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Some nonlinear optical phenomena are investigated, especially stimulated scattering, from the point of view of
the kinetic theory of radiation (i.e., photon transport theory). Kinetic theory provides a perspective, different
from Maxwell’s wave theory, from which an examination of these complex matters may proceed with some
advantages: (i) considerable mathematical simplication in some instances, (ii) clear and natural separation of
microscopic versus macroscopic nonlinearities, (iii) kinetic theory couples the radition field nonlinearly to a
formally exact description of the matter field, and (iv) it is believed that the mathematical model provided by
kinetic theory is perhaps better suited for numerical studies of the effect of diverse nonlinear optical

phenomena upon laser-fusion implosion dynamics than Maxwell’s wave theory. Although the main emphasis
is upon stimulated scattering, the incorporation of other nonlinearities into the kinetic model is discussed

briefly.

I. INTRODUCTION

In this investigation we examine some nonlinear opti-
cal phenomena from the point of view of a kinetic model
for the radiation field. Although few new results will
be presented, we feel that such an examination is use-
ful for several reasons. First of all, it is often clarify-
ing to view a complex subject from a variety of per-
spectives. The kinetic model of the radiation field
(descriptive of photons or radiation intensity) provides
an alternative to Maxwell’s wave theory which is prob-
ably valid for the study of those linear and nonlinear
interactions of electromagnetic radiation with matter
which are not acutely phase sensitive (i.e., as pre-
sently developed the kinetic theory is quite inadequate
for the description of reflection and refraction).
Second, the investigation of some nonlinear interactions
of electromagnetic radiation with matter is greatly
simplified mathematically when viewed from the kinetic
perspective. We find this to be especially the case in
the study of stimulated scattering, which will receive
the main emphasis herein. In fact, it is a serendipitous
gift of the kinetic model that it largely describes the
stimulated scattering of light by matter at the lowest
level of formulation. Third, the interaction of radia-
tion with matter can become nonlinear with respect to
the radiation variables at two distinctly different levels
i.e., the microscopic level and the macroscopic level.
Examples of the former are multiphoton absorption and
ionization, multiphoton bremsstrahlung, the nonlinear
index of refraction, a special mechanism for laser gain
saturation to be discussed later, and to a large extent
stimulated scattering. Examples of the latter are found
in situations where intense laser light impinges on
matter inducing significant changes in material density,
velocity, and temperature which in turn modify the
radiation field. These two kinds of nonlinearities may
be manifest separately under certain circumstances.
1t is a virtue of the kinetic model in that it provides,
clearly and naturally, a separation of these kinds of
nonlinear effects. Fourth, the kinetic model (at least
at the level to be discussed here) relates the dynamics

2

1725 Phys. Fluids. 24(9), September 1981

0031-9171/81/091725-05%00.90

of the radiation field to a material density-density cor-
relation function, S{(Ak, Aw), without the necessity of
specifying the state of the matter field (e.g., solid,
liquid, gas, or plasma) and without regard for the
dynamical state of the matter field (e.g., thermodynamic
or completely otherwise). Of course, if the radiation
field is macroscopically modifying the matter field,
the correlation function S will be an explicit function of
the radiation variables. Fifth, we believe that the
mathematical mode! provided by kinetic theory may be
better suited than Maxwell’s wave theory to a study of
the effect of stimulated scattering upon laser-fusion
implosion dynamics.

In Sec. II we introduce the mathematical model. With
an eye to the study of stimulated scattering; we then
specialize to a description of forward and backward
streaming photons with specified energies. In Sec. III,
stimulated Brillouin scattering of light by plasmas and
neutral systems is studied. Formulas for thresholds
and growth rates are derived and compared with re-
sults obtained elsewhere by other arguments. Section
IV contains an enumeration and discussion of some
other, familiar and not so familiar, nonlinear inter-
actions of radiation with matter.

1. MATHEMATICAL MODEL

The material system may be described either at the
kinetic level'™® or the hydrodynamic level*™” depending
upon the desired sophistication. Actually, the coupling
of photons with matter is via density-density correla-
tion functions. However, the emphasis here is upon
nonlinearities in the radiation field so we will depend
on others for the calculation of these correlation func-
tions. We merely note in passing that the one-fluid,
two-temperature hydrodynamic model commonly em-
ployed in laser fusion numerical studies is naturally
coupled to the radiation variable studied here. In the
momentum equation, electromagnetic stress is to be
added to material stress, and if only diagonal elements
are retained, the kinetic pressure P goes to P +/,/C,
where I, is the light intensity. In the electron energy
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equation, intensity enters again because of heating by
net inverse bremsstrahlung. In what follows, our

first task is to introduce the kinetic equation describing
the radiation field.

A. Photon transport equation

To describe the transport of radiation in a medium we
define the photon number density F,, such that
Fi(r,w,R,t)d* dwd$& is the number of photons in d®r
about r with frequencies in dw about w traveling in
directions in d$2 about £ with polarization (spin) A at
time £, We can derive an equation for this phase space
density function characterizing the transport process
by simply balancing the various mechanisms by which
photons can be gained or lost from a specified volume.
However, this particle description of the radiation field
requires that the photon mean-free-paths be sufficiently
large compared with the interaction distances. Also, it
is only valid in plasmas in underdense regions.

The mechanisms which can change the photon number
density are; streaming, scattering, absorption, and
photon sources, if any. For the time being we counsider
only passive media, and delay the introduction of a gain
term accounting for stimulated emission in active media
until Sec. IV. Such a balanced equation that describes
the transport of bosons was introduced as far back as
1933 by Uehling and Uhlenbeck.® Their interest was in
a kinetic theory for liquid helium, but the ideas carry
over to the photon gas by close analogy. We write this
equation as
8F,

37 +V e e Fy = f dw' ds¥’ Ncoy(w'', wR)F;

- fdw’dQ'NCU)\)‘:(wQ,wln')F)\ - VF)\ ,

(1)
where 4 is the index of refraction for the medium, N is
the density of the scattering particles (electrons), v is
the net rate of absorption of photons, and o (wS;
w'Q)dw’ dS¥ is the scattering cross section. The scat-
tering cross section may be displayed as

U)\)\:(wﬂ N w'ﬂ')

Y 3
=¥ o,(l +(21T[(;)
w w

F1)S(8k A0l e, &), (2)
where 0, is the Thomson cross section,
S@k, Aw)= [ atexpiswty '@k, 0p@e, 1)

is the Fourier transformed density-density correlation
function (Bk=k -k’ and Aw =w - w’) describing the
dynamics of the external degrees of freedom of the
scattering system (free electron or atom or molecule),
and f ) n(w, w’) is a function describing the dynamics of
the internal degrees of freedom of the scattering system.
This nonlinear cross section is derived by using the
usual golden rule. The term independent of the photon
density is extensively used in light scattering studies,®
while the term proportional to the photon density in
the final state is discussed by Dirac'® and is needed to
recover the Planck distribution for the radiation gas in
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thermal equilibrium (as also is spontaneous emission
which we are herein ignoring). We emphasize the fact
that the interaction of individual photons with mafter
is treated as a perturbation, while material dynamics,
buried in the scattering function S(Ak, Aw) and
San(w,w’), can be described formally exactly. The
function S may include macroscopic radiation effects;
i.e., in cases in which the scattering medium is not in
thermal equilibrium it may depend upon the variables
characterizing the radiation field. Since we are here
focusing on microscopic nonlinearities in the descrip-
tion of the radiation field, the assumption of thermal
equilibrium for the matter field will be invoked through-
out the subsequent discussion.

Derivations of formulas to describe the scattering
function, using differing approaches and differing ap-
proximation schemes, have been presented.'™® A
general feature is that it exhibits peaks symmetric with
respect to zero-frequency shift, Aw =0, In the plasma
case,''''? there are two acoustic modes at Aw = +w,, and
two plasma modes at Aw = +w,, and a Doppler peak cen-
tered at Aw =0, In the case of neutral fluids®''® there
are two acoustic (Brillouin) lines at Aw =+ w, besides
the central Rayleigh line at Aw=0. Thus, we display

S(AKk, Aw)= D S, (AK, Aw), (3)

and approximate the contribution from each mode by a
Lorentzian peaked at w,, i.e.,

where 7,, is the width of the mth mode and H,/vm is its
maximum height. For example, Mountain® finds, for
the case of a simple fluid, a structure like that in Egs.
(3) and (4) with,

1<1us+u,, I[F r
—o(gksTHy 1o 2 [\Ap?
BT\ N TWLC, c,)k’ (5)
v. =TAR?*/NC, ,

for the widths of the acoustic and central peaks, where
ig and u, are the shear and bulk viscosities, I is the
thermal conductivity, C, and C, are the specific heats
at constant volume and constant pressure, and N is the
average particle number density.

One advantage of approaching the problem of stimu-
lated scattering from the point of view of kinetic theory
is that it provides, quite generally, a nonlinear relation
between radiation intensity [Eq. (1)] and well defined,
formally exact, functions of the dynamical variables of
the scattering medium [Eq. (2)]. The scatterer may be
a neutral fluid or solid, in which case the microscopic
function, f»(w, w’), is determined by conventional
arguments and may be approximated in terms of atomic
or molecular polarizabilities. If it is a fully ionized
plasma, f =€, €,|, which describes the polarization
(of the radiation field) dependence of the scattering
cross section.

B. Intensity equations

We assume that the incident laser and scattered
beams have well-defined directions, ; and 8, and
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frequencies, w; and w,. If we neglect multiple scatter-
ing, we may display

FX:FIO(Q "ﬂl)"'l?sé(n _ns): (6)

where F, and F, are functions of frequency peaked
around w; and w,, respectively. We integrate Eq. (1)
over small ranges in frequency and solid angle (Aw,
and Af,) centered at w; and &, and define the intensities
for the incident and scattered beams as

Iij=hw,C dwFy, I.=hwC dwF,. (7)
Awp Awg
We find that

oy
at

+V-nCﬂ,I,=—ul,—-r,z—:l,+rs-z—zls—6,lsl, , (8
where
¥, =NCO Aw AR S(AK, Aw)f s p{wy, wy),
7,=NCo, AwAQ,S(~ Ak, — Aw)f ya(w,, w;),
and
G, =[(2nC)°*No,/E w2 w,;][S(AK, Aw)f s (W), w,)
—S(— Ak, - Aw)f x\(w,, wy)]. (10)

For scattering systems in thermal equilibrium (Aw
=w; —-w, and Ak =k, - k,),

S(’Ak; - Aw)f )\')\(ws’ wl)
=exp(~ #w/0)S(Ak, Aw)f xnlw,, w,), (11)
so that Eq. (10) becomes

G =m [1 —_ exp (_ Eﬂ)] S(Ak, Aw)f XX’(wl’ ws) .
T hwpw? 6

(12)

The transport equation for the scattered intensity I, is
obtained from Eq. (8) by the index interchange, /~s and
s -1, leading to

74 w w?
3_;+v.nCQsIS=—VIs_rsw_:Is+rl;§11—Gsllls’ (13)

where now
(2nC)*No, <iiAw) ]
= — — —— _1
G, @ exp A
XS(AK, Awlf aplwy, wg) = =Gy, (14)

for w,~ w,. To estimate the effect of a finite laser
bandwidth y; upon the transport coefficients in Eqgs.
(8) and (13), we model the photon density in the laser

beam as
I, expl-(w-w)*/7}]
F, =_*t i i
! ACw, vy, ’ (15)
and, for convenience, a line in the fluctuation spectrum
as
A - 2
S nlAk, ) =£’ﬂexp(‘—“’—2ﬁ’i) : (16)
ym Y"‘l

We find that the finite laser bandwidth effect is to multi-
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ply the zero laser bandwidth transport coefficient by
the factor, {v,/v:), with y2=y2+y7%.

ill. STIMULATED BRILLOUIN SCATTERING

Brillouin scattering is the inelastic scattering of
photons by a medium with the exchange of a phonon be-
tween the medium and the light beam (Aw=w; —w,=
=% w,). We will model the acoustic peak in the scatter-
ing function as a normalized Lorentzian as in Eq. (4)
with H,=1/7, ¥ ,=¥,, the sound wave damping fre-
quency, and w, =* w, the acoustic frequency. We as-
sume that the acoustic frequency is small compared
with the laser frequency (w,~ w;) and that hAw/6 <1,
With these assumptions we find that

r,mrszNCcr,fM,;-l":R, (17

and for backward, down-shifted Brillouin scattering

_(2nC)*No,w

G, ~Gg= 2f =G, 18
] s 27[0)?9'}’t f)\)\ ( )

Thus Eqgs. (8)and (13)become

8
ai;+\7-nc9,1, =—(W+R);+R1,~GI I, , (19)

9,
aL;+V-nCQSIs=-(V +R)I,+RI, +GI,I,. (20)

These equations, with v =R =0, have appeared else-
where.® An inspection of Eqs. (10) and (14) reveals

that G is positive for Aw =w; — w,=w, (the Stokes line)
and, since w, =|Ak|v, where v, is the acoustic speed in
the medium, is a maximum in the backward direction.
Thus, backward, down-shifted, stimulated Brillouin
scattering is to be expected. We now turn to an investi-
gation of some of the implications of Egs. (19) and (20)
for light scattering by various media,

A. Plasma case

In plasmas, stimulated Brillouin scattering occurs in
underdense regions characterized by density gradient
scale lengths large compared with the wavelength of
the incident light. This phenomenon can prevent laser
energy from reaching the region of plasma density near
critical where absorption is efficient. For present
purpeses, we will assume a fully ionized plasma, i.e.,
Sarn=1€ "€ x|®=1 for linearly polarized incident light
and scattering that does not change the state of polari-
zation.

Above threshold, the Stokes wave grows in the back-
ward direction, and its growth rate at the center line of
the acoustic mode, Aw =w,, is a maximum and is given
by

(2nC)*No,w,

GI, =
=2 2rwidy,

1 . (21)

Introducing, w, = |Ak|v; = 2k,;(6/m;)*? and the electron
quivering speed, v, = eE,;/m w;, with E2=471,/c, we may
rewrite Eq. (20) in the form

G1:=2wii”?/cvm, (22)

where w,; is the ion plasma frequency. To within the
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factor of two, this result is the same as the one given
by Liu® for the case of weak coupling.

We may estimate thresholds for this stimulated back-
scattering from Eq. (20), i.e., by requiring

Gl >V +R4+nCR VI /I, ~v+R+nC/L, (23)

where we have (arbitrarily) approximated the stream-
ing loss rate as the reciprocal of the time required for
photons to travel a distance L, a distance over which
the plasma density does not vary very much. The
quantities v and R are the rate coefficients for net
inverse bremsstrahlung and Thomson scattering, re-
spectively, and, in most situations of interest here,
v>R. For fairly homogeneous plasmas, L is so large
that ¥ > nc/L and the threshold condition becomes

Liw>v/G, (24)
which may be cast into the form

2 2
Vi, Y VW5 Ve

vz W, W, W Yo (25)

where v,,;, is the electron quivering speed at the thres-
hold intensity and v2 =6/m, is the square of the electron
thermal speed. This differs from the formula present-
ed by Forslund et al.* [their Eq. (23)] by the factor
(Wiy;s/wiev,) = (Wi /w3,) (they do not consider finite laser
bandwidth effects). This discrepancy is near unity in
regions close to critical density. For the case of in-
homogeneous plasmas, L may be so small that v<nc/L
and the threshold condition becomes

Ilth>nC/LG ?

Vim , 8 winve .
Vi Tk W 2w (%0
This result differs from the one quoted by Chen!* by the
factor, 9y, +/2w,Y, =0,/ 2w,, zero laser bandwidth).
Actually, 7 is close to unity as is also y,/w, (Ref. 15),
so that the discrepancy is of the order of a factor of
one-half. Note that, for y; = (32 +732)/2~y,, which is the
case in many practical situations, the threshold for
stimulated Brillouin back-scattering increases linear-
ily with the laser bandwidth, as has previously been
noted,'®

We are unable to account for the discrepancies, noted
above, between the results presented here and those
quoted by other investigators. They probably arise, at
least in part, because of the extreme differences in the
approach to these complex matters between the one
explored here and those explored elsewhere. In any
event and in most cases, they are of the order of mag-~
nitude unity; so that, in the absence of sufficiently pre-
cise measurement, we are unable to regard them as
serious.

1t is interesting to explore the implications of Eqs.
(19) and (20) in the special case for which streaming
is ignorable. In that instance it is seen that

I (8) +1 4(t) =1, exp(-vt), (27)
with the initial conditions

1,(0)=I,, 1,0)=0. (28)

1728 Phys. Fluids, Vol, 24, No. 9, September 1981

Analytical solutions are readily obtained for the case
of no absorption (v =0). Settingl,=I,-I, in Eq. (20)
leads to

dl
Eti=-GI§+(GIO—2R)Is+RIO, (29)
which integrates to
expBt) -1
=I e ————er ey
L=l 2ot +GIo/R’ (30)

where B =GI,+R. Saturation due to pump depletion is
evident. Equation (30) can be integrated to yield a re-
flectance, but the resulting formula is complicated and
probably irrevelant due to the neglect of absorption. A
reflectance of unity is predicted for the experiment
reported by Mayer ef al.'® whereas they observe only
forty to sixty percent reflection. We surmise that the
difference is largely due to absorption.

B. Neutral media case

Equations (19) and (20) may also be used for the study
of stimulated Brillouin scattering by bound electrons in
neutral media provided we appropriately modify the
function f ) appearing in Eq. (2) to account for the
effects of internal molecular degrees of freedom upon
the scattering process. We appeal to Mountain® for
this modification and find that

Fan=lexc€nl? (ma/e)iwt, (31)

for this case (a is the polarizability of the scattering
molecules). The transport coefficients in Eqgs. (19) and
(20) now read

R=NCo,fy=(NaPwi/c?) e, €|, (32)
and
G =[(2mYNw,w;0?/cOy,]l€r € nl?, (33)

and v (the net absorption rate coefficient) is negligibly
small except near resonance. For optical photons, the
Rayleigh scattering rate by bound electrons given by
Eq. (32) is smaller than the Thomson scattering rate by
free electrons by several orders of magnitude. The
steady-state version of Eqgs. (19) and (20) was derived
by Tang,” employing very different arguments, and
used in an investigation of stimulated Brillouin scatter-
ing by crystals.

IV. SOME OTHER NONLINEARITIES

In addition to stimulated scattering, there are several
other nonlinear optical phenomena that are convenient-
ly described in the context of kinetic theory, Eq. (1).
Bound-bound, two photon absorption introduces a sink
term into the kinetic equation of the form, —yF®, i.e.,
v~v+yF. 1t is this phenomenon that is believed to be
responsible for gain saturation in Nd-glass laser
amplifiers.”® Light absorption by plasmas due to net
inverse bremsstrahlung may become strongly non-
linear at high intensity.'"® According to a simple argu-
ment sketched in the Appendix, we find that that part
of v descriptive of absorption by bremsstrahlung is
modified according to, v = vf(x), where

F(x) = exp(~x)L,(x) ~1,(x)],
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and

x=e2E%/4m0w® = 2N /drmOc® =v 2 /4vi,.

0sC

The functions, I, and I,, are the modified Bessel func-
tions of the first kind. This nonlinear correction factor
is in good agreement with the one presented in Ref. 15,
Fig. 1. In a lasing medium there is a source term in
the kinetic equation of the form, cgf, where g{em™) is
the small signal gain coefficient. This gain coefficient
may be displayed as g =(», —n;)0, where »n, and », are
the atomic densities in the upper and lower lasing
states, respectively, and ¢ is the atomic cross section
for the u = [ transition. The atomic densities n, and

n; may become intensity dependent (particularly »n, ,
e.g., gain depletion) as may also the cross section it-
self due to intensity-dependent broadening of the upper
lasing level-power broadening.?°+?! In the latter in-
stance, g~g,/(1+«I) at line center, where g, is the
gain coefficient at zero intensity and

8mctyy ___qax10m0)r

K= cm?/w.
hoty(Aw;/w) ¥ Bw;

In this formula, y, is the zero intensity radiative width
of the upper lasing level, y, is the width of the lower
lasing level, and (Aw;/w) is the ratio of laser band-
width to laser frequency. The nonlinearity induced by
power broadening is universal for lasers because it is
simply a consequence of the fact that stimulated emis-
sion from the upper level must shorten its lifetime and,
hence, increase its width. Because k is proportional
to A*, we expect this phenomenon to be relatively more
important for long wavelength lasers. For example,
estimating v,/7; = 107° and w/Aw; =~ 10%, we find for the
CO, laser, k=~ 2X10"%em?/w. Thus, we would expect
that CO, amplifiers might begin to exhibit gain satura-
tion at intensities of the order of 10°~10" w/cm?,
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APPENDIX

Here, we sketch an argument leading to the formula
for the correction factor for the absorption coefficient
for net inverse bremsstrahlung displayed in the text.
We set

aNg =<ﬁé£NR>EkI,

o (A1)

where meua/ 2 is the quivering energy of an electron in
an electric field, E [u = (eE/mw)cos wt], N is the elect-
ron density, R is an average electron-ion collision rate,
and k is the absorption coefficient per centimeter. The
symbol ( ) means time average over a period of the
electromagnetic wave. The collision rate may be ap-
proximately displayed as
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R=n' f & PW)a,,(v), (A2)
where P(v)d® is the probability of finding an electron
with a velocity in d% about v. This probability may be
estimated to be a Maxwellian in a reference frame
moving with the quivering velocity of the electron, i.e.,

P(v)~M(v -u) =exp (—ﬂ“—z> exp(w>M(v) . (A3)

26 e
Neglecting the factor, exp(m_ u-v/6), Eq. (A2) becomes
R =R, exp(-m, u*/26), (A4)

where R, is the collision rate at zero intensity. Per-
forming the time average in Eq. (A1) we find that

kI = ko exp(~x)[Io(x) ~1,(¥)]I (A5)

where &, is the absorption coefficient at zero intensity,
%= (0. /207), and I, and I, are the modified Bessel
functions of the first kind. The correction factor,

e *[1,(x) -1,(x)], is the one discussed in the text.
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