the collective diffusion coefficient in a single-component system is expressed in terms 
of the pair correlation function for polymer molecules. 

Introduction 
The purpose of this paper is to investigate dynamic 

scattering from polydisperse polymer solutions and to 
provide tractable theoretical formulas to interpret quan- 
tities that can be extracted from the scattering data with 
sufficient precision, such as the apparent diffusion coef- 
ficient and the decay rates of the scattering function. 
Specifically, we consider a solution containing chemically 
identical polymers with different molecular weights. The 
continuous molecular weight distribution is assumed to be 
lumped into groups such that N, is the number of polymers 
with molecular weights in a narrow interval AM about Me 
The number of groups G is not restricted. In the small-q 
region where q R G  << 1 is satisfied in all groups, the mea- 
sured dynamic scattering function S(q,t) can be repre- 
sented as 

‘Present address: Department of Chemistry, University of Min- 
nesota, Minneapolis, MN 55455. 
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G 
(1) 

g= 1 

where S(q) is the static structure factor. The coefficients 
A, and the decay rates l’, are determined experimentally 
by appropriate data analysis such as the histogram tech- 
nique1s2 or least-squares curve fitting. In the zero-con- 
centration limit, r, - q2Dg, where D, is the translational 
diffusion coefficient of an isolated polymer with molecular 
weight Me, and 

S(q,t) = S(q) EA, exp(-r,t) 

G 

g=l  
A, = C M /CC,M, (2) 

where C, is the mass concentration of the polymers in the 
gth group. 

At finite concentrations, the above simple interpretation 
of S(q,t) based on linear superposition is no longer strictly 
valid due to the interference effects among different com- 
ponents. For example, q-2rg can no longer be identified 
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Mori,I one obtainsE an exact equation for S ( t ) :  

dS(t)/dt = -Q.S(t)  + S ' d u  @(u).S(t - u)  (6) 
0 

The relaxation matrix Q is defined by 

Q ( q )  = ( P L P + ) . ( P P + ) - l  (7) 

where ([...I) denotes the equilibrium average of the 
quantity [...I. We assume that L is self-adjoint in the sense 
that ( A ( L B ) * )  = ( ( L A ) B * )  for any two functions of 
monomer positions. The last matrix in eq 7 is the inverse 
of the static structure matrix S(q)  = (pp+) .  The memory 
matrix @(q,t) has its usual definition: 

@(t)  = (f(t).fe(O))*(pp+)-' (8) 

where the random force denotes 
f(t) = exp[-(1 - P ) t L ] ( l  - P)Lp  

The projection operator P projects an arbitrary function 
G of positions onto the initial-state vector p(q) :  

PG = (Gp+)* (pp+) - ' *p  

Equation 6 can be solved with Laplace transforms as 
( 9 4  

(9b) 

In a dynamic scattering experiment, one measures the 

S(t)  = ( P ( O ) P * ( t ) )  (10) 

where p = ETp, with E = col [ l ,  ..., 11, denotes the total 
density of scattering centers in the solution. Combining 
(9) and (lo), we obtain an exact expression for S( t )  as 

S ( S )  = M(s).S(t = 0) 

M(s) = [SI + n - $(s)]-' 

where 

total dynamic scattering function 

S( t )  = ETM(t)S(0)E (11) 
where M(t) is the inverse Laplace transform M(s). This 
formal result is a convenient starting point for the inves- 
tigation of the time behavior of S(q,t), the first cumulant, 
and the apparent diffusion coefficient. The time depen- 
dence of S(q,t) for values of q satisfying qRG << 1 can be 
studied by considering the Markov limit of (6), in which 
q - 0 and t - m with q2t constant. This limit is equivalent 
to replacing &(s) in (9b) by $(s = 0) prcvided it exists. 
Then the inverse Laplace transform of M(s) yields 

M(t) = exp(-At) (12) 

where the relaxation matrix A(q)  is defined by 

as the concentration-dependent collective diffusion coef- 
ficient of polymers with molecular weight MB alone, as 
assumed in the study of polydispersity with histogram 
analysis.'vZ It depends, in general, on the concentrations 
and molecular weights of all the other components in the 
solution, as is also the case for the expansion coefficients 
A,. C a r ~ l i n e , ~ ? ~  who first pointed out the inadequacy of 
the above interpretation of the decay rates obtained by the 
histogram technique, suggested a dependence of each de- 
cay constant on the total concentration and proposed a 
form of coupling between different molecular weights. The 
main motivation of this work is a quantitative investigation 
of the interference effects on the decay rates as well as on 
the expansion coefficients, by studying dynamic scattering 
from bimodal solutions containing two components with 
widely separated molecular weights. The present paper 
is devoted to the calculation of the apparent diffusion 
coefficient as a function of the total concentration of 
polymers and the ratio of concentrations of the two com- 
ponents. The theoretical predictions are compared with 
experimental results obtained either by forcing the mea- 
sured S(q,t) from a bimodal solution to fit a single expo- 
nential or by extracting the first cumulant through a cu- 
mulant analysis. The investigation of the variation of the 
individual decay constants rl and rz and expansion 
coefficients Al and Az with the concentrations of the two 
components will be presented in a future publication after 
detailed experimental data become available. However, 
the general theory of dynamic scattering from bimodal 
systems is included in this paper. 

Dynamic Scattering from Multicomponent 
Systems 

In this section, we present the formal theory of dynamic 
scattering from polymer solutions containing an arbitrary 
number of components. For simplicity the formalism will 
be developed first in the case of a bimodal solution (with 
components A and B); these results can be extended to 
multimodal systems. 

We denote the scattering length densities of an A com- 
ponent in the Fourier space by pA(q); viz. 

NA 
pA(d = pAa(de'qRU 

a=l  

and 
RA 

j = 1  
PAa(q) = CaaF exp(iqsq)  (3) 

where N A  and nA are the number of polymers of kind A 
in the solution and the number of monomers in such an 
A molecule, respectively. R, denotes the position of the 
center of mass of the ath polymer. Sa, and aaF denote the 
position of the j th  monomer about the center of mass and 
its scattering length, respectively. We introduce the col- 
umn vector p(q)  = [pA(q),pe(q)lT and the associated dy- 
namic correlation matrix S(q,t) by 

S(q , t )  = ( P ( c l b + ( c l , t ) )  (4) 
where p+(q,t) is the adjoint row vector. In vector notation, 
the formalism is not restricted to two components only. 
The time dependence of p ( t )  (we suppress the q depen- 
dence unless needed explicitly) is assumed to be given by 

&(t)/dt = - L p ( t )  (5) 

where L is a linear, time-independent operator, e.g., the 
adjoint of the Kirkwood-Riseman diffusion operator, op- 
erating on the position vectors of all the monomers. With 
the usual projection operator technique of Z w a n ~ i g ~ , ~  and 

It  is known that M(t) can be expanded as 
G 

j = l  
M(t) = Ce-rjtmj 

where rj, j = 1, ..., G, are the eigenvalues of the Hermitian 
matrix A. The idempotent matrices that satisfy mjmk = 
Sjkm, are defiied by mi = QdjQ-', where d .  is a matrix with 
all elements equal to zero except the j th d. iagonal element, 
which is equal to 1. The square matrix Q diagonalizes A 
by the similarity transformation Q-lAQ = diag [rl, ..., r,]. 
Using (14) in ( l l ) ,  we obtain the following expression for 
the dynamic scattering function S(t ) :  

G 

j = l  
S( t )  = S(0)CAje-r j t  (15) 
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where 

ETm ;S (OIE 
(24) 

These equations provide formally exact definitions of the 
decay rates rj and the expansion coefficients Aj that can 
be used to investigate the interference effects on the decay 
constants at finite concentrations mentioned in the In- 
troduction. This formalism allows the study of scattering 
from multimodal systems in which some or all of the 
monomers of each component are labeled by setting the 
scattering lengths a,! equal to zero for the unlabeled 
monomers. We choose a,! = 1 everywhere since we are 
mainly concerned with the interpretation of light scattering 
experiments. 

We present the results explicitly for a bimodal solution 
(G = 2): 

(17) 

(18) 

A~ = [r, + F S - ~ I / ( ~ ,  - r,) 
A, = [r, + FS-~I / (~ ,  - r,) 

where 

F = (SAA + SAB)(ABA - ABB) + (SBB + SBA)(AAB - AAA) 
(19) 

The eigenvalues rl and rz are the roots of the quadratic 
equation 

(20) r2 - ~ A , J  - A = o 
where 

Aav = '/z(AAA + ABB) 

A = A A A ~ B B  - AABABA 

and are given by 

= A,, f (A~: - ~ 2 ) 1 / 2  (21) 

In these equations the two components of the bimodal 
solution are identified by the subscripts A and B. AM, Am, 
ABA, and ABB are the matrix elements of the 2 X 2 relax- 
ation matrix A introduced in (13). S in (18) is the total 
static structure factor, given by S = SAA + SAB + S B A  + 
SBB, where Sm = (pALpB*). 

The apparent diffusion coefficient is defined as the in- 
itial slope of S(t)/S(O) after the Markov limit has been 
taken 

The following section presents an approximate calculation 
of D,,, as a function of concentration and molecular weight 
of the components in bimodal solutions. 

Apparent Diffusion Coefficient 
The apparent diffusion coefficient defined in (22) cor- 

responds to the long-time diffusion coefficient since it is 
calculated from the initial slope of S(q,t)/S(q,O) after the 
Markov limit has been taken. We can define the short- 
time diffusion coefficient in an analogous manner to the 
diffusion coefficient in single-component solutions by 
starting from the short-time behavior of S ( q , t )  in (6) at 
a fixed q, i.e. 

S ( q , t )  = exp[-Wq)tIS(q,O) (23) 
and then calculating the initial slope of S(q,t) = ETS(q,t)E. 
The result can be expressed as 

1 ETRS(0)E 
Dapp = lim - 

q-0 42 S(0) 

Using the definition of Q in (7), it is easy to show that 
ETQS(0)E = ( p L p * ) ,  so that the short-time diffusion 
coefficient can also be expressed as 

D a p p  = lim ( N q ) / q 2 )  (25) 
q-Q 

where Q(q) is the usual first cumulant ( p L p * ) / ( p p * )  for 
S(q,t) appearing in the Akcasu-Gurol formalism.8 It  is 
clear that the above procedure is equivalent to ignoring 
the memory matrix in the defining expression for the re- 
laxation matrix, eq 13. I t  has now been understood that 
the short-time diffusion coefficient does not take into 
account the deformation in the average shape of a mac- 
romolecule during its diffusionP13 The difference between 
long- and short-time diffusion coefficients in one-compo- 
nent dilute solutions has been estimated by Fixman"J2 to 
be about 8% when the nonpreaveraged Oseen tensor is 
used and 1.68% when the Oseen tensor is preaveraged. 

In this section we calculate explicitly the short-time 
apparent diffusion coefficient using its definition in (25). 
The validity of the approximation made by identifying the 
measured apparent diffusion coefficient as the short-time 
diffusion coefficient depends on the q values and the time 
interval of the experiment. However, for low q values 
involved in light scattering experiments, the long-time 
diffusion coefficient should be a more realistic estimate 
of the measured diffusion coefficient. Equation 25 can be 
written as 

D a p p  = ~ B T  lim (P(q)/s(q)) (26) 
(7-Q 

where p(q) can be identified as a generalized mobility 
defined by 

P(q) = ( p L p * )  /q2kBT (27) 

where iZBT is the temperature in energy units. In bimodal 
solutions p = pA + pB so that S(q) and p(q) are of the 
following form: 

S = S A A  + S A B  + S B A  + S B B  

P = PAA + PAB + PBA + PBB 

We first consider the calculation of S A A ( q )  and Sm(q). 

(284 

SAA(q) is defined explicitly by 

SAA(Q) = NAS~A(Q) + NAWA - l)SintA(q) 
with 

n A  

j h  
S / ( q )  = (eXP(iQ'SAjAk) ) 

n A  

j , k  

where Rlz and Slj% refer to a pair of A molecules. On the 
other hand, s A B ( q )  for A # B is defined by 

SintA(4) = C(exp[h(Rlz S l j Z k ) ] )  

nA nB 
SAB = NANBE c (exP[iQ'(RAB + s q i s k ) ] )  (28b) 

]=1 k = l  

The calculation of SU(q)  and SAB(q)  in the small-q limit 
in terms of the second virial coefficient is well-known.14 
Here, we present only the results for both SAA and Sm in 
the following form: 

s,(q - 0) = ,NAnA26AB - 8NBnAnBXAB3CA (29a) 
where the Kronecker delta 6, indicates that the first term 
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S(q - 0) = 
NAnA2[(1 - ~ C A X A A ~ )  - 1 6 X c ~ x ~ ~ ~  + Xy(1 - ~CBXBB’)] 

(34) 
where we have used S A B  = S B A  and introduced the mo- 
lecular weight ratio y = nB/nA and the mass concentration 

We now turn to the calculation of mobilities pAB(q) that 
are defined by 

ratio X = NBnB/NAnk 

pAB(q) = (PALPB*)/q2kBT (35) 
We are primarily interested in the small-q limit of pAB. 
Using the property of the operator L, which is taken to 
be the adjoint of the Kirkwood-Riseman diffusion oper- 
ator,14 we can write pm(q) as 

is present only in S,  and S B p  NA and nA are the number 
of polymers of component A and the number of monomers 
in each polymer of kind A, respectively. CA is the con- 
centration expressed as a volume fraction; i.e. 

The hydrodynamic radius RHA is defined by the Ein- 
stein-Stokes formula RHA = kBT/6a.rlDA, where DA is the 
diffusion coefficient of an isolated molecule of kind A. V 
in (29b) is the volume of the system. The parameter Xm 
in (29a) is related to the second virial coefficient AZm by 

where NAv is Avogadro’s number and MA and MB are the 
molecular weights. XAB can also be expressed in terms of 
the pair distribution function gAB(R) for a pair of molecules 
of kind A and B as 

Xm = SAB/RHA (314 

or 

where X is the separation distance between the centers of 
masses of the two molecules normalized to the radius of 
gyration R G ~  of an isolated A molecule. We note that XBA 

from its definition in (31) with B = A, viz. 
= (RHA/RHB)XAB. The physical meaning Of g f i  fOllOWS 

as the radius of hard spheres with the same second virial 
coefficient as the polymers. I t  is a measure of the effective 
range of the excluded volume interaction. Xfi expresses 
this range relative to the hydrodynamic radius of a single 
molecule. We may relate X, to the interpenetration 
function \ k A  as 

(33) 

using the definition of \kA in terms of the second virial 
~0efficient.l~ Since \kA varies from zero at  the 0 temper- 
ature to its asymptotic value 0.254 in the good solvent 
limit,15 we find from (33) that the values of Xu range from 
zero to approximately 1.297 between these limits. Here, 
we have taken into account the variation of the ratio 
RH/RG from 0.665 under 0 conditi~ns’~ to 0.537 in the good 
solvent limit.16 If RH/RG = 0.665 is also used in the latter 
limit, the limiting value of Xu would be 1.047. The first 
estimate X, = 1.297 obtained with RH/RG = 0.537 seems 
somewhat larger than the reported experimental values in 
good solvents; e.g., XAA = 1.14 for polystyrene (M,  = 8.87 
X lo5) in toluene at 25 OC.17 This may be due either to 
the fact that the asymptotic value Xfi = 1.297 has not 
been reached at  these molecular weights or to the ap- 
proximation involved in the fuUy swollen Gaussian modeP 
used in the theoretical calculation of the limiting value 
0.537 used for RH/RG. 

The physical meaning of XAB when A # B can be dis- 
cussed in a similar manner to that of XAA. We shall return 
to this point later when we approximate XAB in terms of 
X ,  and XBB. 

The total static structure factor is obtained in the 
small-q limit by summing S A B  in (28) as 

(36a) 
where the z axis is chosen parallel to q and HPY = H(rJ 
is related to the Oseen tensor T by 

H”’ = 6,,I + (1 - 6,, , ) f l f iU (36b) 

5 is the friction coefficient per monomer. in (36a) 
denotes a,H*q/q2, and rpU is the vector distance between 
any two monomers. 

I t  is interesting to notice that the mobility can be ex- 
pressed in terms of the static structure factor by first 
separating the diagonal part of H# = 1 in (36a) a n i  then 
expressing T33(r) in terms of its Fourier transform T,(k): 

and when A # B 

where S u ( q )  and S,(q) are defined in eq 28. Thus, the 
calculation of the mobilities can be reduced exactly to that 
of S,(q) and Sa(q) .  The concentration dependences of 
S(q) for all q and that of p(q) in the small-q limit have been 
discussed previously in the case of single-component dilute 
solutions.18 We extend these calculations here to bimodal 
systems starting from 

which are obtained from (36) by splitting the summations 
over monomers into two parts: one over monomers be- 
longing to the same chain, and one over monomers be- 
longing to two different molecules. 

The first term in (39) represents the q-dependent mo- 
bility of an isolated molecule of kind A, which we denote 
by pA(q). In the small-q limit it is related to the diffusion 
coefficient DA as 
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The second term in (39) and pm(q) in (40) can be calcu- 
lated approximately by resorting to the well-known sin- 
gle-contact approximation of Zimmlg or to an approxi- 
mation introduced by Akcasu and Benmouna20 in which 
the vector distance belonging to two different molecules 
is replaced by the vector distance between the centers of 
masses of the molecules. This approximation is based on 
ISlj - Sal << lR121 and is expected to be valid in the good 
solvent limit, where the interpenetration of the molecules 
is not significant. Since it is already tested in the case of 
single-component systems,2l we adopt this approximation 
in (39) and (40).  Verifying first22 that 

lim ( T~~(RAB)  exp(iq.Rm) ) = 
0 - 4  

-"SmdR 3 7 v  0 
R[1  -gAB(R) ]  (42) 

where p33(q) = 0 and the angular average (T33(R)) = 
1 / ( 6 q R )  has been used, one obtains both pAA and pa as 

(43) P A B ( ~  + 0) = ~ A [ ~ A B  - ~ C A ~ Y A B ~ I  

In (43),  we have introduced 

where X = R/RGA. In order to attach a physical meaning 
to YAA, we evaluate this integral in (44) using a hard-sphere 
model for gAA(R) with a radius of S, introduced in (32) 
and find YAA = X u  = Su/RHA. This approximation was 
used by Akcasu and Benmouna'O to express YAA in terms 
of the second virial coefficient that can be measured in- 
dependently, in order to eliminate one unknown parameter 
in their calculations of the concentration dependence of 
the collective diffusion coefficient. Since gAA(X)  is now 
available numerically through the two-chain Monte Carlo 
calculations by Olaj and c o - w ~ r k e r s , ~ ~  we shall not ap- 
proximate YAA by X,. One immediate difference between 
YAA and Xu is that YAA is related to the first moment of 
the correlation function [gAA(X) - 11, whereas Xu involves 
its second moment. Consequently, YAA remains finite a t  
the 0 temperature even though Xu vanishes by definition. 
We discuss the implications of this observation more in 
a later section. 

Summing (43) on A and B, we obtain the total mobility 
in the small-q limit as 

p(q - 0) = 
p ~ ( 1  - 6C*xYu2) + p ~ ( 1  - ~ C B X - ~ Y B B ~ )  - 1 2 c ~ x Y m ~ p ~  

(45) 
where we have used the identity YBA = (RHA/RHB) Y m  that 
follows from the definitions of YAB and YBA and gAB(R) = 

It  is important to note at this point that eq 45 displays 
only the explicit concentration dependence of p(q - 0). 

' In principle, both pA and pB, because they involve equi- 
librium averages with respect to the intramolecular seg- 
ment distribution about the center of mass, depend im- 
plicitly on the concentrations of all components, due to the 
deformation of the intramolecular distribution of a chain 
experiencing a binary encounter with any other molecule. 
The concentration dependence of single-chain properties 

gBA(R)* 

Table I 
Numerical Values for XAA and Y A A  ~ - _ _ _  

4-way 5-way 
_ _ I ~ ~  - 

0 good 0 good 
I , A A  0.15 1.06 0.09 0.91 
IiAA -0.024 = 0 1.27 -0.04 E 0 1.06 
X A A  -0.31 E 0 1.45' -0.3'7 E 0 1.37' 

1.16b L l l b  
YA A 0.41 1.36' 0.32 

1.10b 
1.26' 
1.02b 

' Calculated with RH/RG = 0.537. Calculated with 
RH/RG = 0.665. 

such as pA and pB was estimated earlier18 in single-com- 
ponent systems and found to be small as compared to the 
explicit concentration dependence arising from the in- 
terference term. Therefore we ignore this effect in the 
present work. 

Summary of the Analytical Results and 
Discussion 

stituting (34) and (45) into (26) 
The apparent diffusion coefficient is obtained by sub- 

Dapp = 
DA(1 - 6 c ~ Y " ~ )  + xyDB(1 - ~ C B Y B B ' )  - ~ ~ ~ D A C A Y A B '  

1 + xy - 8 x f i 3 c ~  - 8 x y x B ~ ~ c B  - 1 6 X c ~ x A ~ '  
(46) 

To facilitate the comparison of this result with experiment, 
we summarize the definition of the symbols: DA and DB 
are the self-diffusion coefficients of the A and B molecules 
in the zero-concentration limit, and y = MB/MA and x = 
CBm/CAm are the molecular weight and mass concentration 
ratios of the components, respectively. CA and C B  are the 
concentrations expressed as volume fractions as defined 
in (29b). The hydrodynamic radii RHA and RHB needed 
to calculate C A  and C B  are obtained from DA and D B  via 
the Stokes-Einstein relation. YAB and X ,  are related (cf. 
eq 31 and 44) to the first and second moments of the pair 
correlation function, defined by 

(47) 

In the case of identical molecules, gAA(X)  has been com- 
puted by Olaj et al.23 in the 0 and good solvent limits by 
Monte Carlo calculations with two chains of 50 steps each 
on 4- and 5-way cubic lattices. Using these data, we have 
calculated 11", 12", Xu, and Y" in Table I. The nu- 
merical values in this table are to be considered only as 
crude estimates due to the numerical inaccuracies in the 
calculation of the moments in (47) with the trapezoidal 
rule, as well as the finite lengths of the chains in the Monte 
Carlo calculations. A nonzero value of the second moment 
under 0 conditions, proportional to the second virial 
coefficient, and the dependence of the results on the co- 
ordination number of the cubic lattice are probably in- 
dications of this inaccuracy. Direct evaluation of the 
moments through Monte Carlo calculations with longer 
chains as a function of chain length and temperature is 
needed for a more accurate theoretical prediction of the 
concentration dependence of chain properties in dilute 
solutions. However, the numbers in Table I show that the 
first moment I," is finite and positive at  the 8 point, 
where I," is supposed to be zero, contrary to the con- 
ventional theoretical models24 that imply g u ( X )  = 1 and, 
hence, IIAA = I," = 0 under 8 conditions. The fact that 
IIAA > 0, and hence, YM2 > 0, a t  least partially explains 
the predicted concentration dependence of the diffusion 

InAB = JmdX X n [ l  - g m ( X ) ]  
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the fully statistical-mechanical approach based on Kirk- 
wood-Risemann theory is entirely different.22 It  was 
shownz2 that there are two contributions to the concen- 
tration coefficients k,  of the friction coefficient (see eq 31 
and 32 of the cited reference). The first, kSo, is related to 
the fiist moment of the chain pair correlation function and 
equilibrium monomer distribution about the center of mass 
and becomes equal to 6k"2 when the molecules are treated 
as point particles; Le., RG - 0. The second, k,,, accounts 
for the deformation of the intramolecular segment dis- 
tributions about the center of mass when two chains ex- 
perience a binary encounter. In the classical theories of 
the second virial coefficient, such as the Flory-Krigbaum 
theory of pair interaction p~tent ia l , '~  the pair correlation 
function vanishes identically at all separation distances at 
the 0 point, and consequently, ksO = 0, as pointed out 
earlier. On the other hand, the Akcasu-Benmouna mod- 

which we have used in this paper for its simplicity, 
essentially ignores the internal structure of the chains and 
washes out the effects arising from the deformation of 
chains in a pair, which is more significant under 8 con- 
ditions, where the interpenetration of chains is more likely. 
Akcasun attempted to estimate the magnitude of k ,  within 
the framework of classical theories, assuming that the 
deformation is spherical with an increase in the radius of 
gyration as a function of the separation distance RG(R). 
He concluded that the result is too sensitive to the model 
used for RG(R) to be conclusive, ranging from about -1 to 
-2. At present, it is not possible to see whether k ,  = ksO 
+ k,, as calculated by Akcasu can alone account for the 
observed concentration dependence of the translational 
diffusion coefficient in 0 solvents. With the detailed in- 
formation obtained recently by two-chain Monte Carlo 
 calculation^^^ on g(R),  hydrodynamic radius, and chain 
dimensions as a function of separation distance R ,  a more 
accurate estimate of k ,  will be possible. 

We conclude this discussion by noting that a refer- 
ence-frame correction to the calculation of the diffusion 
coefficient through the fiist cumulant does not arise in the 
fully statistical-mechanical approach based on the con- 
ventional Kirkwood-Riseman theory of chain dynamics 
where monomers are treated as point particles without 
volume. Should this correction be needed to improve the 
agreement between theory and experiment, as concluded 
by Van den Berg and Jamieson,21 then the necessary 
modifications will have to be made in the Kirkwood- 
Riseman diffusion equation in the statistical-mechanical 
approach. Alternatively, the correction term may be added 
to the final result as done in Yamakawa's theory and 
discussed in ref 21. I t  is, however, not clear to us at this 
stage whether this correction is needed when interpreting 
the diffusion coefficient that is inferred from the initial 
slope of the dynamic structure factor, which measures the 
correlation function of monomer density fluctuations at  
two space points in a fixed coordinate frame. We think 
that this point requires further attention. 

iv. Under 8 conditions, (46) reduces with X u  = X A B  
= 0 and Y" = Y B B  to 

coefficient a t  the 0 point as will be shown presently. 
Another observation from Table I is that Y u  and X u  tend 
to be almost equal numerically in the good solvent limit, 
as was assumed by Akcasu and Benmouna20 on the basis 
of the hard-sphere model for g,. 

Although the normalized moments I,," may still depend 
slightly on the molecular weight, especially in intermediate 
solvents, we treat them as constants and use Xu = XBB 
and Yu = YBB in the calculation of Dapp. 

The calculation of YAB and XAB for two different chains 
directly from (47) is not possible because no computer data 
are yet available for gAB(X) when n A  # nB. We can, 
however, relate them to Yu and X u  approximately by 
treating A and B molecules as hard spheres with effective 
radii SAA and SBB. Then Sm becomes (Su + SBB)/2. This 
approximation leads to 

X A B  = l / , [ X u  -t ( R H ~ / R H ~ ) X B B I  
and 

Y A B  = 1/,[yAA + (RHB/RHA)YBBl 
where RHB/RHA = (nB/nA)" with v = 0.5 and v = 0.6 in the 
0 and good solvent limits. For intermediate solvents, such 
a power law does not apply. One may either use RHB/RHA 
= DA/DB and calculate this ratio from the measured dif- 
fusion coefficients or resort to the calculations based on 
the blob hypothesis to calculate RHA and RHB as a function 
of temperature and molecular   eight.'^,^^.^^ 

We discuss certain limiting cases before we consider 
comparison with experimental results. 

i. In the zero-concentration limit, (46) reduces to the 
expected result 

(48) 

ii. When the molecular weight of one component is 
much larger than the other, i.e., when y >> 1, D,, reduces 
to the concentration-dependent diffusion coefficient of the 
larger molecule 

DB(CB) = D B [ ~  ~ D ~ C B I  

Dapp(0) = (DA + XYDB)/ (~  + XY) 

where kDB = ~ X B B ~  - ~ Y B B ~ .  
iii. When the molecular weights of the A and B mole- 

cules are the same, one recaptures the single-component 
result 

(49) 
where we have dropped the subscripts. C denotes the total 
concentration and kD is defined by 

k D  = 8 x 3  - 6lR (50) 

In good solvents, X N Y as pointed out earlier, and (50) 
reduces to kD = p ( 8 X  - 6), which was obtained by Akcasu 
and Benmouna20 for solutions away from the 0 point. 
Since X and Yare now available from two-chain Monte 
Carlo calculations, (50) extends the range of applicability 
of Akcasu and Benmouna's result. At the 8 point, where 
x = 0, kD = - 6 p ,  which leads to k D  - -1.00 and k D  - 
-0.61 in 4- and 5-way lattices when the Monte Carlo results 
are used. Since kD is proportional to the first moment Il 
of g ( X )  - 1, which may be a slowly varying function of 
chain length, one may account for a possible molecular 
weight dependence of measured k D  values reported by 
Tsunashima et al.27 It  is interesting to compare (50) to 
kD = 3.2X3 - 1 in Yamakawa's treatment,14 which implies 
kD = -1 at  the 0 temperature. This value represents a 
reference-frame correction in Yamakawa's theory and is 
essentially equal to the hydrodynamic volume fraction. 
The origin of the finite value of kD under 8 conditions in 

D(C) = D[1 + kDC] 

(51) 

which is a function of Y u .  In light of the previous dis- 
cussions, we treat YAA as an adjustable parameter in (51), 
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A 

Table I1 
Experimental and Theoretical Data for Dapp X 10'" (cm2/s) - 

x = O . l a  x =  0.2 X =  0.3 
total single- first- single- first- single- first- 

concn, exponential cumulant exponential cumulant exponential cumulant 
mg/mL fit fit theor fit fit theor fit fit theor 

2 2736r  42 2 8 6 5 i  30 2588 2342r  40 
4 2450r  33 2528r  38 2476 2150r  22 
6 2 3 5 4 i  17 2 4 1 9 t  21 2364 2 0 1 3 t  16 
8 2 2 2 4 r  39 2 2 9 0 r  28 2252 19492 22 

10 2131 r 23 2184 t 21 2140 1 8 3 6 r  20 

a Concentration ratio. 

2475 t 38 2246 2059.t 20 2129 t 25 2049 
2 2 2 5 r  29 2137 1 9 6 2 t  18 2023r  26 1940 
2 0 7 8 t  25 2027 1875k 14 1 9 2 5 r  14 1831 
2 0 0 2 t  29 1917 1 7 5 8 t  18 1 7 9 3 i  13  1722 
1 8 7 8 t  17 1807 1 6 8 3 5  1 4  1711 r 13 1613 

1.5 

na I 
Figure 1. Variation of D,, X lo7 (cm2/s) as a function of the 
total concentration C T ~ ,  keeping the ratio of mass concentrations 
constant ( x  = 0.1). We have plotted the theoretical values with 
coupling between the two polymer components (curve 1) and 
without coupling (curve 2) and the experimental values using a 
single-exponential fit (0) and a first-cumulant fit (A). 

investigate the variation of D,,,(C) with CA and Cg, and 
compare the results to experiment. 

Experiment in 0 Solvent 
Monodisperse polystyrenes of M ,  = 1.05 X l@ (NBS-1479) and 

M, = 1.79 X 106 (NI3S-705) in ACS spectrograde cyclohexane were 
used for the bimodal solutions. Three weight ratios x equal to 
0.1,0.2, and 0.3 of NBS-1479 (component B) to NBS-705 (com- 
ponent A) were used to prepare three sets of solutions. Five 
solutions with total polymer mass concentrations ( C T ~  = CAm + 
C B ~ )  of 2,4,6,  8, and 10 mg/mL were prepared volumetrically 
for each set by subsequent dilution of the most concentrated 
member of each set. All solutions were fiitered directly into clean 
scattering cells through 0.45-pm Millipore filters, sealed, and stored 
at 40 "C until use. 

All scattering data were obtained in the homodyne configuration 
using full photon-counting detection and a 128-channel correlator 
(Malvern 705). A Coherent Super-Graphite 4-W argon ion laser 
operated at 488 nm was used as the light source. The cylindrical 
sample cells were mounted in a bath of refractive index matching 
fluid. Temperature was maintained at 35.0 i 0.1 'C, as deter- 
mined by a copper-constantan thermocouple. Correlation data 
a t  seven different angles (25', 27.5', 30°, 32.5', 35', 37.5', and 
40') were obtained and analyzed according to C(q,t) = A + B- 
(S(q,t))z, where B is an adjustable parameter and the base line 
A was also allowed to float. Two different procedures were used 
for this purpose. In the first procedure, a single-exponential 
function e-nt was used to represent S(q,t). In the second, a cu- 
mulant analysis was followed, and S(q,t) was represented by 
e-"('+Alt). The apparent diffusion coefficients in both cases were 
calculated from the nonlinear regression results of Q(q), using D,, 
= Q ( q ) / q 2  and averaging over seven different q values. The 
single-exponential fit may be a better representation to the 
Markov limit correponding to the long-time diffusion coefficient 
while the first-cumulant results may be closer to the short-time 
diffusion coefficient. Since there is an estimated difference of 

3'0------1 

0 1 2  3 4 5 6 7 8 9 IO 

C: (mg/ml) 

Figure 2. Same as Figure 1 with x = 0.2. 

i .o 
0 1 2 3 4 5 6 7 8 9 1 0  

C y  (mg/ml) 

Figure 3. Same as Figure 1 with x = 0.3. 

2-8% between the short- and long-time diffusion coefficients of 
a linear flexible chain, we include the results of both procedures. 
It is observed from the experimental results that D,, values 
obtained by cumulant analysis are consistently - 3 % larger than 
those obtained by a single-exponential fit. Since we have used 
postulated forms for S(q,t) (either single exponential or cumulant 
expansion) to extract Dapp, we do not attach any quantitative 
significance to this difference of 3%. But it is consistent qual- 
itatively with the theoretical trend that the short-time diffusion 
coefficient is larger than the long-time diffusion coefficient. 

We analyzed the concentration dependence of the measured 
apparent diffusion coefficient using (51), taking DA = 3.45 X lo-? 
cmz/s for M ,  = 1.79 X lo6 and DB = DA(1.79/10.5)1/2 for M ,  = 
1.05 X l@. We set Xm2 = 0 for both A = B and A # B and choose 
YAA2 = 1.7, which reproduces the experimental values for x = 0.1 
(Figure 1). We should, however, mention that we are disregarding 
the first experimental point at CTm = 0.2 mg/mL in each case 
(too low a concentration to reliable). We notice that this same 
set of parameters gives a concentration dependence of D, that 
agrees fairly well in the other cases ( x  = 0.2 and x = 0.3 in #igures 
2 and 3, respectively). For each case, we are plotting in the same 
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weights. The apparent diffusion coefficient has been in- 
ferred from the initial slope of the dynamic structure 
function measured by light scattering from bimodal solu- 
tions of polystyrene (M,  = 1.79 X lo5 and 1.05 X lo6) in 
cyclohexane at 35.0 OC with four different values of total 
concentration and three different concentration ratios x 
= CBm/CAm = 0.1,0.2, and 0.3. The slope of the apparent 
diffusion coefficient as a function of the total concentration 
k, was -0.021, -0.023, and -0.025 mL/mg for x = 0.1,0.2, 
an$ 0.3, respectively. By adjusting the value of kD = 
-f3YAA2 to -1.7 to obtain the best fit to the data for x = 0.1, 
we obtained satisfactory agreement between the theory and 
experiment for the remaining cases. The value kD = -1.7 
is consistent with the measured concentration coefficient 
a t  the 9 temperature in single-component systems.27 
Theoretical results show that the interference effect ac- 
counts for about 35%,48%, and 54% of the slope for the 
three concentration ratios. 
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Concluding Remarks 
In this paper, we have presented a general formalism to 

study the dynamic scattering matrix S(q , t )  for scattering 
from multimodal systems using linear response theory and 
the projection operator technique. The formalism is exact 
and valid for all values of q. It shows that the total dy- 
namic scattering function S(q,t), equal to ET.S.E in the 
small-q limit, may be expressed as a weighted sum of ex- 
ponential functions with decay rates Fl, ..., r,,, which are 
the eigenfunctions of the n X n relaxation matrix, where 
n is the number of components in the system. The im- 
portant conclusion is that rj’s are not the decay rates of 
the isolated individual components that depend on the 
molecular weight and concentration of a particular com- 
ponent, but rather they depend, as a result of interference 
effects in scattering, on the concentrations and molecular 
weights of all the other components as well. We have 
investigated the interference effect in detail by calculating 
the short-time apparent diffusion coefficient explicitly in 
the case of a bimodal system consisting of two chemically 
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